Wireless Communications Lecture 8

[TX diversity] Channel is known at the TX.

Total TX power = $\sum |\alpha_i|^2 P_T$, $\sum_{i=1}^M \rho_i^2 = 1$. The received signal is $r(t) = \text{overall received signal} = \sum r_i \rho_i u(t) + \text{noise}$

The SNR is

$$\gamma_{\Sigma} = \frac{\left[\sum r_i \rho_i\right]^2 P_T}{N_R}$$

Find max $[\sum r_i \rho_i]^2$ such that $\sum \rho_i^2 = 1$ with Lagrange integral

$$\left[\sum r_i \rho_i\right]^2 - \lambda \left(\sum \rho_i^2 - 1\right)$$

$$\Rightarrow \ \partial/\partial \rho_j = 2 \left[\sum r_i \rho_i\right] r_j - 2\lambda \rho_j = 0$$

$$\Rightarrow \ \rho_j = \frac{r_j \sum r_i \rho_i}{\lambda}$$

$$\Rightarrow \ \sum \rho_i^2 = 1 = \frac{1}{\lambda^2} \sum r_i^2 \left[\sum r_j \rho_j\right]^2 = 1$$

$$\Rightarrow \ \left[\sum r_j \rho_j\right]^2 \sum r_i^2 = \lambda^2$$

$$\Rightarrow \ \lambda = \sum r_j \rho_j \sqrt{\sum r_i^2}$$

$$\Rightarrow \ \rho_j = \frac{r_j \sum r_i \rho_i}{\sum r_i \rho_i \sqrt{\sum r_i^2}} = \frac{r_j}{\sqrt{\sum r_i^2}}$$

SNR is similar to RX diversity

$$\gamma_{\Sigma} = \frac{P_T}{N_R} \frac{\left[\sum r_j^2\right]^2}{\sum r_j^2} = \frac{P_T}{N_R} \sum r_j^2 = \sum_i \text{SNR}_i$$

[Macroscopic Diversity]

- Microscopic diversity does not help with shadowing.
- $\alpha_i = |ch_i| \Rightarrow P_r = \overline{|ch_i|^2} P_T$ = received power. $P_{r_{dB}}$ is in normal distribution.
- Receive from two branches

outage Probability =
$$prob\{P_{r_{1,dB}}, P_{r_{2,dB}} < P_{\min}\}\$$

= $prob\{P_{r_{1,dB}} < P_{\min}\} \times prob\{P_{r_{2,dB}} < P_{\min}\}\$
= $\left[1 - Q\left(\frac{P_{\min} - \overline{P_{r_{1,dB}}}}{\sigma_{1,dB}}\right)\right] \left[1 - Q\left(\frac{P_{\min} - \overline{P_{r_{2,dB}}}}{\sigma_{2,dB}}\right)\right]$

It is like selection diversity.

[Handoff]

[Digital Communication with AWGN channel]

• The transmitted signal is

$$\begin{split} s(t) &= \operatorname{Re}\left\{u(t)e^{j2\pi f_{c}t}\right\}\\ u(t) &= A(t)e^{j\phi(t)}\\ u_{I}(t) &= A(t)\cos\phi(t)\\ u_{Q}(t) &= A(t)\sin\phi(t) \end{split}$$

• Signal energy is defined as

$$E_u = \int_{T_1}^{T_2} |u(t)|^2 dt,$$

norm signal =
$$||u(t)|| = \sqrt{\int_{T_1}^{T_2} |u(t)|^2 dt}$$

Euclidean distance = $||x_1(t) - x_2(t)|| = \sqrt{\int_{T_1}^{T_2} |x_1(t) - x_2(t))|^2 dt}$

[Linear Modulation]

The modulated signal, u(t) is

$$u(t) = \sum d_n g(t - nT_s), \quad g(t)$$
: Pulse shaper

When the sampling period is longer than the period of carrier frequency such as $T_s \gg 1/f_c$, $d_n = a_n + jb_n$. If M possibility where $M = 2^k \Rightarrow \log M/T_s = k$ bits $T_s = b$ it rate. The modulated signal becomes

$$u(t) = \sum a_n g(t - nT_s) + j \sum b_n g(t - nT_s)$$

[PAM]

PAM constellation points

The transmitted signal over one symbol time is given by

$$s_m(t) = \operatorname{Re}\{a_m g(t) e^{j2\pi f_c t}\} = a_m g(t) \cos(2\pi f_c t)$$

