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Abstract
In this paper, we consider a scenario where a robot needs to establish connectivity with a remote operator or another robot, as
it moves along a path. We are interested in answering the following question: what is the distance traveled by the robot along
the path before it finds a connected spot? More specifically, we are interested in characterizing the statistics of the distance
traveled along the path before it gets connected, in realistic channel environments experiencing path loss, shadowing and
multipath effects. We develop an exact mathematical analysis of these statistics for straight-line paths and also mathematically
characterize amore general space of loop-free paths (beyond straight paths) forwhich the analysis holds, basedon the properties
of the path such as its curvature. Finally, we confirm our theoretical analysis using extensive numerical results with real channel
parameters from downtown San Francisco.

Keywords First passage distance · Connectivity · Mobile robots · Gauss–Markov process · Realistic communication

1 Introduction

There has been considerable research on a team of unmanned
vehicles carrying out a wide range of tasks such as search and
rescue, surveillance, agriculture, and environment monitor-
ing (Tokekar et al. 2016; Yan and Mostofi 2014). Communi-
cation between such a team of robots and a remote operator
or within the robotic network itself, is often crucial for the
successful completion of these tasks. For instance, consider
a scenario where a robot has collected information about
its environment and needs to transmit this information to a
remote operator or another robot. In order to do so, it first
needs to establish a connection with the remote operator or
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the other robot. The robot may not be able to do so at its
current location and may need to move to establish a connec-
tion, exploiting the spatial variations of the channel quality.
This paper then answers the following question: what are
the statistics of the distance traveled along a given path until
connectivity?

There has been considerable recent interest in the area of
connectivity in robotic systems. For instance, in Zavlanos
et al. (2011), the connectivity of a network is maximized
using a graph-theoretic analysis while in Yan and Mostofi
(2012), connectivity is optimized using amore realistic chan-
nel model. In Abbasi et al. (2009), a minimal set of nodes
are identified for repositioning, in order to reestablish con-
nectivity in a wireless mobile sensor network. There has also
beenwork on path planning to enable connectivity (Caccamo
et al. 2017; Chatzipanagiotis and Zavlanos 2016; Muralid-
haran and Mostofi 2017a, c; Yan and Mostofi 2012; Zeng
and Zhang 2017) as well as on communication-aware sens-
ing (Yan and Mostofi 2014). In Muralidharan and Mostofi
(2017c), path planning for an initially unconnected robot is
carried out such that it gets connected to a remote opera-
tor, and in Caccamo et al. (2017), comm-aware trajectory
planning with a connectivity repair heuristic is carried out.
In Zeng and Zhang (2017), an energy efficient trajectory is
designed for a UAV communicating with a remote station.
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However, a mathematical characterization of the statistics
of the distance traveled until connectivity is lacking in the
literature, which is the main motivation for this paper. We
refer to this problemas the first passage distance (FPD) prob-
lem, analogous to the concept of first passage time (Siegert
1951). We next summarize the contributions of the paper.

Statement of contributions We mathematically character-
ize the probability density function (PDF) of the FPD as a
function of the underlying channel parameters of the envi-
ronment, such as shadowing, path loss, and multipath fading
parameters. We do so for two cases: (1) when ignoring the
multipath component (which could be of interest when the
robot looks for an area of good connectivity as opposed to a
single spot, or when multipath is negligible), and (2) when
considering the multipath component. In both cases, we first
develop an exact characterization of the statistics of the FPD
for the setting with straight paths. We utilize tools from the
stochastic equation literature to characterize the FPD while
ignoring the multipath component, and develop a recursive
characterization for the case when we include multipath. We
then mathematically characterize a more general space of
paths for which the analysis holds, based on properties of the
path such as its curvature.

Note that the PDF of the FPD can be directly computed via
a high dimensional integration, aswewill discuss in Sect. 4.1.
However, this direct computation is infeasible for moderate
distances. Our proposed theoretical framework is not only
computationally efficient but also brings a foundational ana-
lytical understanding to the FPD and can significantly affect
networked robotic operation design. The analysis can further
help with the operation on the field and the design of robotic
paths. For instance, consider the scenario of a robot on a field
mission that is tasked with sensing an area and communicat-
ing the collected data to a remote node or a human operator.
The robot may then need to find a connected spot after it
has collected its data. By using our proposed framework,
the robot can estimate the statistics of the distance traveled
until it establishes communication. Furthermore, the deriva-
tions can be used to explicitly co-optimize and design robotic
sensing and path planning as part of future work. We finally
emphasize that the derivations of the paper are applicable to
both cases of trying to establish communication with remote
operators as well as trying to establish communication with
another robot.

A small part of this paper has appeared in Muralidharan
andMostofi (2017b), in which we characterized the statistics
of the distance traveled until connectivity, only for straight-
line paths. In contrast, in this paper, we have extensively
extended this analysis and developed newmathematical tools
to tackle amore general space of paths.Moreover, for the case
where we consider multipath in Sect. 4, we have proposed a
new methodology to compute the statistics, which is signifi-
cantly more efficient. Finally, on the numerical results side,

we have extensive validation of our theoretical analysis, with
real channel measurements.

The paper is organized as follows. In Sect. 2, we formally
introduce the problem and briefly summarize the channel’s
underlying dynamics. In Sect. 3, we characterize the statistics
of the distance traveled until connectivity while ignoring the
multipath component. In Sect. 4, we characterize the statis-
tics of the FPD while including the effect of multipath in
the analysis. Finally, in Sect. 5, we validate our mathemati-
cal characterizations through extensive simulation with real
channel parameters from downtown San Francisco.

2 Problem setup

Consider a robot traveling along a given trajectory that needs
to get connected to either a remote operator or another robot,
as shown in Fig. 1a. In order for the robot to successfully
connect with the remote operator, the receptions need to sat-
isfy a Quality of Service (QoS) requirement such as a target
Bit Error Rate, which in turn results in a minimum required
received Signal to Noise Ratio, or equivalently a minimum
required channel power, given a fixed transmission power.
We denote this minimum required received channel power
as γth in this paper. This paper then asks the following ques-
tion: What is the distance traveled by the robot along the
path before it gets connected to the remote operator? More
specifically, we are interested in mathematically characteriz-
ing the probability density function (PDF) of this distance,
for a given path, as a function of the underlying channel
parameters, such as path loss, shadowing and multipath fad-
ing parameters, as well as the parameters of the path, such
as its curvature. Throughout the analysis, we assume that the
robot can localize itselfwith respect to the remote operator (or
the other robot) that it is trying to establish a connection with.
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Fig. 1 An example of the considered scenario for a a general path and
b a straight path
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2.1 Channel model

In the communication literature, channel power is well
modeled as a multi-scale random process with three major
dynamics: path loss, shadowing and multipath fading (Rap-
paport 1996). Let �O(q) represent the received channel
power (in the dB domain) at location q ∈ R

2 with the remote
operator located at the origin.�O(q) can then be expressed as
�O(q) = γO,PL(q)+�O,SH(q)+�O,MP(q)where γO,PL(q) =
KdB − 10nPL log10 ‖q‖ is the distance-dependent path loss
with nPL representing the path loss exponent, and �O,SH and
�O,MP are random variables denoting the impact of shad-
owing and multipath respectively (in dB). The multipath
component or small-scale fading represents fluctuations in
the channel power in the order of a wavelength, while the
shadowing component or large-scale fading represents fluc-
tuations of the channel power after the signal is locally
averaged over multipath, thus reflecting the impact of larger
objects such as blocking buildings.�O,SH(q) is best modeled
as aGaussian randomprocesswith an exponential spatial cor-
relation, i.e., E

{
�O,SH(q1)�O,SH(q2)

} = σ 2
SHe

−‖q1−q2‖/βSH
where σ 2

SH is the shadowing power and βSH is the decorrela-
tion distance (Rappaport 1996).As formultipath, a number of
distributions such as Nakagami, Rician and lognormal have
been found to be a good fit (in the linear domain) (Hashemi
1994; Rappaport 1996).

Consider the casewhere the robot is traveling along a path.
Let d be the distance traveled by the robot along this path.
We let �(d) represent the channel power when the robot has
traveled distance d along the path, as marked in Fig. 1a. We
thus have �(d) = γPL(d) + �SH(d) + �MP(d).

