Wireless Communications

Lecture 3

[Time-varying Channel Impulse Response]

The transmitted signal is

$$
s(t)=\operatorname{Re}\left\{u(t) e^{j 2 \pi f_{c} t}\right\}=\operatorname{Re}\{u(t)\} \cos \left(2 \pi f_{c} t\right)-\operatorname{Im}\{u(t)\} \sin \left(2 \pi f_{c} t\right)
$$

The received signal is the sum of all multipath components:

$$
r(t)=\operatorname{Re}\left\{\sum_{n=1}^{N(t)} \alpha_{n}(t) u\left(t-\tau_{n}(t)\right) e^{j 2 \pi\left[f_{c}+\Delta f_{n}(t)\right] t-j 2 \pi f_{c} \tau_{n}(t)}\right\}
$$

[Doppler Shift] $f_{c} \rightarrow f_{c}+\frac{v}{c} f_{c} \cos \theta$
Proof: Due to the movement, The wave will get there $\Delta d / c$ sec earlier

$$
\begin{aligned}
t+\Delta d & =t+\frac{v t \cos \theta}{c} \\
\cos \left(2 \pi f_{c}\left(t+\frac{v t \cos \theta}{c}\right)\right) & =\cos \left(2 \pi\left(f_{c}+\frac{v}{c} f_{c} \cos \theta\right) t\right)
\end{aligned}
$$

[Resolvable \& Nonresolvable path]

Assume $\tau_{\max }-\tau_{\min } \ll B_{u}^{-1}$, Narrowband channel
The received signal is

$$
\begin{aligned}
r(t) & =\operatorname{Re}\left\{\sum_{n=1}^{N(t)} \alpha_{n}(t) e^{j \phi_{n}(t)} u(t) e^{j 2 \pi f_{c} t}\right\} \\
\phi_{n}(t) & =2 \pi \Delta f_{n}(t) t-2 \pi f_{c} \tau_{n}(t)
\end{aligned}
$$

The baseband equivalent channel is

$$
\begin{gathered}
u(t) \longrightarrow \sum_{n=1}^{N(t)} \alpha_{n}(t) e^{+j \phi_{\phi_{n}}(t)} \delta(t) \longrightarrow \text { Baseband eq. of } r(t) \\
c h_{B B_{e q}}=\sum_{n=1}^{N(t)} \alpha_{n}(t) e^{+j \phi_{n}(t)}, \quad \alpha_{n}(t) \text { and } \phi_{n}(t) \text { are independent }
\end{gathered}
$$

The in-phase and quadrature components are given by

$$
\begin{aligned}
c h_{I} & =\sum_{n=1}^{N(t)} \alpha_{n}(t) \cos \left(\phi_{n}(t)\right) \\
c h_{Q} & =\sum_{n=1}^{N(t)} \alpha_{n}(t) \sin \left(\phi_{n}(t)\right)
\end{aligned}
$$

By Central Limit Theorem(CLT) $c h_{I}$ and $c h_{Q}$ are Gaussian random processes. In the adsence of a LOS path, $\phi_{n}(t)$ can be approximated by uniform. Thus

$$
\mathbf{E}\left[c h_{I}\right]=\sum_{n} \overline{\alpha_{n}(t)} \quad \overline{\cos \left(\phi_{n}(t)\right)}=0=\mathbf{E}\left[c h_{Q}\right]
$$

By the independence of α_{n} and ϕ_{n}, the independence of ϕ_{n} and $\phi_{m}(n \neq m)$ and the uniform distribution of ϕ_{n},

$$
\begin{aligned}
\mathbf{E}\left[c h_{I} c h_{Q}\right] & =\mathbf{E}\left[\sum_{n} \alpha_{n}(t) \cos \left(\phi_{n}(t)\right) \sum_{m} \alpha_{m}(t) \sin \left(\phi_{m}(t)\right)\right] \\
& =\sum_{n} \sum_{m} \mathbf{E}\left[\alpha_{n}(t) \alpha_{m}(t)\right] \mathbf{E}\left[\cos \left(\phi_{n}(t)\right) \sin \left(\phi_{m}(t)\right]\right. \\
& =\sum_{n} \frac{\alpha_{n}^{2}(t)}{\cos \left(\phi_{n}(t)\right) \sin \left(\phi_{n}(t)\right)} \\
& =0
\end{aligned}
$$

The autocorrelation of $c h_{I}$ is

$$
\begin{aligned}
A_{r_{I}}(t, \tau) & =\mathbf{E}\left[c h_{I}(t) c h_{I}(t+\tau)\right] \\
& =\sum \overline{\alpha_{n}(t) \alpha_{n}(t+\tau)} \overline{\cos \left(\phi_{n}(t)\right) \cos \left(\phi_{n}(t+\tau)\right)}
\end{aligned}
$$

assume α_{n} is not a function of t and $\cos \theta_{n}$. Therefore Δf_{n} is not a function of t $=\sum \overline{\alpha_{n}^{2}(t)} \frac{1}{2} \overline{\cos \left(2 \pi \Delta f_{n} \tau\right)}, \quad c h_{I}$ is WSS

The autocorrelation of $c h_{Q}$ is

$$
A_{r_{Q}}(t, \tau)=\mathbf{E}\left[c h_{Q}(t) c h_{Q}(t+\tau)\right]=\sum \overline{\alpha_{n}^{2}} \frac{1}{2} \overline{\cos \left(2 \pi \Delta f_{n} \tau\right)}=A_{r_{I}}(t, \tau)
$$