The energy is

$$E_{s_m}^{T_s} = \int_0^{T_s} s_m^2(t) dt$$

=
$$\int_0^{T_s} a_m^2 g^2(t) \cos^2(2\pi f_c t) dt$$

$$a_m \text{ and } E_g \text{ for } [0, T_s] \text{ are constants}$$

=
$$\frac{1}{2} A_m^2 E_g$$

Gray coding to minimize the error if the adjacent is closer. For example $M = 4 = 2^k$, k = 2,

M=4, after encoded (Gray code)

$$P_e = \sum_{i} prob\{\hat{a}_n + j\hat{b}_n \neq m_i | m_i \text{ is sent}\} prob\{m_i \text{ is sent}\}$$

Goal of the RX to minimize P_e .

 $s_1(t), s_2(t), \dots, s_M(t)$ in one period

[Receiver for PAM]

$$r(t) = \sum a_n g(t - nT_s) \cos(2\pi f_c t) + n(t)$$
where $g(zT_s) = \begin{cases} 0 & z \neq 0 \\ 1 & z = 0 \end{cases}$

$$r(t) \longrightarrow \bigcup_{\substack{t = 1 \\ 2\cos(2\pi f_c t)}} \bigcup_{\substack{t = 1 \\ BW_g << f_c}} \bigvee_{\substack{t = 1 \\ BW_g << f_c}} \sum_{\substack{t = 1 \\ BW_g <> f_c}} \sum_$$

The output of receiver is

$$r(k) = a_k + n_f(k)$$

[Decision Regions] MAP (Maximum a posteriori): Choose m_i if max $prob\{m_i \text{ is sent} | r(k)\}$

$$prob\{a_k = m_i | r(k)\} = \frac{prob\{r_k | a_k = m_i\} prob\{a_k = m_i\}}{prob\{r_k\}}$$

If $prob\{a_k = m_i\}$ equal,

 $\Rightarrow m_i$ that maximizes $prob\{m_i|r_k\}$ will maximize $prob\{r_k|m_i\}$.

ML(Maximum Likelihood)

 \Rightarrow choose m_i if $prob\{r_k|m_i\}$ is maximized.

Decision Regions: Points closest to each message: (Voronoi Cell)

Wireless Communications

Pulse shaper becomes.

$$\begin{split} P_e &= Q(A/\sigma), \quad A^2: \text{Baseband signal power such that } \mathbf{E}\{a_k^2\} = A^2 \\ \text{er } g(t) \text{ has the constraint } \int_0^T g^2(t)dt = 1. \text{ We define SNR as } A^2/\sigma^2. \text{ Then, } P_e \\ P_e &= Q(\sqrt{\text{SNR}}) \text{ Fading SNR} = |ch|^2 \text{SNR}_{\text{AWGN}} \\ \bar{P}_e &= \int_0^\infty Q(\sqrt{\text{SNR}})\lambda e^{-\lambda \text{SNR}} d\text{SNR} \\ &= -e^{-\lambda x}Q(\sqrt{x})\Big|_0^\infty - \int_0^\infty e^{-\lambda x} \frac{1}{\sqrt{2\pi}} e^{-x/2} \frac{1}{2} x^{-1/2} dx \\ &= \frac{1}{2} - \frac{1}{2} \int_0^\infty \frac{1}{\sqrt{2\pi}} e^{-\lambda x} e^{-x/2} x^{-1/2} dx \\ &= \frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \int_0^\infty \frac{e^{-x(\lambda+1/2)}}{\sqrt{x}} dx \\ &\sqrt{x} = u \to \frac{dx}{2u} = du \\ &= \frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \int_0^\infty 2u \frac{e^{-u^2(\lambda+1/2)}}{u} du \\ &= \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-u^2(\lambda+1/2)} du \\ &= \frac{1}{2\sigma^2} = \lambda + \frac{1}{2} \to \sigma = \frac{1}{\sqrt{2(\lambda+1/2)}} \\ &= \frac{1}{2} - \frac{1}{2} \frac{1}{\sqrt{2\lambda+1}} \\ &\lambda = \frac{1}{\frac{1}{\text{SNR}}} = \frac{1}{\bar{\gamma}} \\ &= \frac{1}{2} \left[1 - \frac{\sqrt{\bar{\gamma}}}{\sqrt{1+0.5\bar{\gamma}}} \right] \end{split}$$