3 Characterizing the FPDwithout
consideringmultipath

We start our analysis by ignoring the multipath and only
considering the shadowing and path loss components of the
channel, i.e., we want �(d) = γPL(d) + �SH(d) to be above
γth. This assumption allows us to better analyze and under-
stand the FPD, and paves the way towards our most general
characterization of the next section, which includes multi-
path as well. Moreover, the analysis also has practical values
of its own, and would be relevant to the case where the robot
is interested in finding a general area of good connectivity
as opposed to a single good spot. In this section, we will
characterize the statistics of the distance traveled until con-
nectivity for this scenario. We begin by analyzing straight
paths in Sect. 3.1, where we utilize the stochastic differential
equation literature (Gardiner 2009) in our characterization.
We then extend our analysis to a more general space of paths
in Sect. 3.2.

3.1 Straight paths: stochastic differential equation
analysis

In this section, we characterize the PDF of the distance trav-
eled until connectivity for straight-line paths. Consider a
robot situated at a distance dsrc from a remote operator or
from another robot to which it needs to be connected, and
moving in the direction specified by the angle θsrc, as shown
in Fig. 1b. The angle θsrc is measured clockwise with respect
to the line segment connecting the remote operator and the
robot, as can be seen in Fig. 1b, and denotes the direction of
travel chosen by the robot.

�(d) represents the channel power when the robot is at
distance d along direction θsrc, as marked in Fig. 1b. We thus
have �(d) = γPL(d) + �SH(d), where

γPL(d) = KdB − 5nPL log10(d
2
src + d2 − 2dsrcd cos θsrc),

(1)

which follows from the geometry of the setting. Moreover,
�SH(d) is a zero mean Gaussian process with the spatial cor-
relation ofE {�SH(l)�SH(d)} = σ 2

SHe
−(d−l)/βSH , with d ≥ l.

Note that �(d) is also a function of dsrc and θsrc. We drop
�(d)’s dependency on them in the notation as the analysis of
the paper is carried out for a fixed dsrc and θsrc.

As we shall see, �SH(d) becomes an Ornstein–Uhlenbeck
process, one of themost studied types of Gauss–Markov pro-
cesses (Gardiner 2009; Leblanc and Scaillet 1998; Ricciardi
and Sacerdote 1979; Ricciardi and Sato 1988). Ornstein–
Uhlenbeck process appears in many practical scenarios, such
as Brownian motion, financial stock markets, or neuronal
firing (Ricciardi and Sacerdote 1979; Leblanc and Scaillet
1998), and thus has been heavily studied in the literature. In
this paper, we shall utilize this rich literature (Gardiner 2009;
Di Nardo et al. 2001) tomathematically characterize the FPD
to connectivity for a mobile robot.

We begin by summarizing the definitions of a Gaussian
process and a Markov process.

Definition 1 (Gaussian Process) (Dudley 2002) A stochas-
tic process {X(t) : t ∈ T }, where T is an index set, is a
Gaussian process, if any finite number of samples have a
joint Gaussian distribution, i.e., (X(t1), X(t2), . . . , X(tk)) is
a Gaussian random vector for all t1, . . . , tk ∈ T and for all k.

AGaussian process is completely specified by its mean func-
tion μ(t) = E[X(t)] and its covariance function C(s, t) =
E {[X(s) − μ(s)][X(t) − μ(t)]}. We use the notation X ∼
GP (μ,C) to denote the underlying process.

Definition 2 (Markov Process) (Papoulis and Pillai 2002) A
process X(t) is Markov if
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Pr (X(tn) ≤ xn|X(tn−1), . . . , X(t1)) =
Pr (X(tn) ≤ xn|X(tn−1)) ,

for all n and for all tn ≥ tn−1 ≥ · · · ≥ t1, where Pr(.) denotes
the probability of the argument.

Definition 3 (Gauss–MarkovProcess) (Mehr andMcFadden
1965) A stochastic process is Gauss–Markov if it satisfies
the requirements of both a Gaussian process and a Markov
process.

We next state a lemma that shows when a Gaussian pro-
cess is also Markov, which we shall utilize to prove that the
channel shadowing power �SH(d) is Gauss–Markov.

Lemma 1 A Gaussian process X ∼ GP(μ,C) is Markov if
and only if C(s, u) = C(s, t)C(t, u)/C(t, t), for all u ≥ t ≥
s.

Proof See Doob (1949) for the proof. ��
Corollary 1 The channel shadowing power �SH(d) and the
channel power �(d) are Gauss–Markov processes.

Proof �SH ∼ GP(0,C�SH) is a Gaussian process with zero
mean and covariance C�SH(s, u) = σ 2

SHe
−(u−s)/βSH . This

covariance function satisfiesC�SH(s, t)C�SH(t, u)/C�SH(t, t)
= σ 2

SHe
−(u−t)−(t−s)/βSH = C�SH(s, u), for u ≥ t ≥ s,

which concludes the proof for �SH(d) using Lemma 1. The
channel power �(d) is the sum of �SH(d) and a mean func-
tion (path loss function γPL(d)). Thus, the channel power
is also a Gauss–Markov process with distribution � ∼
GP(γPL,C�SH). ��
Remark 1 (seeGardiner 2009)TheOrnstein–Uhlenbeck pro-
cess O ∼ GP(0,CO) is a Gauss–Markov process with the
covariance function CO(s, u) = σ 2e−(u−s)/β , where σ ≥ 0
and β ≥ 0 are constants. Thus, we can see that �SH(d) is an
Ornstein–Uhlenbeck process.

In order to gain more insight into the stochastic process
�(d), we next discuss the transition PDF f (γ, d|η, l) =
∂
∂γ

Pr (�(d) < γ |�(l) = η), where d ≥ l, as well as the
stochastic differential equation governing �(d), both of
which we shall subsequently use in our characterization of
the PDF of the FPD.

3.1.1 The underlying stochastic differential equation

The transition PDF f (γ, d|η, l) characterizes the distribution
of �(d) given �(l) = η. This is a normal density character-
ized by a mean and variance of (see 10.5 of Kay 1993)

E [�(d)|�(l) = η] = γPL(d) + e−(d−l)/βSH(η − γPL(l))

Var [�(d)|�(l) = η] = σ 2
SH(1 − e−2(d−l)/βSH). (2)

The transition PDF explicitly shows the spatial dependence
of the channel power �(d). As stated in Di Nardo et al.
(2001), f (γ, d|η, l) satisfies the partial differential equation
known as the forward Fokker–Planck equation1:

∂

∂d
f (γ, d|η, l) = − ∂

∂γ

[
A(γ, d) f (γ, d|η, l)

]

+ 1

2

∂2

∂γ 2

[
B f (γ, d|η, l)

]
, (3)

with the associated initial condition of f (γ, l|η, l) = δ(γ −
η), where A(γ, d) = γ ′

PL(d) − (γ − γPL(d)) /βSH, B =
(2σ 2

SH)/βSH and γPL(d) is as stated in (1), with its derivative:

γ ′
PL(d) = −10nPL log10(e)

d − dsrc cos θsrc

d2src + d2 − 2dsrcd cos θsrc
.

TheFokker–Planck equation shows the evolution of the prob-
ability density f (γ, d|η, l)with the traveled distance d given
�(l) = η.

Moreover, as shown inGardiner (2009), the channel power
�(d) canbe represented as a stochastic differential equation2:

d�(d) = A(�, d)dd + √
BdW (d), (4)

where W (d) is the Wiener process and A(γ, d) and B are
as defined before. The Wiener process is a continuous time
stochastic process with independent Gaussian increments,
i.e., for d > l, the increment W (d) − W (l) ∼ N (0, d − l)
is independent of past values W (b), b ≤ l.

Remark 2 In (3) and (4), A(γ, d) and B are known as the
drift and the diffusion components respectively. The drift
A(γ, d) = γ ′

PL(d) − (γ − γPL(d)) /βSH is a pull towards
the mean, and the diffusion component B = (2σ 2

SH)/βSH is
a function of the shadowing variance and the decorrelation
distance. Then, in an increment Δd, we can think of the
channel power spatially evolving with a deterministic rate
A(γ, d), in addition to a random Gaussian term with the
variance BΔd.

Next, we utilize our established lemmas to derive the PDF
of the FPD.

3.1.2 First passage distance

Consider the random variable Dγ0 = infd≥0{d : �(d) ≥
γth|�(0) = γ0 < γth}. This denotes the FPD of the process

1 The Fokker–Planck equation of Di Nardo et al. (2001) is stated for
a general Gauss–Markov process. Here we adapted it for our specific
Gauss–Markov process �(d).
2 Gardiner (2009) provides the stochastic differential equation for the
Ornstein–Uhlenbeck process, from which we can easily obtain (4).
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�(d) to the connectivity threshold γth, with the initial value
�(0) = γ0 < γth. Further, let g[d|γ0] = ∂

∂d Pr
(Dγ0 < d

)

represent the PDF of the FPD. In the following theorem, we
characterize this PDF.

