Wireless Communications

Lecture 10

[SNR per symbol and SNR per bit]

$$
\mathrm{SNR}=\frac{P_{R}}{N_{0} B}=\frac{E_{s}}{N_{0} B T_{s}}=\frac{E_{b}}{N_{0} B T_{b}}
$$

For BPSK:

$$
T_{b}=T_{s}, \quad E_{b}=E_{s}, \quad \text { and } \quad T_{s}=1 / B .
$$

Raised cosine pulse shaper for other pulses. $T_{s} \sim \frac{1}{B}$
The SNR becomes

$$
\mathrm{SNR}=\frac{E_{s}}{N_{0}} \text { or }\left(\frac{E_{b}}{N_{0}} \quad \text { BPSK }\right)
$$

The SNR per symbol γ_{s} and the SNR per bit γ_{b} are defined as

$$
\begin{aligned}
\gamma_{s} & =\frac{E_{s}}{N_{0}} \\
\gamma_{b} & =\frac{E_{b}}{N_{0}}
\end{aligned}
$$

[Symbol error rate and bit error rate]
One approximation:

$$
\begin{aligned}
P_{s} & \simeq \text { one bit in error } \\
& =P_{b_{1}}\left(1-P_{b_{2}}\right)\left(1-P_{b_{3}}\right) \ldots+P_{b_{2}}\left(1-P_{b_{1}}\right)\left(1-P_{b_{3}}\right) \ldots+ \\
& =M P_{b_{1}}, \quad M: \text { the number of bits }
\end{aligned}
$$

[QPSK]

$$
\begin{aligned}
P_{s} & =P_{s \mid 1 \text { transmitted }} \times \frac{1}{4} \times 4=1-Q\left(\frac{-s_{i 1}}{\sigma}\right) Q\left(\frac{-s_{i 2}}{\sigma}\right) \\
& =1-\left(1-Q\left(\sqrt{\mathrm{SNR}_{b}}\right)\right)^{2}, \quad \mathrm{SNR}_{\text {symbol }}=\frac{2 a^{2}}{\sigma^{2}} \\
& \simeq 2 Q\left(\sqrt{\mathrm{SNR}_{b}}\right) \\
\Rightarrow P_{b} & \simeq P_{s} / 2
\end{aligned}
$$

[General case] For MPSK

$\Longrightarrow \vec{r}=\vec{s}_{i}+\vec{n} \Rightarrow$ need angle distribution.
In-phase and quadrature Gaussian \Rightarrow bivariate distribution of $|r|$ and $\theta \Rightarrow$ Integrate for θ distribution.

$$
P_{s}=1-\int_{\alpha}^{\beta} P(\theta) d \theta
$$

Closed form does not exist. The nearest neighbor approximation

$$
P_{s} \simeq 2 Q\left(\sqrt{2} \sqrt{\mathrm{SNR}_{b}}\right) \sin (\pi / M)
$$

[Average symbol error probability(general)] Many systems have : $P_{s} \simeq \alpha_{M} Q\left(\sqrt{\beta_{M} \gamma_{s}}\right)$ Finding the average probability of symbol error

$$
\begin{aligned}
\bar{P}_{s} & =\int_{0}^{\infty} \alpha_{M} Q\left(\sqrt{\beta_{M} \gamma}\right) \lambda e^{-\lambda \gamma} d \gamma, \quad \lambda=\frac{1}{\bar{\gamma}_{s}} \\
& =\frac{\alpha_{M}}{2}\left[1-\sqrt{\frac{0.5 \beta_{M} \bar{\gamma}_{s}}{1+0.5 \beta_{M} \bar{\gamma}_{s}}}\right] \\
& \approx \frac{\alpha_{M}}{2 \beta_{M} \bar{\gamma}_{s}}
\end{aligned}
$$

Show P_{b} for AWGN and fading channel (figure 6.1, 6.2 Goldsmith)
[Alternative form of Q-function by Craig]

$$
Q(z)=\frac{1}{\pi} \int_{0}^{\pi / 2} e^{\frac{-z^{2}}{2 \sin ^{2} \varphi}} d \varphi, \quad z>0
$$

[Moment Generating Function]

$$
\mathcal{M}_{\gamma}(s)=\int_{0}^{\infty} p_{\gamma}(\gamma) e^{s \gamma} d \gamma
$$

