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ABSTRACT
In this paper, we are interested in the 3D through-wall imaging of a

completely unknown area, using WiFi RSSI and Unmanned Aerial

Vehicles (UAVs) that move outside of the area of interest to collect

WiFi measurements. It is challenging to estimate a volume repre-

sented by an extremely high number of voxels with a small number

of measurements. Yet many applications are time-critical and/or

limited on resources, precluding extensive measurement collection.

In this paper, we then propose an approach based on Markov ran-

dom �eld modeling, loopy belief propagation, and sparse signal

processing for 3D imaging based on wireless power measurements.

Furthermore, we show how to design e�cient aerial routes that are

informative for 3D imaging. Finally, we design and implement a

complete experimental testbed and show high-quality 3D robotic

through-wall imaging of unknown areas with less than 4% of mea-

surements.
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1 INTRODUCTION
Sensing with Radio Frequency (RF) signals has been a topic of inter-

est to the research community for many years. More recently, sens-

ing with everyday RF signals, such as WiFi, has become of particular

interest for applications such as imaging, localization, tracking, oc-

cupancy estimation, and gesture recognition [2, 12, 13, 18, 33, 38].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

IPSN 2017, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4890-4/17/04. . .$15.00

DOI: h�p://dx.doi.org/10.1145/3055031.3055084

Among these, through-wall imaging has been of particular interest

due to its bene�ts for scenarios like disaster management, surveil-

lance, and search and rescue, where assessing the situation prior to

entering an area can be very crucial. However, the general problem

of through-wall imaging using RF signals is a very challenging

problem, and has hence been a topic of research in a number of

communities such as electromagnetics, signal processing, and net-

working [11, 12, 38].

For instance, in the electromagnetics literature, inverse sca�er-

ing problems have long been explored in the context of imaging

[10, 14, 29]. Ultra wideband signals have also been heavily utilized

for the purpose of through-wall imaging [3, 4, 11, 36]. Phase infor-

mation has also been used for beam forming, time-reversal based

imaging, or in the context of synthetic aperture radar [2, 11, 41].

However, most past work rely on utilizing a large bandwidth, phase

information, or motion of the target for imaging. Validation in a

simulation environment is also common due to the di�culty of

hardware setup for through-wall imaging. In [12, 31], the authors

use WiFi RSSI measurements to image through walls in 2D. �ey

show that by utilizing unmanned ground vehicles and proper path

planning, 2D imaging with only WiFi RSSI is possible. �is has

created new possibilities for utilizing unmanned vehicles for RF

sensing, which allows for optimizing the location of the transmit-

ter/receiver antennas in an autonomous way. However, 3D through-

wall imaging with only WiFi RSSI measurements, which becomes

considerably more challenging than the corresponding 2D problem,

has not been explored, which is the main motivation for this paper.

It is noteworthy that directly applying the 2D imaging framework

of [12, 31] to the 3D case can result in a poor performance (as we

see later in the paper), mainly because the 3D problem is consider-

ably more under-determined. �is necessitates a novel and holistic

3D imaging framework that addresses the new challenges, as we

propose in this paper.

In this paper, we are interested in the 3D through-wall imaging

of a completely unknown area using Unmanned Aerial Vehicles

(UAVs) and WiFi RSSI measurements. More speci�cally, we con-

sider the scenario where two UAVs move outside of an unknown

area, and collect wireless received power measurements to recon-

struct a 3D image of the unknown area, an example of which is

shown in Fig. 1. We then show how to solve this problem using

Markov random �eld (MRF) modeling, loopy belief propagation,

sparse signal processing, and proper 3D robotic path planning. We

further develop an extensive experimental testbed and validate the

proposed framework. More speci�cally, the main contributions of

this paper are as follows:

(1) We propose a framework for 3D through-wall imaging of

unknown areas based on MRF modeling and loopy belief
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Figure 1: Two examples of our considered scenario where two UAVs �y outside an unknown area to collect WiFi RSSI mea-
surements for the purpose of 3D through-wall imaging.

propagation. In the vision literature, MRF modeling has

been utilized in order to incorporate the spatial dependen-

cies among the pixels of an image [22, 34]. Furthermore,

various methods based on loopy belief propagation [16, 34],

iterative conditional modes [22], and graph cuts [27] have

been proposed for image denoising, segmentation, and tex-

ture labeling. In this paper, we borrow from such literature

to solve our 3D through-wall imaging problem, based on

sparse signal processing, MRF modeling and loopy belief

propagation.

(2) We show how to design e�cient robotic paths in 3D for

our through-wall imaging problem.