Theorem 1 The PDF of FPD g[d|γ0] satisfies the following
non-singular second-kind Volterra integral equation:

g[d|γ0] = −2Ψ [d|γ0, 0] + 2
∫ d

0
g[l|γ0]Ψ [d|γth, l]dl, (5)

where γ0 < γth and

Ψ [d|η, l] =
{

− 1

2

dγPL(d)

dd
− γth − γPL(d)

2βSH

1 + e−2(d−l)/βSH

1 − e−2(d−l)/βSH

+ η − γPL(l)

βSH

e−(d−l)/βSH

1 − e−2(d−l)/βSH

}
f (γth, d|η, l).

(6)

Proof The proof is based on the fact that �(d) is a Gauss–
Markov process and utilizes the Fokker–Planck equation (3).
The details are then adapted from Theorem 3.1 of Di Nardo
et al. (2001) to our particular Gauss–Markov process. ��

Dγ0 represents the FPD for a given initial value of �(0) =
γ0. In many scenarios, we are instead interested in charac-
terizing the FPD for the initial state �(0) being a random
variable bounded from above by γth, i.e., we are interested in
characterizing the FPD when the starting position is not con-
nected. This is known as the upcrossing FPD in the general
first passage literature (Di Nardo et al. 2001).We next extend
our analysis to derive the PDF of the upcrossing FPD. Let
the random variable D(ε)

�0
= infd≥0{d : �(d) ≥ γth|�(0) <

γth − ε} denote the ε-upcrossing FPD of �(d) to the bound-
ary γth given that the initial state satisfies �(0) < γth − ε,
where ε > 0 is a fixed real number. The ε-upcrossing FPD,
D(ε)

�0
, can be characterized as follows:

Pr
(
D(ε)

�0
< d

)
=

∫ γth−ε

−∞
Pr

(Dγ0 < d
)
ζε(γ0)dγ0,

whereDγ0 is the FPDgiven the initial value�(0) = γ0 < γth,
as defined earlier, and

ζε(γ0) =
{

f (γ0,0)
Pr(�(0)<γth−ε)

, γ0 < γth − ε

0, γ0 ≥ γth − ε
,

is the PDF of �(0)|�(0) < γth − ε with f (γ, d) denoting
the PDF of �(d). Moreover, the ε-upcrossing FPD density
g(ε)
u [d] = ∂

∂d P(D(ε)
�0

< d) is similarly related to the FPDden-

sity g[d|γ0] as follows: g(ε)
u [d] = ∫ γth−ε

−∞ g[d|γ0]ζε(γ0)dγ0.

Remark 3 Note that we have required ε > 0. This is due
to the fact that the mathematical tools we shall utilize are

not well-defined for γ0 = γth, i.e., ε-upcrossing FPD is not
mathematically well defined for ε = 0. However, ε can be
chosen arbitrarily small.

In the following theorem, we derive an expression for
g(ε)
u [d], the PDF of the ε-upcrossing FPD.

Theorem 2 ThePDFof the ε-upcrossingFPD, g(ε)
u [d], satis-

fies the following non-singular second-kind Volterra integral
equation:

g(ε)
u [d] = −2Ψ (ε)

u [d] + 2
∫ d

0
g(ε)
u [l]Ψ [d|γth, l]dl, (7)

where Ψ [d|η, l] is as defined in (6),

Ψ (ε)
u [d] = 1

2Pr(�(0) < γth − ε)

{−2σ 2
SH

βSH
e−d/βSH f (γth − ε, 0)

× f [γth, d|γth − ε, 0] + 1

2
f (γth, d)(1 + Erf[Υε(d)])

×
(

−dγPL(d)

dd
− 1

βSH

[
γth − γPL(d)

]) }
,

with Erf(z) = 2√
π

∫ z
0 e−t2dt representing the error function,

and

Υε(d) = γth − ε − γPL(0) − e−d/βSH (γth − γPL(d))
√
2σ 2

SH

(
1 − e−2d/βSH

) .

Proof The proof is obtained by adapting Theorem 5.3 of
Di Nardo et al. (2001) to our particular Gauss–Markov pro-
cess form. ��

In terms of implementation, the functions Ψ [d|η, l] and
Ψ ε
u [d] in Theorems 1 and 2 can be easily computed. The PDF

of the FPD (g[d|γ0]) and the PDF of the ε-upcrossing FPD
(g(ε)

u [d]) can then be computed from the integral equations
(5) and (7) respectively. In particular, Simpson rule provides
the basis for an efficient iterative algorithm for evaluating
these integrals (See Section 4 of Di Nardo et al. 2001).

Remark 4 (Computational complexity) The direct computa-
tion of g(ε)

u [d] involves a high dimension integration, as we
will discuss in Sect. 4.1. For a discretized path of N steps, this
direct computation would have a computational cost expo-
nential in N , i.e. O(NMN ) for some constant M . In contrast,
the computation cost of g(ε)

u [d] using Theorem 2 is O(N 2).
Moreover, Theorem 2 is also an elegant characterization of
the ε-upcrossing FPD that can be utilized for analysis and
design of robotic operations.
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3.2 Approximately-Markovian paths

In this part, we summarize how the results of this section
can be utilized to obtain the statistics of the FPD for a more
general space of non-straight paths. As we saw in Sect. 3.1,
the channel shadowing component along a straight line is a
Gauss–Markov process. This allowed us to characterize the
statistics of the distance to connectivity for a mobile robot
traveling along a straight path. A general non-straight path
is not Markovian since the covariance function C�SH(s, u)

does not satisfy Lemma 1. In this section, we characterize
the space of paths for which the channel shadowing power
along the path is approximately a Gauss–Markov process.
This allows us to immediately apply the stochastic differen-
tial equation analysis of Sect. 3.1 to characterize the statistics
of the distance until connectivity for these paths.

Consider the scenario in Fig. 2 (top), where we have dis-
cretized the path, with�SH,−0 denoting the shadowing power
at the current location and�SH,−1, �SH,−2, . . . indicating the
channel shadowing power at previously-visited points.3 In
Sect. 3.2, we saw that a Gauss–Markov process satisfies the
Fokker–Planck equation of (3), which provides us with the
result of Theorem 2. The Fokker–Planck equation in turn
requires the property that p(γSH,−0|γSH,−1, γSH,−2, . . .) =
p(γSH,−0|γSH,−1) for its derivation [through the Chapman–
Kolmogorov equation (Gardiner 2009)]. Thus, we say a
path is approximately-Markovian, if at every point on the
path, we have that p(γSH,−0|γSH,−1, γSH,−2, . . .) is close
to p(γSH,−0|γSH,−1). We will characterize this closeness
precisely in Sect. 3.2.2 using the Kullback–Leibler (KL)
divergence metric.

Our key insight is that the approximate Markovian nature
is related to the curvature of a path, which is a measure
of how much the path curves, i.e., how much it deviates
from a straight line. For instance, a straight line has a cur-
vature of 0. Thus, we would expect that paths with small
enough curvature would result in approximately-Markovian
processes. We will precisely characterize what we mean by
this in Sect. 3.2.4.

We first describe an outline of our approach for char-
acterizing the space of approximately-Markovian paths.
At every point on the path, instead of checking for the
conditional distribution given all the past points on the
path, which is cumbersome, we consider all past points
on the path within a certain distance of the current point,
i.e., within a ball centered at the current point. In other
words, to check the approximately-Markovian property,
we evaluate p(γSH,−0|γSH,−1, γSH,−2, . . . , γSH,−n) instead
of p(γSH,−0|γSH,−1, γSH,−2, . . .). Figure 2 (top) shows an
illustration of this. This makes sense since the shadowing

3 Note that the discretization step size of the path must be small for the
derivations of Theorem 2 to be valid.

-0,SHΓ

-1,SHΓ

-2,SHΓ

-3,SHΓ

-4,SHΓ

-n,SHΓ 1

thd

thdthd

Fig. 2 (bottom) A ball with radius dth rolling along the path, where
we check for the approximate Markovian condition within each ball,
and (top) the discretized path and the corresponding channel shadowing
power values within a ball

component has an exponential correlation function. Thus, if
the radius of the ball is large enough, the points outside of the
ball will have a negligible impact on the estimate at the cen-
ter of the ball. We will characterize this radius in Sect. 3.2.3.
Thus, our strategy is to roll a ball along the path, as shown
in Fig. 2 (bottom), and to check if the approximate Marko-
vian property holds at each point along the path. We then
characterize two conditions that can ensure that a path will
be approximately-Markovian. The first is that, at any point
on the path, if we travel backward along the path it should
not loop either within the ball or such that it re-enters the
ball. We refer to such looping as dth-looping (dth being the
radius of the ball), and examples of this are shown in Figs. 3a
and 3b. Equivalently, a path is called dth-loop-free if there is
no dth-looping. The second condition is that the maximum
curvature of the path should be smaller than a certain bound,
which will be characterized later in Sect. 3.2.4. If the dth-
loop-free condition is satisfied, then the only part of the path
that lies within the ball would lie in the shaded region of
Fig. 3c, and if the maximum curvature of the path is small
enough, then the path will be approximately-Markovian. We
will formulate this precisely in Sect. 3.2.4.

