ECE271A HW5

Spring 2014

Textbook problems:

5.1 A simple example. Consider the optimization problem

minimize x>+ 1
subject to (x —2)(xz —4) <0,

with variable z € R.
(a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal

solution.

(b) Lagrangian and dual function. Plot the objective 22 + 1 versus z. On the same plot,
show the feasible set, optimal point and value, and plot the Lagrangian L(z, A) versus
x for a few positive values of A. Verify the lower bound property (p* > inf, L(x, A)
for A > 0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution A*.
Does strong duality hold?

(d) Sensitivity analysis. Let p*(u) denote the optimal value of the problem

minimize 2 +1
subject to  (z — 2)(z — 4) < u,

as a function of the parameter u. Plot p*(u). Verify that dp*(0)/du = —\*.

5.5 Dual of general LP. Find the dual function of the LP
minimize ¢’

subject to Gz < h

Az =0b.

Give the dual problem, and make the implicit equality constraints explicit.
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Lagrangian relaxation of Boolean LP. A Boolean linear program is an optimization prob-
lem of the form o .
minimize ¢ x
subject to Ax =b
z; €{0,1}, i=1,...,n,
and is, in general, very difficult to solve. In exercise 4.15 we studied the LP relaxation of
this problem,
minimize ¢!z
subject to Az <b (5.107)
0<a; <1, 2=1,...,n,
which is far easier to solve, and gives a lower bound on the optimal value of the Boolean

LP. In this problem we derive another lower bound for the Boolean LP, and work out the
relation between the two lower bounds.

(a) Lagrangian relazation. The Boolean LP can be reformulated as the problem

minimize Lz

subject to Az <b
zi(l—2;)=0, i=1,...,n,

which has quadratic equality constraints. Find the Lagrange dual of this problem.
The optimal value of the dual problem (which is convex) gives a lower bound on
the optimal value of the Boolean LP. This method of finding a lower bound on the
optimal value is called Lagrangian relaxation.

(b) Show that the lower bound obtained via Lagrangian relaxation, and via the LP
relaxation (5.107), are the same. Hint. Derive the dual of the LP relaxation (5.107).

Robust linear programming with polyhedral uncertainty. Consider the robust LP

minimize L

subject to  sup,ep. aTe<b;, i=1,....m,

with variable z € R", where P; = {a | Cia = d;}. The problem data are ¢ € R",
Ci e R™7*" d; € R™, and b € R™. We assume the polyhedra P; are nonempty.
Show that this problem is equivalent to the LP

minimize ¢’
subject to dlz; <b;, i=1,....m
Cley=2, i=1,....m
z =0, 2=1,...,m
with variables z € R™ and 2; € R™, i =1,...,m. Hint. Find the dual of the problem

of maximizing a?.’.—:‘ over a; € P; (with variable a;).



Additional problems:

3.8 Sechur complements and LMI representation. Recognizing Schur complements (see §A5.5) often
helps to represent nonlinear convex constraints as linear matrix inequalities (LMIs). Consider the
function

f(x)=(Az+b) T (Po+ 1P+ - - -+ 2, P,) ' (Az + D)
where A € R™™ b€ R™, and P, = P € R™™, with domain
domf={zeR"|Ph+ziPi+-- -+ z,P, - 0}.

This is the composition of the matrix fractional function and an affine mapping, and so is convex.
Give an LMI representation of epi f. That is, find a symmetric matrix F(z,t), affine in (z,t), for
which

redomf, f(z)<t = F(x,t) = 0.
Remark. LMI representations, such as the one you found in this exercise, can be directly used in
software systems such as CVX.,



4.1 Numerical perturbation analysis erxample. Consider the quadratic program

minimize 3:% + 2:1:% — T1T2 — T
subject to x4+ 210 < uy

r1 — 4wy < ug,

brq 4 T6ry <1,

with variables x,, x2, and parameters uy, us.

(a)

Solve this QP, for parameter values u; = —2, us = —3, to find optimal primal variable values
x7 and x3, and optimal dual variable values A], A5 and A3. Let p* denote the optimal objective
value. Verify that the KKT conditions hold for the optimal primal and dual variables you
found (within reasonable numerical accuracy).

Hint: See §3.7 of the CVX users’ guide to find out how to retrieve optimal dual variables. To
specify the quadratic objective, use quad_form().

We will now solve some perturbed versions of the QP, with
u1:—2—|—61, u.2=—3—|—52,

where 01 and d3 each take values from {—0.1,0,0.1}. (There are a total of nine such combi-
nations, including the original problem with 4; = d2 = 0.) For each combination of é; and 43,
make a prediction p;md of the optimal value of the perturbed QP, and compare it to pZ ..,
the exact optimal value of the perturbed QP (obtained by solving the perturbed QP). Put
your results in the two righthand columns in a table with the form shown below. Check that
the inequality pj,.q < Plcact holds.

51 62 p;red pzxact
0 0
0| -0.1
0 0.1
—-0.1 0
—-0.1] -0.1
—0.1 0.1
0.1 0
0.1 ] —-0.1
0.1 0.1