(3) We design and implement a complete experimental testbed

that enables two octo-copters to properly localize, navigate,

and collect wireless measurements. We then present 3D

through-wall imaging of unknown areas using our test-

bed. Our results con�rm that high-quality through-wall

imaging of challenging areas, such as behind thick brick

walls, is possible with only WiFi RSSI measurements and

UAVs. To the best of our knowledge, our 3D imaging results

showcase high-quality imaging of more complex areas than

what has been reported in the literature with even phase

and/or UWB signals.

�e rest of this paper is organized as follows. In Section 2, we

formulate our 3D through-wall imaging problem and summarize

the measurement model. In Section 3, we show how to solve the 3D

imaging problem using Markov random �eld modeling, loopy belief

propagation, and sparse signal processing. We then discuss how to

design e�cient 3D UAV paths in Section 4. Finally, we present our

experimental testbed in Section 5 and our experimental results for

3D through-wall imaging of unknown areas in Section 6, followed

by a discussion in Section 7.

2 PROBLEM FORMULATION
Consider a completely unknown area D ⊂ R3

, which may contain

several occluded objects that are not directly visible, due to the pres-

ence of walls and other objects inD.
1

We are interested in imaging

D using two Unmanned Aerial Vehicles (UAVs) and only WiFi RSSI

measurements. Fig. 1 shows two example scenarios, where two

1
In this paper, we will interchangeably use the terms “domain”, “area” and “region” to

refer to the 3D region that is being imaged.

UAVs �y outside of the area of interest, with one transmi�ing a

WiFi signal (TX UAV) and the other one receiving it (RX UAV). In

this example, the domain D would correspond to the walls as well

as the region behind the walls.

When the TX UAV transmits a WiFi signal, the objects in D
a�ect the transmission, leaving their signatures on the collected

measurements. �erefore, we �rst model the impact of objects on

the wireless transmissions in this section, and then show how to

do 3D imaging and design UAV paths in the subsequent sections.

Consider a wireless transmission from the transmi�ing UAV to the

receiving one. Since our goal is to perform 3D imaging based on

only RSSI measurements, we are interested in modeling the power

of the received signal as a function of the objects in the area. To fully

model the receptions, one needs to write the volume-integral wave

equations [9], which will result in a non-linear set of equations

with a prohibitive computational complexity for our 3D imaging

problem. Alternatively, there are simpler linear approximations

that model the interaction of the transmi�ed wave with the area

of interest. Wentzel-Kramers-Brillouin (WKB) and Rytov are two

examples of such linear approximations [9]. WKB approximation,

for instance, only considers the impact of the objects along the line

connecting the transmi�er (TX) and the receiver (RX). �is model is

a very good approximation at very high frequencies, such as x-ray,

since a wave then primarily propagates along a straight line path,

with negligible re�ections or di�ractions [9]. Rytov approximation,

on the other hand, considers the impact of some of the objects

that are not along the direct path that connects the TX and RX, at

the cost of an increase in computational complexity, and is a good

approximation under certain conditions [9].

In this paper, we use a WKB-based approximation to model

the interaction of the transmi�ed wave with the area of interest.

While this model is more valid at very high frequencies, several

work in the literature have shown its e�ectiveness when sensing

with signals that operate at much lower frequencies such as WiFi

[12, 38]. WKB approximation can be interpreted in the context

of the shadowing component of the wireless channel, as we shall

summarize next.

Consider the received power for the ith signal transmi�ed from

the TX UAV to the RX one. We can express the received power as

follows [25, 32]:

PR(pi , qi ) = PPL(pi , qi ) + γ
∑
j
di jηi j + ζ (pi , qi ), (1)
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where PR(pi , qi ) denotes the received signal power (in dB) for the ith

measurement, when the TX and RX are located at pi ∈ R3
and qi ∈

R3
respectively. Furthermore, PPL(pi , qi ) = 10 log

10

βPT

( ‖pi−qi ‖2)α
is the path loss power (in dB), where PT is the transmit power,

β is a constant that depends on the system parameters and α is

the path loss exponent.
2

�e term γ
∑
j di jηi j is the shadowing

(shadow fading) term in the dB domain, which captures the impact

of the a�enuations of the objects on the line connecting the TX

and RX UAVs. More speci�cally, di j is the distance traveled by the

signal within the jth object along the line connecting the TX and

the RX for the ith measurement, ηi j is the decay rate of the signal

in the jth object along this line, and γ = 10 log
10
e is a constant.

Finally, ζ (pi , qi ) represents the modeling error in this formulation,

which includes the impact of multipath fading and sca�ering o�

of objects not directly along the line connecting the TX and RX, as

well as other un-modeled propagation phenomena and noise. In

summary, Eq. 1, which we shall refer to as LOS-based modeling,

additively adds the a�enuations caused by the objects on the direct

line connecting the TX and the RX.