We start by mathematically characterizing the dth-looping
condition in detail.

3.2.1 dth-loop-free constraint

We define dth-loop-free paths as paths where neither of the
two following scenarios occurs at any point on the path. The
first is when traveling backward along a path, the path loops
within the ball itself. More precisely, when traveling back-
ward along the path, let the initial direction of travel be along
the negative x-axis. We say that the path loops within the ball
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thd

(a) (b)

thd

φ

2
φ−π

κ
1=cR

ballr segment within
       the ball

(c)

Fig. 3 a, b Two scenarios of dth-looping: a path loops within the ball and b path loops back to re-enter the ball. The parts causing the loop in either
scenario is denoted by the dashed red line. c A path of maximum curvature κ would lie within the shaded area. A sample such path is shown

if at any point (still inside the ball), the direction of travel has
a component along the positive x-axis (e.g., Fig. 3a). The
second scenario is when the path re-enters the ball once it
leaves it. These two scenarios, which we collectively refer to
as dth-looping, are illustrated in Fig. 3a , b. Such dth-looping
behavior can possibly invalidate the approximate Markovian
nature of the path.

We next relate the dth-loop-free condition to the curvature
of the path.Wefirst review the precise definition of curvature.

Definition 4 (Curvature) (Kline 1998) The curvature of a
planar path r(s) = (x(s), y(s)) parameterized by arc-length
is defined as

κ(s) = ‖T ′(s)‖,

where T (s) is the unit tangent vector at s.

When traveling backward along a path, consider the seg-
ment of the path inside the ball, before the path exits the ball.
Let rball refer to this segment, as shown in Fig. 3c. Moreover,
let drball refer to its length. The following lemma characterizes
some important properties of rball.

Lemma 2 For a path with maximum curvature κ and a ball
with radius dth, the path segment rball satisfies the following
properties:

1. rball lies within the shaded region of Fig. 3c where the
boundary of the region corresponds to circular arcs with
curvature κ .

2. If κ < 1/dth, rball cannot loop within the ball (see Fig. 3a
for an example of looping within the ball).

3. The length of the segment rball satisfies

drball <
1

κ
sin−1 (κ × dth) .

Proof See “Appendix A.1” for the proof. ��
Then, a sufficient condition for a dth-loop-free path is

given as follows.

Lemma 3 (dth-loop-free path) Consider a planar path
r(s) = (x(s), y(s)) parameterized by arc length, i.e., s
denotes the arc length. Let κ be the maximum curvature of
the path. The path is dth-loop-free if it satisfies κ < 1/dth
and

‖r(s) − r(s − d)‖ > dth,

for d > 1
κ
sin−1 (κdth) and for all s.

Proof From Lemma 2, we know that if κ < 1/dth, the
path cannot loop within the ball, preventing the condition
of Fig. 3a. Moreover, from Lemma 2, it can easily be con-
firmed that ‖r(s) − r(s − d)‖ for d > 1

κ
sin−1 (κdth) is the

euclidean distance from the center to a point on the part of the
path that has left the ball. Thus, if ‖r(s) − r(s − d)‖ > dth,
for d > 1

κ
sin−1 (κdth) the path cannot re-enter the ball (i.e.,

scenario of Fig. 3b is not possible). ��
Remark 5 Any path can be reparameterized by arc length.
Details on this can be found in Eberly (2008).

Wenext characterize the similarity or dissimilarity between
the true distribution p(γSH,−0|γSH,−1, . . . , γSH,−n) and its
Markov approximation p(γSH,−0|γSH,−1) using the KL
divergence metric. We then utilize this to obtain sufficient
conditions on the ball radius and the curvature of a path for
the approximate Markovian nature to hold.

3.2.2 Approximately-Markovian: KL divergence metric

Consider a path as shown in Fig. 2 (top). Let �SH,−0 be
the channel shadowing power on the current location and
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�SH,−1, . . . , �SH,−n be the channel shadowing power on the
past n locations along the path. From Sect. 2.1, we know that
�SH,−0, . . . , �SH,−n are jointly Gaussian random variables.
The distribution of�SH,−0|�SH,−1, . . . , �SH,−n is then given
as N (

m, σ 2
)
, where

m = ΣT
0,1:nΣ

−1
1:n�SH,−1:n, (8)

σ 2 = σ 2
SH − ΣT

0,1:nΣ
−1
1:nΣ0,1:n, (9)

with �SH,−1:n = [�SH,−1, . . . , �SH,−n]T , Σ0,1:n = E

[�SH,−0�SH,−1:n] and Σ1:n = E[�SH,−1:n�T
SH,−1:n] [see

10.5 of Kay (1993)]. Moreover, E[�SH,−i�SH,− j ]
= σ 2

SHe
−‖qi−q j‖/βSH , where qi ∈ R

2 is the location cor-
responding to �SH,−i . Let α = Σ−1

1:nΣ0,1:n denote the
coefficients of the mean. We then have m = αT�SH,−1:n =
α1�SH,−1 + . . . + αn�SH,−n .

We want to approximate this distribution with the Marko-
vian distribution �SH,−0|�SH,−1 ∼ N (

m̂, σ̂ 2
)
where m̂ =

ρ�SH,−1 and σ̂ 2 = σ 2
SH(1 − ρ2), with ρ = e−Δd/βSH , and

Δd being the step size of the path. We first characterize the
difference between the means, given as Δm = m − m̂ =
ΔαT�SH,−1:n , where Δα = [α1 − ρ, α2, . . . , αn]T . Δm
is thus a zero-mean Gaussian random variable N (

0, σ 2
Δm

)
,

where

σ 2
Δm = ΔαTΣ1:nΔα. (10)

We will compare how close the true distribution and its
approximation are using the KL divergence metric. We first
review the definition of KL divergence.

Definition 5 (KLDivergence) (Cover andThomas 2012) The
KL divergence between two distributions p(x) and p̃(x) is
defined as

K L =
∫

p(x) loge
p(x)

p̃(x)
dx .

KL divergence is a measure of the distance between two dis-
tributions (Cover and Thomas 2012). We will utilize this as
a measure of the goodness of the approximation: the smaller
the KL divergence, the better the approximation. The follow-
ing lemma gives us the expression for this KL divergence.

Lemma 4 The KL divergence between N (m, σ 2) and its
approximation N (m̂, σ̂ 2) is given as

K L = σ 2
Δm

2σ̂ 2 χ2
1 + 1

2

(
σ 2

σ̂ 2 − 1 − loge
σ 2

σ̂ 2

)
, (11)

where χ2
1 = (m − m̂)2/σ 2

Δm.

Proof See Robert (1996) for the proof. ��

Since m and m̂ are functions of �SH,−1, . . . , �SH,−n , they
are random variables. Thus, χ2

1 becomes a Chi-squared ran-
dom variable with one degree of freedom since (m − m̂) ∼
(0, σ 2

Δm) (Lancaster and Seneta 2005), and the KL diver-
gence of (11) becomes a random variable. More specifically,
from (11), we know that the KL divergence is a scaled Chi-
squared randomvariablewith anoffset term.Weuse themean
mKL and the standard deviation σK L of the KL divergence
to capture the deviation of the Markov approximation from
the true distribution. The smaller these values are, the bet-
ter the approximation is. In our approach, we set maximum
tolerable values for the mean and the standard deviation as
εm and εσ respectively. Then, we say that the distribution is
approximately-Markovian for the parameters εm and εσ if
we satisfy mKL ≤ εm and σK L ≤ εσ .

