## Wireless Communications

## Lecture 5

[Review of log-normal fading] $\quad \psi_{\mathrm{dB}}=10 \log \overline{|c h|^{2}}$,

$$
P_{\psi_{\mathrm{dB}}}=\frac{1}{\sqrt{2 \pi} \sigma_{\mathrm{dB}}} e^{\frac{-\left(\psi_{\mathrm{dB}}-m_{\mathrm{dB}}\right)^{2}}{2 \sigma_{\mathrm{dB}}^{2}}}, \quad m_{\mathrm{dB}}=\alpha_{\mathrm{dB}}-10 n \log d
$$

[Example] Best path loss fit is $-31.54 \mathrm{~dB}-37.1 \log d$ for the data below. Find $\sigma_{\mathrm{dB}}^{2}$, variance of log-normal fading

| $d$ | $P_{r} / P_{t}$ |
| :--- | :--- |
| 10 m | -70 dB |
| 20 m | -75 dB |
| 50 m | -90 dB |
| 100 m | -110 dB |
| 300 m | -125 dB |

[Solution] Take the average out and average the rest for variance:

$$
\begin{aligned}
\sigma_{\mathrm{dB}}^{2}= & \frac{1}{5}\left[(-70+31.54+37.1 \log 10)^{2}+\right. \\
& +(-75+31.54+37.1 \log 20)^{2}+\cdots \\
= & 13.29 \\
\sigma_{\mathrm{dB}}= & 3.65
\end{aligned}
$$

[Outage Probability] $\operatorname{prob}\left\{P_{r_{\mathrm{dB}}} \leq P_{\min }\right\}$

$$
\begin{aligned}
P_{r_{\mathrm{dB}}} & =P_{T_{\mathrm{dB}}}+\psi_{\mathrm{dB}} \quad \text { (Normal distribution) } \\
\operatorname{prob}\left\{P_{r_{\mathrm{dB}}} \leq P_{\mathrm{min}}\right\} & =1-Q(\frac{P_{\mathrm{min}}-\overbrace{\left(P_{\left.T_{\mathrm{dB}}+K_{\mathrm{dB}}-10 \gamma \log d\right)}\right.}^{\alpha_{\psi_{\mathrm{dB}}-10 n \log d}}}{\sigma_{\mathrm{d}_{\mathrm{dB}}}}) \\
Q(z) & =\frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-x^{2} / 2} d x
\end{aligned}
$$

[Example 2.5 of Goldsmith's] Find outage probability at $150 \mathrm{~m}, P_{\min }=-110.5 \mathrm{dBm}, P_{t}=$ 10 mW for previous example.
[solution] We have $K=-31.54, \gamma=3.71$. Therefore,

$$
P_{\text {outage }}=1-Q\left(\frac{-110.5-(10-31.54-37.11 \log (150))}{3.65}\right)=0.0121
$$

[Cell Coverage] Find what percentage of the cell is above certain level?


We know $\operatorname{prob}\left\{P_{r}(r) \geq P_{\text {min }}\right\}$, then:

$$
\begin{aligned}
C_{r, r+\Delta r} & =\text { area in the ring above } P_{\min } \\
& =\operatorname{prob}\left\{P_{r}(r) \geq P_{\min }\right\}\left[\pi(r+\Delta r)^{2}-\pi r^{2}\right] \\
& =\operatorname{prob}\left\{P_{r}(r) \geq P_{\min }\right\} 2 \pi r \Delta r \\
C_{0, R} & =2 \pi \int_{0}^{R} r \underbrace{\operatorname{prob}\left\{P_{r}(r) \geq P_{\min }\right\}}_{Q\left(\frac{P_{\min }-\left(P_{T_{\mathrm{dB}}}+K_{\mathrm{dB}}-10 \gamma \log r\right)}{\sigma_{\mathrm{dB}}}\right)} d r \\
C & =\frac{C_{0, R}}{\pi R^{2}}=\text { percentage of area above } P_{\min }
\end{aligned}
$$

Calculation involves $C=\frac{2}{R^{2}} \int_{0}^{R} r Q(a+b \ln r) d r, d r / r=d u \rightarrow \ln r=u, \ln 0=-\infty$ and integration by parts

$$
\begin{aligned}
\int_{-\infty}^{\ln R} e^{2 u} Q(a+b u) d u & =\left.\frac{1}{2} e^{2 u} Q(a+b u)\right|_{-\infty} ^{\ln R}+\int_{-\infty}^{\ln R} \frac{\left(1 / 2 e^{2 u}\right) b}{\sqrt{2 \pi}} e^{-\frac{(a+b u)^{2}}{2}} d u \\
& =\left.\frac{1}{2} e^{2 u} Q(a+b u)\right|_{-\infty} ^{\ln R}+\frac{b}{2 \sqrt{2 \pi}} \int_{-\infty}^{\ln R} e^{2 u-\frac{(a+b u)^{2}}{2}} d u \\
& =\cdots \\
& =Q(a)+e^{\frac{2-2 a b}{b^{2}}} Q\left(\frac{2-a b}{b}\right)
\end{aligned}
$$

