Wireless Communications

Lecture 4

[Review of previous lecture]

- Small-scale fading

$$
s(t)=\operatorname{Re}\left\{u(t) e^{j 2 \pi f_{c} t}\right\}
$$

Send a cosine, e.g. $u(t)=1$

$$
\begin{aligned}
r(t) & =\operatorname{Re}\left\{\sum \alpha_{n}(t) e^{j \phi_{n}(t)} e^{j 2 \pi f_{c} t}\right\} \\
& =\underbrace{\sum \alpha_{n}(t) \cos \left(\phi_{n}(t)\right) \cos \left(\omega_{c} t\right)}_{\text {In-phase:zero-mean Gaussian }}-\underbrace{\sum \alpha_{n}(t) \sin \left(\phi_{n}(t)\right) \sin \left(\omega_{c} t\right)}_{\text {Quadrature:zero-mean Gaussian }} \\
c h(t) & =c h_{I}(t)+j c h_{Q}(t) \quad \text { Complex Gaussian random variable }
\end{aligned}
$$

The autocorrelation and cross-correlation of $c h_{I}$ and $c h_{Q}$ are

$$
\begin{aligned}
A_{c h_{I}}(\tau) & =A_{c h_{Q}}(\tau) \\
& =\frac{1}{2} \sum \alpha_{n}^{2}(t) \overline{\cos \left(2 \pi \Delta f_{n} \tau\right)} \\
& =\frac{1}{2} \sum \alpha_{n}^{2}(t) J_{0}\left(2 \pi f_{D} \tau\right) \\
A_{I, Q}(\tau) & =\frac{1}{2} \sum \alpha_{n}^{2}(t) \overline{\sin \left(2 \pi \Delta f_{n} \tau\right)} \\
& =0
\end{aligned}
$$

- Power Spectrum

$$
\mathcal{F}\left\{A_{I}(\tau)\right\}=S_{I}(f)=\frac{\Omega_{p}}{2 \pi f_{D} \sqrt{1-\left(\frac{f}{f_{D}}\right)^{2}}}, \quad|f|<f_{D}
$$

What is $\int S_{I}(f) d f$?
To get uncorrelated, $f_{D} \tau=0.4 \lambda$.

- Amplitude of channel, $|\operatorname{ch}(t)|$ is Rayleigh distributed. $|c h(t)|^{2}$ is exponential distributed.
- Jakes Spectrum

$$
A_{|c h|}(\tau)=\frac{\pi}{8} P J_{0}^{2}\left(2 \pi f_{D} \tau\right)+\frac{\pi}{2} P
$$

$$
\mathbf{E}\left[|c h|^{2}\right]=2 P=\Omega_{p}, \mathbf{E}^{2}[|c h|]=\frac{\pi}{2} P .(\text { See Jakes for proof })
$$

[Deriving PSD in another way]

Let's assume

- large number of arriving paths.
- can account for antenna gain and non-uniform distribution of received paths.
- the paths are planar paths.

Let $p(\alpha)$ be probability distribution of path power/angle.

$$
\begin{aligned}
\int p(\alpha) d \alpha & =1 \\
\text { Total power } & =P \int p(\alpha) G(\alpha) d \alpha
\end{aligned}
$$

where P is total power for isotropic antenna $G=1$. In frequency domain:

$$
S(f)|d f|=P p(\alpha) G(\alpha)|d \alpha|+P(p(-\alpha) G(-\alpha)|d \alpha| \quad 0<\alpha<\pi
$$

where $S(f)$ denotes power spectrum.

$$
\begin{aligned}
f & =f_{c}+\underbrace{\frac{v}{c} f_{c}}_{f_{D}} \cos \alpha \\
d f & =-f_{D} \sin \alpha d \alpha \\
|d f| & =f_{D}|\sin \alpha||d \alpha|
\end{aligned}
$$

Is it valid to do the change of variable and $|d f|$ small enough?

$$
\begin{array}{rlrl}
S(f) & =\frac{P[p(\alpha) G(\alpha)+p(-\alpha) G(-\alpha)]}{f_{D} \sin \alpha} & \alpha=\cos ^{-1}\left(\frac{f-f_{c}}{f_{D}}\right), 0<\alpha<\pi \\
& =\frac{P[p(\alpha) G(\alpha)+p(-\alpha) G(-\alpha)]}{f_{D} \sqrt{1-\left(\frac{f-f_{c}}{f_{D}}\right)^{2}}}, & & 0 \leq \alpha \leq \pi \Rightarrow\left|\frac{f-f_{c}}{f_{D}}\right|<1
\end{array}
$$

Therefore, to translate it to all $f, 1 / 2$ of $S(f)$ will be in $f>0$ and $1 / 2$ in $f<0$.
[Example] For $p(\alpha)=1 / 2 \pi, G(\alpha)=1$

$$
S(f)=\frac{2 P}{2 \pi f_{D} \sqrt{1-\left(\frac{f-f_{c}}{f_{D}}\right)^{2}}}
$$

[Log-normal Shadowing] $|c h|$ is Rayleigh but $\overline{|c h|}$ is log-normal.

- We have $u=10 \log \overline{|c h|^{2}}$,

$$
\begin{aligned}
& P_{U}(u)=\frac{1}{\sqrt{2 \pi} \sigma_{u}} e^{\frac{-\left(u-m_{u}\right)^{2}}{2 \sigma_{u}^{2}}}, \quad m_{u}=10 \log \alpha-n 10 \log d \text { (Path Loss) } \\
& \begin{aligned}
& \mathbf{E}\left[\mid \overline{\left.c h\right|^{2}}\right]= \mathbf{E}\left[10^{u / 10}\right] \\
& 10^{\alpha u}= e^{\beta u} \\
& \alpha u \ln 10= \beta u \\
& \beta=\alpha \ln 10
\end{aligned} \\
& \begin{aligned}
\mathbf{E}\left[e^{\left.\frac{\alpha \ln 10}{10}\right]}=\right. & \cdots \\
& =\exp \left\{\frac{m_{u}}{g}+\frac{\sigma_{u}^{2}}{2 g^{2}}\right\}, \quad g=\frac{10}{\ln 10}
\end{aligned}
\end{aligned}
$$

- Distribution of $\psi=\overline{|c h|}^{2}$,

$$
\begin{gathered}
P(\psi)=\frac{\partial}{\partial \psi} P_{U}(u=f(\psi)), \quad u=10 \log \psi \\
\psi=10^{u / 10} \\
=e^{\ln 10 / 10^{u}} \\
\frac{\partial \psi}{\partial u}=\frac{\ln 10}{10} \psi \\
P(\psi)=\frac{10}{\ln 10 \psi} \frac{1}{\sqrt{2 \pi} \sigma_{u}} e^{\frac{-\left(10 \log \psi-m_{u}\right)^{2}}{\sigma_{u}^{2}}}
\end{gathered}
$$