We next consider the setting with 3 points in space, as
shown in Fig. 4a, where we have the current point (�SH,−0),
the previous point (�SH,−1) and a general point in space
(�SH,r ). We are interested in mathematically characterizing
the impact of �SH,r on the estimate at the current point, i.e.,
how good an approximation �SH,−0|�SH,−1 ∼ N (m̂, σ̂ 2) is
for the true distribution �SH,−0|�SH,−1, �SH,r ∼ N (m, σ 2).
As we shall see, we will utilize this analysis in such a way
that it serves as a good proxy for the general n point analy-
sis. Specifically, we will utilize it to obtain bounds on the ball
radius as well as on themaximum allowed curvature of a path
in Sects. 3.2.3 and 3.2.4 respectively. Let d1 = ‖q0 − q1‖,
dr = ‖q0 − qr‖, and d1r = ‖q1 − qr‖, as shown in Fig. 4a,

θ
rd

thd

-0,SHΓ

-1,SHΓ
r,SHΓ

1rd
rd

1d

θ

-0,SHΓ-1,SHΓ

r,SHΓ

-0,SHΓ-1,SHΓ

r,SHΓ

φΔ

φ

1rd

κ
1=cR

1d

(a)

(b) (c)

Fig. 4 3 points analysis a for a general case, b for a path withmaximum
curvature κ that satisfies κ < 1/dth, and c along a path with a constant
curvature
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where qr is the location of the general point. Moreover,
d1 = Δd.

The following lemma characterizes themean and standard
deviation of the KL divergence between the true distribution
and its approximation for the 3 point analysis.

Lemma 5 The mean and standard deviation of the KL
divergence between the true distribution N (m, σ 2) and its
approximation N (m̂, σ̂ 2) for the 3 point analysis of Fig. 4a
is given as

mK L = −1

2
loge

(

1 − σ 2
Δm

σ̂ 2

)

,

σK L = σ 2
Δm√
2σ̂ 2

,

where

σ 2
Δm = σ 2

SH

(
e−dr /βSH − e−(d1+d1r )/βSH

)2

1 − e−2d1r /βSH
.

Proof See “Appendix A.2” for the proof. ��
Any point on the path can belong to three possible regions:

(1) the shaded region within the ball of Fig. 3c, (2) within
the ball but outside the shaded region, and (3) outside the
ball. If the path is dth-loop-free, then no point of the path lies
within region 2 (i.e., within the ball but outside the shaded
region). We next characterize the minimum ball radius and
themaximumallowed curvature of a path such that the impact
of any point (�SH,r ) in region 1 and 3 on the estimate at the
center of the ball is negligible.

3.2.3 Ball radius

We next utilize our analysis to determine the ball radius dth.
We wish to select the minimum dth such that the impact of
any point outside the ball on the approximation is within
the tolerable KL divergence parameters εm and εσ , i.e., the
KL divergence between the true and the approximating dis-
tribution (in the 3 point analysis) satisfies mKL ≤ εm and
σK L ≤ εσ .

The following lemma characterizes what the minimum
ball radius dth should be.

Lemma 6 The minimum ball radius dth such that any point
outside the ball satisfies the maximum tolerable KL diver-
gence parameters εm and εσ for the 3 point analysis, is given
by

dth = βSH

2
loge

(
ρ2 + 1 − ρ2

εd

)
,

where ρ = e−Δd/βSH and εd = min
{
1 − e−2εm ,

√
2εσ

}
.

Proof See “Appendix A.3” for the proof. ��

3.2.4 Curvature constraint

We next utilize the 3 point analysis to determine the max-
imum curvature of a path such that it is approximately-
Markovian, i.e., it satisfies the KL divergence constraint
mKL ≤ εm and σK L ≤ εσ .

Consider the scenario in Fig. 4b. For a given maximum
curvature κ , any valid point of the path must lie within the
shaded region of the figure, where the boundary corresponds
to circular paths with curvature κ . We wish to find the max-
imum allowed curvature such that the impact of any point
within the shaded region on the approximation is within the
tolerable KL divergence parameters εm and εσ , i.e., the KL
divergence between the true and the approximating distri-
bution (in the 3 point analysis) satisfies mKL ≤ εm and
σK L ≤ εσ . The following lemma characterizes this maxi-
mum allowed curvature as the solution of an optimization
problem.

Lemma 7 The maximum allowed curvature κth such that any
past point on the path within the ball of radius dth satisfies
the maximum tolerable KL divergence parameters εm and
εσ for the 3 point analysis, is the solution to the following
optimization problem:

maximize κ

subject to maxφ:0<φ≤hcons(κ) hopt(κ, φ) ≤ εd
κ < 1/dth,

(12)

where

hopt(κ, φ) =

(
e
− 2

κβSH
sin( φ+Δφ

2 ) − ρe
− 2

κβSH
sin( φ

2 )
)2

(1 − e
− 4

κβSH
sin( φ

2 )
)(1 − ρ2)

,

and hcons(κ) = 2 sin−1(
κdth
2 ) − Δφ, Δφ = 2 sin−1( κΔd

2 ),

ρ = e−Δd/βSH , εd = min
{
1 − e−2εm ,

√
2εσ

}
.

Proof See “Appendix A.4” for the proof. ��
Remark 6 Ideally, we would have preferred to use the KL
divergence between the approximation and the true distribu-
tion where we condition on all the past points on the path
within the ball radius, as opposed to using just the point
with the maximal impact. However, such an analysis does
not lend itself to a neat characterization of the maximum
allowed curvature. Through simulations, we have seen that
the 3 point analysis, as described in Lemma 7, serves as
a good proxy for the n past points case on a circular path
(which has a maximum curvature everywhere for a given
κ). For instance, for parameters κ = 1/15, Δd = 0.1 and
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βSH = 5 m, the KL divergence mean and standard deviation
when considering all the past points of the path within the
ball aremKL = 6× 10−7 and σK L = 9× 10−7 respectively.
This is comparable (in terms of the order of magnitude) to
the values mKL = 3 × 10−7 and σK L = 5 × 10−7 obtained
for the 3 point analysis from Lemma 7.

Finally, we put together all our results to provide sufficient
conditions for an approximately-Markovian path.

Lemma 8 (Approximately-Markovian path) Let r(s) =
(x(s), y(s)) be a path parameterized by its arc length. The
path is approximately-Markovian for given maximum toler-
able KL divergence parameters εm and εσ for the 3 point
analysis, if it satisfies the following conditions:

1. r(s) is dth-loop-free for ball radius dth (as characterized
by Lemma 3),

2. curvature κ(s) < κth for all s,

where dth and κth are obtained from Lemmas 6 and 7 respec-
tively.

Consider a given path. For a given εm and εσ , we can
check if the path satisfies the conditions of Lemma 8. If it
does, we can then directly use the results of Sect. 3.1 to
obtain the PDF of the FPD for the path. Note that even if
the path does not satisfy the conditions, the path may still be
approximately-Markovian as the conditions of Lemma 8 are
sufficient conditions.

4 Characterizing FPD consideringmultipath

The previous section analyzed the FPD to the connectiv-
ity threshold when the multipath component was ignored.
In this section, we show how to derive the FPD density in
the presence of the multipath fading component, and for the
most general channel model of �(d) = γPL(d) + �SH(d) +
�MP(d). We begin by analyzing straight paths in Sect. 4.1,
where we derive the PDF of the FPD using a recursive for-
mulation. We then extend our analysis to a larger space of
paths in Sect. 4.2.

4.1 Straight paths: a recursive characterization

We first characterize the PDF of the distance traveled until
connectivity for straight paths. We consider the scenario
described in Sect. 3.1, where a robot situated at a distance
dsrc from a remote operator to which it needs to be connected,
moves in a straight path in the direction specified by the angle
θsrc, as shown in Fig. 1b. �(d) represents the channel power
when the robot is at distance d along direction θsrc, as marked
in Fig. 1b.

Recall that we define connectivity as the event where
�(d) ≥ γth. The connectivity requirement is then given as
�(d) = γPL(d) + �SH(d) + �MP(d) ≥ γth, considering
all the channel components. In this case, the approach of
Sect. 3.1 is not applicable anymore as we no longer deal
with a Markov process. Even if the multipath component
was taken to be a Gauss–Markov process [which could be
a valid model for some environments (Hashemi 1994), the
resultant channel power would not be Markovian, as can be
verified from Lemma 1. In this section, we assume that the
robot measures the channel along the chosen straight path in
discrete steps of sizeΔd. We assume thatΔd is such that the
multipath random variable is uncorrelated at the distanceΔd
apart [this is a realistic assumption as multipath decorrelates
fast (Malmirchegini and Mostofi 2012)]. We then index the
channel power and shadowing components accordingly, i.e.,
let �k = �(kΔd) and �SH,k = �SH(kΔd). The probability
of failure of connectivity at the end of N steps (given the
initial failure of connectivity) can then be written as

Pr (�1, �2, . . . , �N < γth|�0 < γth)

=
∫

. . .