The cross-correlation is given by

$$
A_{r_{I}, r_{Q}}(t, \tau)=\mathbf{E}\left[c h_{I}(t) c h_{Q}(t+\tau)\right]=\sum \overline{\alpha_{n}^{2}(t)} \quad \overline{\sin \left(2 \pi \Delta f_{n} \tau\right)}=-A_{r_{Q}, r_{I}}(t, \tau)
$$

[Jakes model] Assume uniform angle of arrival, i.e., θ_{n} is uniform

$$
\overline{\cos \left(2 \pi \frac{v}{c} f_{c} \tau \cos \theta_{n}\right)}=J_{0}\left(2 \pi \frac{v}{c} f_{c} \tau\right), \quad \frac{v}{c} f_{c}=f_{D}
$$

$A_{r_{I}}(\tau)$ becomes

$$
A_{r_{I}}(\tau)=\frac{\sum \alpha_{n}^{2}}{2} J_{0}\left(2 \pi f_{D} \tau\right)=A_{r_{Q}}(\tau), \quad \Omega_{p}=\sum \alpha_{n}^{2}
$$

where

$$
J_{o}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{-j x \cos \theta} d \theta
$$

$A_{r_{I}, r_{Q}}(\tau)=0$.

Uncorrelated when

$$
f_{D} \tau=0.4 \Rightarrow \frac{v}{c} f_{c} \frac{\text { distance }}{v}=0.4 \Rightarrow \frac{\text { distance }}{\lambda}=0.4
$$

[Jakes Spectrum] The power spectral densities (PSDs) of $r_{I}(t)$ and $r_{Q}(t)$

$$
S_{r_{I}}(f)=S_{r_{Q}}(f)=\mathcal{F}\left\{A_{r_{I}}(\tau)\right\}= \begin{cases}\frac{\Omega_{p}}{2 \pi f_{D} \sqrt{1-\left(f / f_{D}\right)^{2}}} & |f| \leq f_{D} \\ 0 & \text { else }\end{cases}
$$

[Example] Send a $\cos \left(2 \pi f_{c} t\right)$ through the channel. Then the received signal is

$$
r(t)=\operatorname{Re}\left\{c h_{b b}(t) e^{j 2 \pi f_{c} t}\right\}=c h_{I}(t) \cos \left(2 \pi f_{c} t\right)-c h_{Q}(t) \sin \left(2 \pi f_{c} t\right)
$$

The autocorrelation of $r(t)$ becomes

$$
A_{r}(\tau)=\frac{1}{2} A_{r_{I}}(\tau) \cos \left(2 \pi f_{c} \tau\right)+\frac{1}{2} A_{r_{Q}}(\tau) \cos \left(2 \pi f_{c} \tau\right)=A_{r_{I}}(\tau) \cos \left(2 \pi f_{c} \tau\right)
$$

0.5 of PSD of $A_{r_{I}}$ is shifted to $-f_{c}$ and f_{c}.
[Envelop and Power distribution]
$|c h(t)|=\sqrt{c h_{I}^{2}(t)+c h_{Q}^{2}(t)}$ is Rayleigh distributed with $\mathbf{E}\left[|c h(t)|^{2}\right]=\Omega_{p}:$

$$
\begin{aligned}
& P_{X}(x)= \frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}}, \quad \text { for } x \geq 0 \\
& \mathbf{E}\left[x^{2}\right]=2 \sigma^{2}
\end{aligned}
$$

The distribution of power of the channel, $|\operatorname{ch}(t)|^{2}$, is exponential:

$$
P_{X}(x)=\lambda e^{-\lambda x}, \quad \mathbf{E}[x]=\frac{1}{\lambda} \Rightarrow \lambda=1 / \Omega_{p}
$$

[Example] (3.2 of Andrea Goldsmith's book) $r_{b b}(t)=u(t) h_{b b}(t)$.

$$
\begin{aligned}
\operatorname{prob}\left\{\left|r_{b b}(t)\right|^{2}<Z\right\} & =\operatorname{prob}\left\{\left|h_{b b}(t)\right|^{2} P_{t}<Z\right\} \\
& =\int_{0}^{Z / P_{t}} \lambda e^{-\lambda x} d x \\
& =1-e^{-\lambda Z / P_{t}} \\
\lambda=\frac{1}{\left|h_{b b}(t)\right|^{2}} & =\frac{P_{t}}{\left|r_{b b}(t)\right|^{2}}=\frac{P_{t}}{0.1}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{prob}\left\{\left|r_{b b}(t)\right|^{2}<Z\right\} & =1-e^{-0.01 / 0.1} \\
& =0.095
\end{aligned}
$$

[Level Crossing Rate]

The level crossing rate is

$$
L_{Z}=\int_{-\infty}^{0} \dot{Z} p(Z, \dot{z}) d \dot{z}
$$

For a Rayleigh signal

$$
L_{Z}=\sqrt{2 \pi} f_{D} \rho e^{-\rho^{2}}, \quad \rho=Z / \sqrt{\bar{P}_{r}}
$$

[Average Fade Duration]

$$
\begin{aligned}
\bar{t}_{Z} & =\frac{1}{N_{t}} \sum_{i=1}^{N_{t}} t_{i}, \quad L_{Z}=\frac{N_{t}}{T} \\
& =\frac{1}{L_{Z} T} \sum_{i=1}^{N_{t}} t_{i},
\end{aligned}
$$

Since

$$
\frac{1}{T} \sum_{i=1}^{N_{t}} t_{i}=\operatorname{prob}\{\mid \text { signal } \mid<Z\}
$$

Then,

$$
\bar{t}_{Z}=\frac{1-e^{-Z^{2} / \Omega_{p}}}{\sqrt{2 \pi} f_{D} Z / \sqrt{\Omega_{p}} e^{-Z^{2} / \Omega_{p}}}
$$