Setting $\alpha=\alpha_{M}$ and $g=0.5 \beta_{M}$ in $P_{s}=\alpha_{M} Q\left(\sqrt{\beta_{M} \gamma_{s}}\right)$

$$
\begin{aligned}
P_{s} & =\left.\alpha_{M} Q\left(\sqrt{\beta_{M} \gamma_{s}}\right)\right|_{\alpha=\alpha_{M}, g=0.5 \beta_{M}} \\
P_{s} & =\alpha Q\left(\sqrt{2 g \gamma_{s}}\right)
\end{aligned}
$$

Using the alternative Q-function

$$
=\frac{\alpha}{\pi} \int_{0}^{\pi / 2} e^{\frac{-g \gamma_{s}}{\sin ^{2} \psi}} d \varphi
$$

The average error probability in fading for modulation with $P_{s}=\alpha Q\left(\sqrt{2 g \gamma_{s}}\right)$ is

$$
\begin{aligned}
\bar{P}_{s} & =\frac{\alpha}{\pi} \int_{0}^{\infty} \int_{0}^{\pi / 2} e^{\frac{-g \gamma}{\sin ^{2} \varphi}} d \varphi p_{\gamma_{s}}(\gamma) d \gamma \\
& =\frac{\alpha}{\pi} \int_{0}^{\pi / 2}\left[\int_{0}^{\infty} e^{\frac{-g \gamma}{\sin ^{2} \varphi}} p_{\gamma_{s}}(\gamma) d \gamma\right] d \varphi \\
& =\frac{\alpha}{\pi} \int_{0}^{\pi / 2} \mathcal{M}_{\gamma_{s}}\left(\frac{-g}{\sin ^{2} \varphi}\right) d \varphi
\end{aligned}
$$

The MGF $\mathcal{M}_{\gamma_{s}}(s)$ for Rayleigh distribution is

$$
\mathcal{M}_{\gamma_{s}}(s)=\left(1-s \bar{\gamma}_{s}\right)^{-1}, \quad s=\frac{-g}{\sin ^{2} \varphi}
$$

[Example] Find outage probability of BPSK at $P_{b}=10^{-3}$ for Rayleigh fading with selection diversity for $M=2$. Equal branch $\overline{\mathrm{SNR}}_{s}$ of $\bar{\gamma}=15 \mathrm{~dB}$.

$$
\begin{gathered}
P_{b}=10^{-3} \Rightarrow \gamma_{b}=10 \mathrm{~dB} \Rightarrow \gamma_{0}=10 \\
P_{\text {out }}=\left[1-e^{-\gamma_{0} / \bar{\gamma}}\right]^{2}=\left[1-e^{-10 / 10^{1.5}}\right]^{2}
\end{gathered}
$$

[Average probability of symbol error(MRC)] The distribution of γ_{Σ} for MRC

$$
p_{\gamma_{\Sigma}}(\gamma)=\frac{\gamma^{M-1} e^{-\gamma / \bar{\gamma}}}{\bar{\gamma}^{M}(M-1)!}, \quad \gamma \geq 0
$$

The average probability of symbol error becomes

$$
\bar{P}_{s}=\int_{0}^{\infty} \alpha Q(\sqrt{\beta \gamma}) p_{\gamma_{\Sigma}}(\gamma) d \gamma
$$

Capacity of fading channels

- Capacity of AWGN channel: $C=B \log _{2}(1+\gamma)$
C : bits/sec, B :Bandwidth, $\gamma=\frac{P}{N_{o} B}($ received SNR $)$
- Meaning of capacity
- Fading channels: SNR is a random variable.
- Finding capacity if only channel distribution is known @TX and RX is hard.
- Channel capacity with RX CSI (Channel Side Information)
- RX knows the channel.
- TX sends a fixed rate
- Two types of capacity: Shannon and Outage
- Shannon capacity: ergodic capacity, max rate with which you can still decode with zero error probability.
- Capacity with outage: you allow some probability of error.
[Shannon (Ergodic) Capacity] For RX CSI, we will have

$$
C=\int_{0}^{\infty} B \log _{2}(1+\gamma) p(r) d r
$$

\log is a concave function \Rightarrow applying Jenson's Inequality. For concave $f(x)$,

$$
\mathbf{E}(f(x)) \leq f(\mathbf{E}(x)) \Rightarrow C=\int B \log _{2}(1+\gamma) p(\gamma) d \gamma \leq B \log _{2}(1+\bar{\gamma})
$$