∫

γ1,...,γN<γth

p(γ1, . . . , γN |�0 < γth)dγ1 . . . dγN , (13)

where p(γ1, . . . , γN |�0 < γth) is the conditional joint den-
sity function of �1, . . . , �N . Consider the computation of
this integral, which is an integration in an N dimensional
space. If we discretize the domain of �k into M parts, then a
direct computation of the FPD for up to N steps would have
a computational complexity of O(NMN ), which is infea-
sible for high values of M and N . Instead, we show how
this can be solved efficiently through a recursive integral
computation in O(NM log(M)). In contrast, our previously
proposed dynamic programming approach of Muralidharan
and Mostofi (2017b) had a computational complexity of
O(N 2M2).

As mentioned before, the robot measures the channel in
discrete steps of size Δd. Let dk = kΔd denote the distance
when k steps are taken. Then, it can be shown, using (2),
that the shadowing component is an autoregressive AR(1)
process, the continuous analogue of which is the Ornstein–
Uhlenbeck process (note that the shadowing component is
Markovian):

�SH,k+1 = ρ�SH,k + σSH
√
1 − ρ2Zk,

where ρ = e−Δd/βSH and Zk are i.i.d. with a standard normal
distribution. The conditional random variable �SH,k+1|γSH,k

is thus a Gaussian random variable with mean ργSH,k and
variance σ 2

SH(1 − ρ2).
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Note that the desired probability of (13) can be expressed
as

Pr (�1, . . . , �N < γth|�0 < γth) = Pr (�0, . . . , �N < γth)

Pr (�0 < γth)
.

(14)

We next show how to compute Pr(�0, �1, . . . �N < γth)

via a recursive characterization. This is inspired in part by
the calculation of orthant probabilities for auto-regressive
sequences in Craig (2008). Define the set of functions Jk , as
follows:

Jk(γSH,k) =
∫ γth−γPL(dk)−γSH,k

γMP,k=−∞

×
∫

. . .

∫

Sk−1

p(γSH,0, γMP,0, . . . , γSH,k, γMP,k)

× dγSH,0dγMP,0 . . . dγSH,k−1dγMP,k−1dγMP,k

(15)

where Sk−1 = ∩k−1
i=0 {γSH,i , γMP,i : γPL(di )+γSH,i+γMP,i <

γth} and p(γSH,0, γMP,0, . . . , γSH,k, γMP,k) is the joint den-
sity of �SH,0, �MP,0, . . . , �SH,k, �MP,k . Note that

Pr (�0, �1, . . . , �N < γth)

=
∫

. . .

∫

SN

p(γSH,0, γMP,0, . . . , γSH,N , γMP,N )

× dγSH,0dγMP,0 . . . dγSH,NdγMP,N

=
∫ ∞

γSH,N=−∞
JN (γSH,N )dγSH,N . (16)

In the following lemma we show how to compute Jk(γSH,k)

recursively.

Lemma 9 The functions Jk , for k = 1, . . . , N, of (15) can
be computed by the recursion:

Jk+1(γSH,k+1) = FMP(γth − γPL(dk+1) − γSH,k+1)

× 1

ρ

∫ ∞

u=−∞
ϕ

(
γSH,k+1 − u

σSH
√
1 − ρ

)
Jk

(
u

ρ

)
du,

initialized with

J0(γSH,0) = FMP(γth − γPL(0) − γSH,0)ϕ

(
γSH,0

σSH

)
,

where FMP(.) is the CDF of the multipath random variable
�MP and ϕ(.) is the standard Gaussian density function.

Proof It can be seen that this clearly holds for k = 0:

J0(γSH,0) =
∫ γth−γPL(d0)−γSH,0

γMP,k=−∞
p(γSH,0, γMP,0)dγMP,0

= FMP(γth − γPL(0) − γSH,0)ϕ

(
γSH,0

σSH

)
.

Next, Jk+1(γSH,k+1) can be expanded as

Jk+1(γSH,k+1)

=
∫ γth,MP,k+1

−∞

∫
. . .

∫

Sk

p(γSH,0, γMP,0, . . . , γSH,k+1, γMP,k+1)

× dγSH,0dγMP,0 . . . dγSH,kdγMP,kdγMP,k+1

=
∫ γth,MP,k+1

−∞
p(γMP,k+1)dγMP,k+1

∫ ∞

−∞
p(γSH,k+1|γSH,k)

×
∫ γth,MP,k

−∞

∫
. . .

∫

Sk−1

p(γSH,0, γMP,0, . . . , γSH,k, γMP,k)

× dγSH,0dγMP,0 . . . dγSH,k−1dγMP,k−1dγMP,k

= FMP(γth,MP,k+1)

×
∫ ∞

−∞
ϕ

(
γSH,k+1 − ργSH,k

σSH
√
1 − ρ

)
Jk(γSH,k)dγSH,k

= FMP(γth,MP,k+1)

ρ

∫ ∞

u=−∞
ϕ

(
γSH,k+1 − u

σSH
√
1 − ρ

)
Jk

(
u

ρ

)
du,

where γth,MP,k = γth − γPL(d) − γSH,k . ��
Remark 7 Note that the recursive integral in Lemma 9 is in
the form of a convolution. This can be computed efficiently
using the Fast Fourier transform.

Using Lemma 9, we can compute Pr (�0, �1, . . . , �N < γth)

as shown in (16), which in turn is used to compute
Pr (�1, . . . �N < γth|�0 < γth) via (14).

Next, we use this result to calculate the FPD probability.
Let K = mink=1,2,... {k : �k ≥ γth, �0 < γth} be the random
variable which denotes the upcrossing first passage step to
connectivity given that �0 is restricted to lie below γth. Then,

Pr(K = k) = Pr (�1, . . . �k−1 < γth, �k ≥ γth|�0 < γth)

= Pr (�1, . . . �k−1 < γth|�0 < γth)

− Pr (�1, . . . �k < γth|�0 < γth) ,

where both terms on the right hand side can be obtained from
our recursive characterization using Lemma 9.

4.2 Approximately-Markovian paths

As we saw in Sect. 4.1, we can compute the PDF of
the FPD for straight paths when considering multipath,
using Lemma 9, which provides a low complexity recursive
method to do so. This recursive characterization of Lemma 9
depends on the channel shadowing power being a Markov
process. Specifically, the proof of Lemma 9 requires that
p(γSH,−0|γSH,−1, γSH,−2, . . .) = p(γSH,−0|γSH,−1), where
�SH,−0 is the shadowing power at the current location and
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�SH,−1, �SH,−2, . . . are the channel shadowing power at
previously visited points, as shown in Fig. 2 (top). As a
result, Lemma 9 can be applied to approximately-Markovian
paths as defined in Sect. 3.2. More specifically, we can use
Lemma 8 to determine whether a path is approximately-
Markovian for given maximum tolerable KL divergence
parameters εm and εσ . We can then obtain the statistics of
the FPD for such an approximately-Markovian path in mul-
tipath environments using Lemma 9.

Remark 8 (Computational complexity) A natural question
that arises is: why not use the results of Sect. 4.1 to tackle
the case without considering multipath of Sect. 3.1?We next
address this. As discussed in Sect. 4.1, the computation cost
of Lemma 9 for up to N steps is O(NM log(M)). In contrast,
the computational cost of Theorem 2 for the case without
considering multipath, for up to N steps, is O(N 2). Since
M 
 N , the stochastic differential equation approach is
more computationally efficient. Moreover, the characteriza-
tion of the ε-upcrossing FPD of Sect. 3.1 can be used for
analytical purposes.

Remark 9 Several paths satisfy the approximately-Markovian
conditions. In Sect. 5, we will see examples of logarithmic
spirals and archimedian spirals that are approximately-
Markovian. More than the type of the path, it is the
parameters of the path that determine whether it will sat-
isfy the approximate-Markovian conditions of Lemma 8.
For instance, even a circular path segment with a small
enough curvature, which ends before completing the loop,
can be approximately-Markovian. More generally, any path
that does not have sharp turns (i.e., has small curvature) and
which does not loop would be approximately-Markovian.

5 Numerical results based on real channel
data

In this section, we validate the derivations of Sects. 3 and 4
in a simulation environment with real channel parameters
from two different channel environments. We also high-
light interesting trends of the FPD statistics as a function
of the channel parameters. The channel is generated using
the channel model described in Sect. 2.1, with parameters
obtained from real channel measurements in downtown San
Francisco (Smith and Cox 2004). More specifically, we con-
sider two sets of channel parameters which are obtained
from real channel measurements collected in two different
channel environments (regions) in downtown San Francisco:
Sansome street and California street. Figure 5 shows real
received signal measurements in both regions. The channel
parameters for Sansome street are: nPL = 4.2, σ 2

SH = 8.41,
and βSH = 12.92 m. The channel parameters for Califor-
nia street are: nPL = 6.3, σ 2

SH = 7.84, and βSH = 3.06 m.

