
Wireless Communications

Lecture 3

[Time-varying Channel Impulse Response]

The transmitted signal is

s(t) = Re{u(t)ej2πfct} = Re{u(t)} cos(2πfct)− Im{u(t)} sin(2πfct)

The received signal is the sum of all multipath components:

r(t) = Re


N(t)∑
n=1

αn(t)u(t− τn(t))ej2π[fc+∆fn(t)]t−j2πfcτn(t)



[Doppler Shift] fc → fc + v
cfc cos θ

Proof: Due to the movement, The wave will get there ∆d/c sec earlier

t+ ∆d = t+
vt cos θ

c

cos
(

2πfc

(
t+

vt cos θ
c

))
= cos

(
2π
(
fc +

v

c
fc cos θ

)
t
)
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[Resolvable & Nonresolvable path]

Assume τmax − τmin � B−1
u , Narrowband channel

The received signal is

r(t) = Re


N(t)∑
n=1

αn(t)ejφn(t)u(t)ej2πfct


φn(t) = 2π∆fn(t)t− 2πfcτn(t)

The baseband equivalent channel is

chBBeq =
N(t)∑
n=1

αn(t)e+jφn(t), αn(t) and φn(t) are independent

The in-phase and quadrature components are given by

chI =
N(t)∑
n=1

αn(t) cos(φn(t))

chQ =
N(t)∑
n=1

αn(t) sin(φn(t))

By Central Limit Theorem(CLT) chI and chQ are Gaussian random processes. In the
adsence of a LOS path, φn(t) can be approximated by uniform. Thus

E[chI ] =
∑
n

αn(t) cos(φn(t)) = 0 = E[chQ]
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By the independence of αn and φn, the independence of φn and φm (n 6= m) and the uniform
distribution of φn,

E[chIchQ] = E

[∑
n

αn(t) cos(φn(t))
∑
m

αm(t) sin(φm(t))

]
=

∑
n

∑
m

E[αn(t)αm(t)]E[cos(φn(t)) sin(φm(t)]

=
∑
n

α2
n(t) cos(φn(t)) sin(φn(t))

= 0

The autocorrelation of chI is

ArI (t, τ) = E[chI(t)chI(t+ τ)]

=
∑

αn(t)αn(t+ τ) cos(φn(t)) cos(φn(t+ τ))

assume αn is not a function of t and cos θn. Therefore ∆fn is not a function of t

=
∑

α2
n(t)

1
2

cos(2π∆fnτ), chI is WSS

The autocorrelation of chQ is

ArQ(t, τ) = E[chQ(t)chQ(t+ τ)] =
∑

α2
n

1
2

cos(2π∆fnτ) = ArI (t, τ)

The cross-correlation is given by

ArI ,rQ(t, τ) = E[chI(t)chQ(t+ τ)] =
∑

α2
n(t) sin(2π∆fnτ) = −ArQ,rI (t, τ)
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[Jakes model] Assume uniform angle of arrival, i.e., θn is uniform

cos
(

2π
v

c
fcτ cos θn

)
= J0

(
2π
v

c
fcτ
)
,

v

c
fc = fD

ArI (τ) becomes

ArI (τ) =
∑
α2
n

2
J0(2πfDτ) = ArQ(τ), Ωp =

∑
α2
n

where
Jo(x) =

1
π

∫ π

0
e−jx cos θdθ

ArI ,rQ(τ) = 0.

Uncorrelated when

fDτ = 0.4⇒ v

c
fc

distance
v

= 0.4⇒ distance
λ

= 0.4

[Jakes Spectrum] The power spectral densities (PSDs) of rI(t) and rQ(t)

SrI (f) = SrQ(f) = F{ArI (τ)} =

{
Ωp

2πfD

√
1−(f/fD)2

|f | ≤ fD
0 else
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[Example] Send a cos(2πfct) through the channel. Then the received signal is

r(t) = Re
{
chbb(t)ej2πfct

}
= chI(t) cos(2πfct)− chQ(t) sin(2πfct)

The autocorrelation of r(t) becomes

Ar(τ) =
1
2
ArI (τ) cos(2πfcτ) +

1
2
ArQ(τ) cos(2πfcτ) = ArI (τ) cos(2πfcτ)

0.5 of PSD of ArI is shifted to −fc and fc.
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[Envelop and Power distribution]

|ch(t)| =
√
ch2
I(t) + ch2

Q(t) is Rayleigh distributed with E[|ch(t)|2] = Ωp:

PX(x) =
x

σ2
e−x

2/2σ2
, for x ≥ 0

E[x2] = 2σ2

The distribution of power of the channel, |ch(t)|2, is exponential:

PX(x) = λe−λx, E[x] =
1
λ
⇒ λ = 1/Ωp

[Example] (3.2 of Andrea Goldsmith’s book) rbb(t) = u(t)hbb(t).

prob{|rbb(t)|2 < Z} = prob
{
|hbb(t)|2Pt < Z

}
=

∫ Z/Pt

0
λe−λxdx

= 1− e−λZ/Pt

λ =
1

|hbb(t)|2
=

Pt

|rbb(t)|2
=

Pt
0.1

Then,

prob{|rbb(t)|2 < Z} = 1− e−0.01/0.1

= 0.095
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[Level Crossing Rate]

The level crossing rate is

LZ =
∫ 0

−∞
Żp(Z, ż)dż

For a Rayleigh signal
LZ =

√
2πfDρe−ρ

2
, ρ = Z/

√
P̄r

[Average Fade Duration]

t̄Z =
1
Nt

Nt∑
i=1

ti, LZ =
Nt

T

=
1

LZT

Nt∑
i=1

ti,

Since
1
T

Nt∑
i=1

ti = prob{|signal| < Z}

Then,

t̄Z =
1− e−Z2/Ωp

√
2πfDZ/

√
Ωpe−Z

2/Ωp