It is worse than $A W G N$ with $\bar{\gamma}$.
[Capacity with outage] RX CSI, outage case:
RX assumes $\gamma_{\text {min }}$ for received SNR \& sends

$$
\begin{aligned}
& C=B \log _{2}\left(1+\gamma_{\text {min }}\right) \Rightarrow \text { if } \gamma<\gamma_{\text {min }} \Rightarrow \text { bits cannot be decoded without error } \\
& P_{\text {out }}=\text { Probability of not decoding correctly } \\
&=P\left(\gamma<\gamma_{\text {min }}\right) \\
& C_{\text {out }}=\text { number of received correctly }=\left(1-P_{\text {out }}\right) B \log _{2}\left(1+\gamma_{\text {min }}\right) \\
& \gamma_{\text {min }} \uparrow \rightarrow C \uparrow \text { but } \\
& \qquad \gamma_{\text {min }} \uparrow \Rightarrow \begin{cases}1+\gamma_{\text {min }} & \uparrow \\
1-P_{\text {out }} & \downarrow\end{cases}
\end{aligned}
$$

Choose $\gamma_{\text {min }}$ that gives the optimum.

Channel side information at Transmitter and Receiver

[Shannon capacity, TX \& RX CSI:]

- Adapt the rate to SNR.

$$
\begin{gathered}
C=\max \int_{0}^{\infty} B \log _{2}\left(1+\frac{P(\gamma) \gamma}{\bar{P}}\right) p(\gamma) d \gamma \\
\int_{0}^{\infty} P(\gamma) p(\gamma) d \gamma \leq \bar{P}
\end{gathered}
$$

- Optimum $P(\gamma)$: Form Lagrangian :

$$
J=\int_{0}^{\infty} B \log _{2}\left(1+\frac{P(\gamma) \gamma}{\bar{P}}\right) p(\gamma) d \gamma-\lambda\left(\int_{0}^{\infty} P(\gamma) p(\gamma) d \gamma-\bar{P}\right)
$$

differentiate with respect to $P(\gamma)$,

$$
\frac{\partial J}{\partial P(\gamma)}=\frac{(B / \ln 2)(\gamma / \bar{P})}{1+P(\gamma) \gamma / \bar{P}} p(\gamma)-\lambda p(\gamma)=0
$$

then,

$$
\begin{gathered}
P(\gamma)=\frac{(B / \ln 2)(\gamma / \bar{P})-\lambda}{\gamma(\lambda / \bar{P})}>0 \\
\gamma>\frac{\bar{P} \lambda}{B} \ln 2=\gamma_{0} \Rightarrow P(\gamma)= \begin{cases}\frac{\bar{P}}{\gamma_{0}}-\frac{\bar{P}}{\gamma} & \gamma \geq \gamma_{0} \\
0 & \text { else }\end{cases}
\end{gathered}
$$

Wireless Communications

$$
C=\int_{\gamma_{0}}^{\infty} B \log _{2}\left(\gamma / \gamma_{0}\right) p(\gamma) d \gamma
$$

Finding γ_{0} :

$$
\begin{aligned}
\int_{0}^{\infty} \frac{P(\gamma)}{\bar{P}} p(\gamma) d \gamma & =1 \\
\int_{\gamma_{0}}^{\infty}\left(\frac{1}{\gamma_{0}}-\frac{1}{\gamma}\right) p(\gamma) d \gamma & =1
\end{aligned}
$$

[Wideband Channels:] want to distribute total TX power over the frequency bins:

$$
\begin{aligned}
C & =\sum B \log _{2}\left(1+\frac{\left|H_{j}\right|^{2} P_{j}}{N_{o} B}\right) \\
\sum P_{j} & \leq P
\end{aligned}
$$

Similar Lagrangian method:

$$
\frac{P_{j}}{P}= \begin{cases}\frac{1}{\gamma_{0}}-\frac{1}{\gamma_{j}} & \gamma_{j} \geq \gamma_{0} \\ 0 & \text { else }\end{cases}
$$

Find $\gamma_{0} \Rightarrow \sum_{j} \frac{1}{\gamma_{0}}-\frac{1}{\gamma_{j}}=1$ where $\gamma_{j}=\frac{\left|H_{j}\right|^{2} P_{j}}{N_{o} B}$

Water-filling (Multicarrier Modulation) : DSL