(a) (b)

Fig. 5 Real channel measurements in two different channel environ-
ments in downtown San Francisco: a Sansome street, and b California
street

We impose a minimum required received SNR of 20dB, the
noise power is taken to be a realistic −100dBmW, and the
transmit power is taken to be 30dBmW, which results in a
channel power connectivity threshold of γth = −110dB. We
furthermore take the upcrossing FPD constant to be ε = 0.1
in the simulation results.

We consider a discretization step size of Δd = 0.03 m.
Let the maximum tolerable KL divergence parameters be
εm = 0.001 and εσ = 0.001. Then, the ball radius dth = 9.5
m and the maximum allowed curvature κth = 0.104 m−1

satisfy Lemmas 6 and 7 respectively for both channel envi-
ronments. We will demonstrate the efficacy of our proposed
approaches through three different paths that satisfy these
constraints and are thus approximately-Markovian: (1) an
archimedian spiral with equation rd = 11 + 5eθ , (2) a loga-
rithmic spiral with equation rd = 11e0.5θ , and (3) a straight
path where the robot moves straight towards the remote sta-
tion (i.e., θsrc = 0 rad), where both the spiral equations are
in polar coordinates (rd , θ). Figure 6a, b show the path and
the curvature along the path of the archimedian spiral respec-
tively, Fig. 6c, d show the path and the curvature along the
path of the logarithmic spiral respectively, and Fig. 6e, f show
the path and the curvature along the straight path respec-
tively. The remote station is located at the origin as denoted
in Fig. 6a, c, e. We run simulations for these three robotic
paths in the two different channel environments, i.e., using
the channel parameters from Sansome street and California
street. The paths considered for the Sansome street simula-
tions are as shown in Fig. 6, where the initial location of the
robot is at a distance of 450 m. The paths for the California
street simulations are the same, except that the initial location
of the robot is at a distance of 600 m.

5.1 Results without consideringmultipath

We first consider the case without multipath. Figure 7a–f
show the statistics of the upcrossing FPD for the Sansome
street channel parameters. More specifically, Fig. 7a, b show
the PDF and CDF of the upcrossing FPD for the archime-

123



Autonomous Robots (2020) 44:25–42 37

Initial location

(a) (b) (c) (d)

Initial location

Initial location

(e) (f)

Fig. 6 Path followed by the robot and the curvature along the path for a, b the archimedian spiral, c, d the logarithmic spiral, and e, f the straight
path

(a) (b)

(c) (d)

(f)(e)

(g) (h)

(i) (j)

(l)(k)

Monte Carlo simulations 
computationally infeasible

Monte Carlo simulations 
computationally infeasible

Monte Carlo
 simulations 

computationally
 infeasible

Monte Carlo
 simulations 

computationally
 infeasible

Fig. 7 Simulations for the Sansome street channel parameters: PDF
and CDF of upcrossing FPD without considering multipath for a, b the
archimedian spiral, c, d the logarithmic spiral, and e, f the straight path.

PDF and CDF of upcrossing FPDwhen including multipath for g, h the
archimedian spiral, i, j the logarithmic spiral, and k, l the straight path
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dian path respectively, Fig. 7c, d show the PDF and CDF
of the upcrossing FPD for the logarithmic path respectively,
and Fig. 7e, f show the PDF and CDF of the upcrossing FPD
for the straight path respectively. We can see that, for all
three paths, our theoretical derivations match the true statis-
tics obtained via Monte Carlo simulations very well, where
we simulate the channel along the path 10, 000 times. Simi-
larly, Fig. 8a, f show the PDF andCDF of the upcrossing FPD
for all three paths for the California street channel parame-
ters.We can see that our theoretical derivationsmatch the true
statistics obtained via Monte Carlo simulations very well.

5.2 Results when includingmultipath

Next, consider the case where multipath of the environment
can not be neglected. We then simulate the multipath fading
as an uncorrelated Rician random variable. Rician distribu-
tion is a common distribution for characterizing multipath
(Rappaport 1996) and is given by

fric(z) = (1 + Kric)e
−Kric−(1+Kric)z I0

(
2
√
zKric(1 + Kric)

)
,

where I0(.) is the modified 0th order Bessel function and
the parameter Kric is the ratio of the power in the line of
sight component to the power in the non-line of sight com-
ponents of the channel. We use the Rician parameter which
we obtain from the real channel measurements in downtown
San Francisco: Kric = 1.59 for the Sansome street scenario,
and Kric = 3.16 for the California street scenario. We fur-
ther assume that the multipath component gets uncorrelated
at our discretization interval of 0.03 m, which is a reason-
able assumption in many cases (Malmirchegini and Mostofi
2012).

Figure 7g–l show the statistics of the upcrossing FPD,
when including multipath, for the Sansome street chan-
nel parameters. Figure 7g, h show the PDF and CDF of
the upcrossing FPD for the archimedian path respectively,
Fig. 7i, j show the PDF and CDF of the upcrossing FPD
for the logarithmic path respectively, and Fig. 7k, l show the
PDF and CDF of the upcrossing FPD for the straight path
respectively. The histogram obtained via Monte Carlo sim-
ulations is also plotted for comparison, where we simulate
the channel along the path 10, 000 times. It can be seen that
in the case of all three paths, our derivations match the true

(a) (b)

(c) (d)

(f)(e)

(g) (h)

(i) (j)

(l)(k)

Fig. 8 Simulations for the California street channel parameters: PDF
and CDF of upcrossing FPD without considering multipath for a, b the
archimedian spiral, c, d the logarithmic spiral, and e, f the straight path.

PDF and CDF of upcrossing FPDwhen including multipath for g, h the
archimedian spiral, i, j the logarithmic spiral, and k, l the straight path
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statistics very well. Similarly, Fig. 8g–l show the PDF and
CDF of the upcrossing FPD for all three paths for the Califor-
nia street channel parameters. We can see that our theoretical
derivationsmatch the true statistics obtained viaMonte Carlo
simulations very well.

Finally, different environments will have different under-
lying channel parameters. Thus, we next consider the impact
of the underlying channel parameters on the FPD. Figure 9a,
b show the expected distance traveled as a function of the
shadowing decorrelation distance (βSH) and the shadowing
variance (σ 2

SH) respectively when dsrc = 550 m and θsrc = 0
rad, along a straight path. The channel parameters, except for
the parameter being varied, are fixed at the Sansome street
channel parameters. Increasing the shadowing power directly
increases the spatial variance of the channel power. Thus,
with a higher probability, �(d) stumbles upon the connec-
tivity threshold earlier, resulting in a smaller FPD, as can
be seen. An increase in the decorrelation distance, on the
other hand, implies a greater spatial correlation of the channel
power and decreases the spatial variation. Thus, we observe
that the expected traveled distance increases when increas-
ing the decorrelation distance. Figure 9c shows the expected
distance until connectivity as a function of Kric of multipath.
For large values of Kric, the line of sight component dom-
inates and results in a more deterministic multipath term.
Decreasing Kric, on the other hand, results in an increase
in the variance of the multipath component, thus increas-
ing the randomness of the channel. Thus as Kric decreases,
�(d) would cross the connectivity threshold earlier with a
higher probability (due to the increase in channel random-
ness), resulting in a smaller expected distance traveled.

(a) (b)

(c)

Fig. 9 Expected distance until connectivity (with multipath) as a func-
tion of the a shadowing power, b shadowing decorrelation distance and
c Rician parameter Kric, for the case of a straight path with dsrc = 550
m and θsrc = 0 rad

6 Conclusions

In this paper, we considered the scenario of a robot that seeks
to get connected to another robot or a remote operator, as it
moves along a path. We started by mathematically charac-
terizing the PDF of the distance traveled until connectivity
along straight paths, using a stochastic differential equation
analysis when multipath can be ignored, and a recursive
characterization for the case of multipath. We then devel-
oped a theoretical characterization of amore general space of
loop-free paths, based onproperties of the path such as its cur-
vature, for which we can theoretically characterize the PDF
of the FPD. Our characterizations not only enable new theo-
retical analysis but also allow for an efficient low-complexity
implementation. Finally, we confirmed our theoretical results
with simulations using two sets of real channel parameters
from downtown San Francisco, and highlighted interesting
trends of the FPD.