[Rician channel] $\operatorname{ch}(t)=c h_{I}(t)+j c h_{Q}(t)$
We assume uniform angle of arrival $\Rightarrow c h_{I}(t)$ and $c h_{Q}(t)$ are zero mean. If a LOS path exists: separate that part

$$
\operatorname{ch}(t)=\underbrace{z_{0}(t)}_{\text {LOS }}+\underbrace{z(t)}_{\text {zero mean }}
$$

$r(t)=|c h(t)|$ has a Rician distribution

$$
P(r)=\frac{r}{\sigma^{2}} e^{\frac{-\left(r^{2}+s^{2}\right)}{2 \sigma^{2}}} I_{0}\left(\frac{r s}{\sigma^{2}}\right), \quad r \geq 0, I_{0}(x): \text { modified Bessel function }
$$

where $2 \sigma^{2}=\sum_{n \neq \text { LOS path }} \overline{\alpha_{n}^{2}}$ is the average power in the non-LOS multipath components and $s^{2}=\left|z_{0}\right|^{2}$ is the power in the LOS component.

$$
\mathbf{E}\left[r^{2}(t)\right]=s^{2}+2 \sigma^{2}
$$

The fading parameter $K$ is defined by

$$
K=\frac{s^{2}}{2 \sigma^{2}}
$$

$K$ is a measure of the severity of the fading.

## Resolvable Paths:


[Wideband Channels] The received signal is

$$
r(t)=\operatorname{Re}\left\{\sum_{n=1}^{N(t)} \alpha_{n}(t) u\left(t-\tau_{n}(t)\right) e^{j 2 \pi\left(f_{c}+\Delta f_{n}(t)\right) t-j 2 \pi f_{c} \tau_{n}(t)}\right\}
$$

- The different multipath components can be resolved.
- This results in Intersymbol Interference (ISI)
- The approximation $u\left(t-\tau_{n}(t)\right) \approx u(t)$ is no longer valid.

$$
\begin{gathered}
r(t)=\operatorname{Re}\left\{\sum_{n=1}^{N(t)} \alpha_{n}(t) e^{j \phi_{n}(t)} u\left(t-\tau_{n}(t)\right) e^{j 2 \pi f_{c} t}\right\} \\
r_{b b}(t)=\sum_{n=1}^{N(t)} \alpha_{n}(t) e^{j \phi_{n}(t)} u\left(t-\tau_{n}(t)\right) \\
\boldsymbol{u}(t) \longrightarrow \sum_{n=1}^{N(t)} \alpha_{n}(t) e^{j \Phi_{n}(t)} \boldsymbol{\delta}\left(\boldsymbol{t}-\tau_{n}(t)\right) \quad r_{b b}(t)
\end{gathered}
$$

[Note]: Two time progression

1. distance $R$ approach.

$$
h(t, R)=\sum \alpha_{n}(R) e^{j \phi_{n}(R)} \delta\left(t-\tau_{n}(R)\right)
$$

2. $t, \tau$ approach

$$
h(\tau, t)=\sum \alpha_{n}(t) e^{j \phi_{n}(t)} \delta\left(\tau-\tau_{n}(t)\right)
$$

[Example 3.1 of Goldsmith's ] Consider a TX in a factory near a conveyer belt. LOS path with $\alpha_{0}, \phi_{0}$. Every $T_{0}$ second a metal item comes down the belt with $\alpha_{1}, \phi_{1}, \tau_{1}$. $\tau_{1}$ is delay difference. Characterize the channel.

$$
h(\tau, t)= \begin{cases}\alpha_{0} e^{j \phi_{0}} \delta(\tau) & t \neq n T_{0} \\ \alpha_{0} e^{j_{0}} \delta(\tau)+\alpha_{1} e^{j \phi_{1}} \delta\left(\tau-\tau_{1}\right) & t=n T_{0}\end{cases}
$$

[Increase in time length]
$T_{m} \gg T \Rightarrow$ resolvable. Equivalently, $B_{u} \ll T_{m}^{-1}$ which is called is wideband channel.

$\Rightarrow$ wideband channel or frequency selective fading.
[Example]


