Wireless Communications

Lecture 9

See Cioffi's class (379) of Stanford University for more details.
[MPSK] The modulated signal of MPSK is defined as

$$
\begin{gathered}
u(t)=\sum d_{(n)} g\left(t-n T_{s}\right), \\
\text { where } \quad a_{m}=\left\{e^{j 2 \pi \frac{(m-1)}{M}}\right\}, \quad 1 \leq m \leq M, \quad M=2^{k}
\end{gathered}
$$

Given $d_{(n)}$ is sent, the energy over one period is

$$
\mathbf{E}\left\{|u(t)|^{2}\right\}=E_{g}, \quad \text { independent of } M
$$

Note that the passband energy is approximately $1 / 2$ of baseband energy.
[QAM] The encoded signal of QAM is

$$
d_{n}=a_{n}+j b_{n}=A_{n} e^{j \theta_{n}}
$$

The transmitted energy is

$$
E_{s_{n}} \simeq \frac{1}{2} E_{g} A_{n}^{2}
$$

$M=16=2^{4}$			
\times	\times	\times	\times
\times	\times	\times	\times
\times	\times	\times	\times
\times	\times	\times	\times

[Example] $\operatorname{Send}+A$ for 1 and $-A$ for 0

$$
\Rightarrow s_{i}(t)= \begin{cases} \pm A g(t) \cos \omega_{c} t & 1 \leq i \leq 2 \\ 0 & \text { else }\end{cases}
$$

where $g(t)$: Pulse shaper
[Vector Representation] To have a general model for all modulations: Take a signal defined on $\left[0, T_{s}\right]$ and write it as a function of its basis functions.

$$
s_{i}(t)=\sum_{j=1}^{N} s_{i j} \varphi_{j}(t)
$$

The inner product of $\varphi_{i}(t)$ is

$$
<\varphi_{j}(t), \varphi_{k}(t)>=\int_{0}^{T_{s}} \varphi_{j}(t) \varphi_{k}(t) d t= \begin{cases}1 & k=j \\ 0 & \text { else }\end{cases}
$$

The vector representation of transmitted signal $s_{i}(t)$ becomes

$$
\overrightarrow{s_{i}}=\left[\begin{array}{l}
s_{i 1} \\
s_{i 2} \\
\vdots \\
s_{i N}
\end{array}\right]
$$

The geometric visualization

$$
<s_{1}(t), s_{2}(t)>=\underbrace{\left.<\overrightarrow{s_{1}}, \overrightarrow{s_{2}}\right\rangle}_{\text {Eclidean Inner product }}={\overrightarrow{s_{1}}}^{T} \overrightarrow{s_{2}}
$$

[Example] Linear modulation 4PSK,

$$
\begin{aligned}
& N=2, M=4,1 \leq i \leq 4 \\
& s_{i}(t)= a_{i} g(t) \cos \left(2 \pi f_{c} t\right)-b_{i} g(t) \sin \left(2 \pi f_{c} t\right), \quad 0 \leq t \leq T_{s} \\
& a_{i}+j b_{i} \in\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}(\text { Constellation points }) \\
& \varphi_{1}(t)= g(t) \cos \left(2 \pi f_{c} t\right) \sqrt{\frac{2}{T_{s}}} \\
& \varphi_{2}(t)= g(t) \sin \left(2 \pi f_{c} t\right) \sqrt{\frac{2}{T_{s}}}
\end{aligned}
$$

Approximation :

$$
\int_{0}^{T_{s}} \varphi_{1}^{2}(t) d t=\int_{0}^{T_{s}} \varphi_{2}^{2}(t) d t=1, \quad \int_{0}^{T_{s}} g^{2}(t) d t=1, \quad \text { since } f_{c} T_{s} \gg 1
$$

$s_{i}(t)_{\substack{1 \leq i \leq 4 \\ 0 \leq t \leq T_{s}}}$ corresponds to m_{1}, \ldots, m_{4}.

$$
s_{1}(t) \leftrightarrow m_{1} \Rightarrow \vec{s}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Distance between constellation points $=$

$$
\begin{aligned}
\left\|\vec{s}_{i}-\vec{s}_{j}\right\| & =\sqrt{\sum_{k=1}^{N}\left(s_{i k}-s_{j k}\right)^{2}} \\
& =\sqrt{\int_{0}^{T_{s}}\left(s_{i}(t)-s_{j}(t)\right)^{2} d t}
\end{aligned}
$$

[Example] ISDN digital phone standard for public phone.

$$
\begin{aligned}
M & =4, \quad \varphi_{1}(t)=\sqrt{\frac{1}{T_{s}}} \operatorname{sinc}\left(t / T_{s}\right), \quad T_{s}=1 / 80 \mathrm{KHz} \\
\text { data rate } & =2 \mathrm{bits} / T_{s}=160 \mathrm{kbps}
\end{aligned}
$$

For AWGN channel,

Receiver structure matched filter

[Example] The modulated signal of PAM is $a_{n} g(t) \cos \left(2 \pi f_{c} t\right)$

$$
\varphi_{1}(t)=g(t) \cos \left(2 \pi f_{c} t\right) \longrightarrow \mathrm{LPF}
$$

[Detection]

$$
P_{e}=\sum_{i} \operatorname{prob}\left\{\hat{m} \neq m_{i}\right\} \operatorname{prob}\left\{m_{i} \text { was sent }\right\}
$$

- MAP: Maximum a Posteriori Detector

Choose m_{i} if $\operatorname{prob}\{m_{i} \mid \overbrace{r_{1}, r_{2}, \ldots, r_{N}}^{\vec{r}}\}$ is maximized

$$
\operatorname{prob}\left\{m_{i} \mid r_{1}, r_{2}, \ldots, r_{N}\right\}=\frac{\operatorname{prob}\left\{\vec{r} \mid m_{i}\right\} \operatorname{prob}\left\{m_{i}\right\}}{\operatorname{prob}\{\vec{r}\}}, \quad \text { (Bayes' rule) }
$$

MAP Decision:

$$
\operatorname{prob}\left\{\vec{r} \mid m_{i}\right\} \operatorname{prob}\left\{m_{i}\right\}>\operatorname{prob}\left\{\vec{r} \mid m_{k}\right\} \operatorname{prob}\left\{m_{k}\right\}, \quad \forall k \neq i
$$

- ML detector : Max $\operatorname{prob}\left\{\vec{r} \mid m_{i}\right\}$ if $\operatorname{prob}\left\{m_{i}\right\}$ equal \Rightarrow MAP becomes ML

$$
\begin{aligned}
p\left(\vec{r} \mid m_{i}\right) & =\operatorname{prob}\left\{r_{1}, r_{2}, \ldots, r_{N} \mid m_{i}\right\} \\
& =\prod_{j} p\left(r_{j} \mid m_{i}\right) \\
& =\frac{e^{-\frac{1}{2 \sigma_{n}^{2}} \sum_{j=1}^{N}\left(r_{j}-s_{i j}\right)^{2}}}{\left(2 \pi \sigma_{n}^{2}\right)^{N / 2}}
\end{aligned}
$$

It is maximized when the i th one is chosen if $\left\|\vec{r}-\vec{s}_{i}\right\|^{2} \leq\left\|\vec{r}-\vec{s}_{k}\right\|^{2}, \quad \forall k$. (Voronoi cells)