A Appendix

A.1 Proof of Lemma 2

Proof Let r(s) = (x(s), y(s)) be the equation of the path
parameterized by arc length. Since the path is parameterized
by arc length, we have

‖r ′(s)‖2 = |x ′(s)|2 + |y′(s)|2 = 1. (17)

Moreover, we have the curvature constraint

‖r ′′(s)‖2 = |x ′′(s)|2 + |y′′(s)|2 ≤ κ2. (18)

Let s0 denote the current point, i.e., the center of the ball.
Without loss of generality, let (x(s0), y(s0)) = (0, 0) and let
the tangent at s0 be parallel to the x-axis, i.e., x ′(s0) = −1,
y′(s0) = 0, as shown in Fig. 3c.

We first prove that no point of rball can lie outside the
shaded region of Fig. 3c. Note that the shaded region has
a boundary on the left corresponding to x = −dth, and
the two other boundaries correspond to circular arcs with
curvature κ . Let us consider traveling backward along the
path. For a given distance dx traveled along the negative
x-axis (i.e., x(s) = −dx ), the path which maximizes the
distance traveled along the y-axis |y(s)|, is the one that min-
imizes the x-axis velocity |x ′(s)| and maximizes the y-axis
velocity |y′(s)| the most. This corresponds to the circular
path (Rc cos(s/Rc), Rc sin(s/Rc)) with constant curvature
κ . Thus, for any path satisfying (17) and (18), the y-axis coor-
dinate is bounded above and below by the circular arc. This
implies that the segment rball lies within the shaded region.
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We next show that if κ < 1/dth, then rball cannot loop
within the ball. Note that, by definition, rball loops within the
ball if x ′(s) > 0 for some point on the path within the shaded
region. The circular path with curvature κ is the path that
maximizes x ′(s). From Fig. 3c, we can see that if κ = 1/dth,
then x ′(s) = 0 at x(s) = −dth for the circular path. Thus,
if κ < 1/dth, we have x ′(s) > 0 for any point of the path
within the shaded region.

Finally,we determine the boundon the length of rball. Ifwe
travel a distance of dth along the negative x-axis, then we are
guaranteed to have exit the ball. The path that maximizes its
length before covering dth along the negative x-axis, would
be the one that reduces the x-axis velocity |x ′(s)| the most.
This maximal length path corresponds to the circular path
with constant curvature κ . Any other path satisfying (17)
and (18) would exit the shaded region before this circular
path, i.e., the length of the segment of any path would be less
that the length of this circular arc. The length of this circular
arc can be found from the geometry of the figure. The chord
length can be seen to be 2Rc sin(φ/2) where Rc = 1/κ .
Moreover, we have cos(φ/2) = dth

2Rc sin(φ/2) which implies

that φ = sin−1
(
dth
Rc

)
. This gives us the arc length as 2πRc ×

φ
2π = Rc sin−1

(
dth
Rc

)
= 1

κ
sin−1 (κdth). ��

A.2 Proof of Lemma 5

Proof Using (8), we can show thatm = α1�SH,−1+αr�SH,r

where

α1 = e−d1/βSH − e−(d1r+dr )/βSH

1 − e−2d1r /βSH
,

αr = e−dr /βSH − e−(d1+d1r )/βSH

1 − e−2d1r /βSH
.

Then, the difference in mean Δm = m − m̂ is distributed as
N (0, σ 2

Δm), where using (10) we have

σ 2
Δm = σ 2

SH

(
e−dr /βSH − e−(d1+d1r )/βSH

)2

1 − e−2d1r /βSH
.

Moreover, using (9) we can calculate

σ 2

σ 2
SH

= 1 − e−2d1/βSH + e−2dr /βSH − 2e−(d1+dr+d1r )/βSH

1 − e−2d1r /βSH
.

The difference in varianceΔσ 2 = σ 2− σ̂ 2 can be calculated
as

Δσ 2 = −σ 2
SH

(
e−dr /βSH − e−(d1+d1r )/βSH

)2

1 − e−2d1r /βSH

= −σ 2
Δm .

From (11), we then have

K L = σ 2
Δm

2σ̂ 2 χ2
1 + 1

2

(
−|Δσ 2|

σ̂ 2 − loge

(
1 − |Δσ 2|

σ̂ 2

))
.

Since E[χ2
1 ] = 1 and Var[χ2

1 ] = 2, we can calculate the
mean mKL and the standard deviation σK L to be as stated in
the lemma. ��

A.3 Proof of Lemma 6

Proof Consider all possible locations of the general point
(see Fig. 4a) at a fixed distance dr . From the geometry of

Fig. 4a, we can see that d1r =
√
d21 + d2r − 2d1dr cos θ .

Varying θ , results in varying d1r which can take values in
[dr − d1, dr + d1]. From Lemma 5, we can see that the θ

that has a maximum impact on the KL divergence is the
one that would minimize mKL and σK L . This would occur
when we maximize σ 2

Δm = σ 2
SHe

−dr /βSH (1−e−(z−zl ))2

1−e−2z where
z = d1r/βSH and zl = (dr − d1)/βSH. We wish to maximize

h(z) = (1−e−(z−zl ))2

1−e−2z . Taking it’s derivative gives us

d

dz
h(z) = 2(1 − e−(z−zl ))

(1 − e−2z)2
(e−(z−zl ) − e−2z).

Then d
dz h(z) > 0 if z > −zl , which is true as long as dr > d1.

Thus, maximizing σ 2
Δm occurs at θ = π where d1r takes

its maximum value of d1 + dr . Setting θ = π gives us

σ 2
Δm = σ 2

SH

(
e−dr /βSH − e−(2d1+dr )/βSH

)2

1 − e−2(d1+dr )/βSH
.

From Lemma 5, we can see that satisfying the KL diver-

gence parameters implies that
σ 2

Δm
σ̂ 2 ≤ 1− e−2εm , and

σ 2
Δm
σ̂ 2 ≤√

2εσ . Let εd = min
{
1 − e−2εm ,

√
2εσ

}
. Thus, we obtain

the constraint

e−2dr /βSH(1 − ρ2)2

(1 − ρ2e−2dr /βSH)(1 − ρ2)
≤ εd ,

which in turn gives us the constraint

dr ≥ βSH

2
loge

(
ρ2 + 1 − ρ2

εd

)
.

��

A.4 Proof of Lemma 7

Proof Consider the scenario of Fig. 4b where d1 = Δd.
We will choose the location of the general point (�SH,r ),
which lies within the shaded region, such that it maximizes
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the impact (in terms of the KL divergence) on the approxi-
mation. From Lemma 5, we can see that the point that has a
maximum impact on the KL divergence is the one that would
maximizeσ 2

Δm . From the proof of Lemma6,we know that for
a fixed dr and varying θ , the maximum value of σ 2

Δm occurs
at the maximum value of d1r . This occurs at the boundary of
the shaded region, i.e., at a point on the circular arc. Since
this holds for all d1 < dr ≤ dth, we know that the point
that maximizes σ 2

Δm lies on the circular path with constant
curvature κ .

We thus consider the setting in Fig. 4c with a fixed cur-
vature κ . From the geometry of the figure, we have the

following relations: d1 = 2Rc sin
(

Δφ
2

)
, d1r = 2Rc sin

(
φ
2

)

and dr = 2Rc sin
(

φ+Δφ
2

)
. Since d1 = Δd, we have

Δφ = 2 sin−1(κΔd/2). From Lemma 3, we have the con-
straint that κ < 1/dth. This guarantees that the path will
leave the ball. Moreover, from the geometry of the figure,
we can see that this will occur at the angle φ such that

dr = 2Rc sin
(

φ+Δφ
2

)
= dth. This occurs at φ = hcons(κ) =

2 sin−1( κdth
2 ) − Δφ.

From Lemma 5, we can see that satisfying the KL diver-

gence parameters implies that
σ 2

Δm
σ̂ 2 ≤ 1− e−2εm , and

σ 2
Δm
σ̂ 2 ≤√

2εσ . Let εd = min
{
1 − e−2εm ,

√
2εσ

}
. Thus, the point

on the path that maximizes the KL divergence occurs at the
angle

arg max
0<φ≤hcons(κ)

hopt(κ, φ),

where

hopt(κ, φ) = σ 2
Δm

σ̂ 2

=

(
e
− 2

κβSH
sin

(
φ+Δφ

2

)

− ρe
− 2

κβSH
sin

(
φ
2

))2

(
1 − e

− 4
κβSH

sin
(

φ
2

)) (
1 − ρ2

) .

We wish to find the maximum curvature κ , such that this
maximum impact still satisfies the KL divergence parame-
ters, i.e.,

max
0<φ≤hcons(κ)

hopt(κ, φ) ≤ εd .

This results in the optimization problem stated in the lemma.
��
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