�e shadowing term can then be re-wri�en as∑
j
di jηi j =

∫
Lpi→qi

η(r′) dr′, (2)

where

∫
Lpi→qi

denotes the line integral along the line connecting

the TX and the RX, and η(r) denotes the decay rate of the wireless

signal at r ∈ D. Furthermore, η(r) < 0 when there is an object

at position r and η(r) = 0 otherwise. η then implicitly carries

information about the area we are interested in imaging.

In order to solve for η, we discretizeD into N cubic cells of equal

volume. Each cell is denoted by its center rn , where n ∈ {1, . . . ,N }.
By discretizing Eq. 2, we have,∫

Lpi→qi

η(r′) dr′ u
∑

j ∈L(pi ,qi )
η(rj )∆d, (3)

where L(pi , qi ) denotes the set of cells along the line connecting

the TX and the RX for the ith measurement, and ∆d is the dimension

of a side of the cubic cell. �erefore, we can approximate Eq. 1 as

Pi =
PR(pi , qi ) − PPL(pi , qi )

γ∆d
u

∑
j ∈L(pi ,qi )

η(rj ), (4)

with Pi denoting the normalized received power of the ith measure-

ment. By stacking the measurements Pi as a column vector, we

have,

P u AO, (5)

where P = [P1, P2, . . . , PM ]T and M is the number of measure-

ments. A is a matrix of size M × N such that its entry Ai, j = 1

if the jth cell is along the line connecting the TX and the RX

for the ith measurement, and Ai, j = 0 otherwise. Furthermore,

O = [η(r1),η(r2), . . . ,η(rN )]T represents the property of objects in

the area of interest D, which we shall refer to as the object map.

2
In practice, the two parameters of the path loss component can be estimated by using

a few line-of-sight transmissions between the two UAVs, near the area of interest when

there are no objects in between them.

So far, we have described the system model that relates the wire-

less measurements to the object map, which contains the material

properties of the objects in the area of interest. In this paper, we are

interested in imaging the geometry and locations of all the objects

in D, as opposed to characterizing their material properties. More

speci�cally, we are interested in obtaining a binary object map Ob
of the domainD, where Ob is a vector whose ith element is de�ned

as follows:

Obi =

{
1 if the ith cell contains an object

0 otherwise

. (6)

In the next sections, we propose to estimate Ob by �rst solving

for O and then making a decision about the presence or absence of

an object at each cell, based on the estimated O, using loopy belief

propagation.

3 SOLVING THE 3D IMAGING PROBLEM
In the previous section, we formulated the problem of reconstruct-

ing the object map as a system of linear equations, with the �nal

goal of imaging a binary object map of the domain D. In this sec-

tion, we propose a two-step approach for 3D imaging of Ob . In the

�rst part, we utilize techniques from the sparse signal processing

and regularization literature to solve Eq. 5, and thereby estimate

O. In the second part, we use loopy belief propagation in order to

image a binary object map Ob based on the estimated O. We note

that in some of the past literature on 2D imaging [8, 12], either the

estimated object map is directly thresholded to form a binary image,

or the grayscale image is considered as the �nal image. Since 3D

imaging with only WiFi signals becomes a considerably more chal-

lenging problem, such approaches do not su�ce anymore. Instead,

we propose to use loopy belief propagation in order to obtain the

�nal 3D image, as we shall see later in this paper.

3.1 Sparse Signal Processing
In this part, we aim to solve for O in Eq. 5. In typical practical

cases, however, N � M , i.e., the number of wireless measurements

is typically much smaller than the number of unknowns, which

results in a severely under-determined underlying system. �en,

if no additional condition is imposed, there will be a considerable

ambiguity in the solution. We thus utilize the fact that several

common spaces are sparse in their spatial variations, which allows

us to borrow from the literature on sparse signal processing. Sparse

signal processing techniques aim at solving an under-determined

system of equations when there is an inherent sparsity in the sig-

nal of interest, and under certain conditions on how the signal is

sampled [7, 15]. �ey have been heavily utilized in many di�erent

areas and have also proven useful in the area of sensing with radio

frequency signals (e.g., 2D imaging, tracking) [17, 23, 31]. �us, we

utilize tools from sparse signal processing to estimate O, the map

of the material properties. �is estimated map will then be the base

for our 3D imaging approach in the next section.

More speci�cally, we utilize the fact that most areas are sparse in

their spatial variations and seek a solution that minimizes the Total

Variation (TV) of the object map O. We next brie�y summarize our

3D TV minimization problem, following the notation in [26].
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As previously de�ned, O is a vector representing the map of the

objects in the domain D. Let I be the 3D matrix that corresponds

to O. I is of dimensions n1 × n2 × n3, where N = n1 × n2 × n3. We

seek to minimize the spatial variations of I, i.e., for every element

Ii, j,k in I, the variations across the three dimensions need to be

minimized. Let Dm ∈ R3×N
denote a matrix such that DmO is a

3×1 vector of the spatial variations of themth
element in O, withm

corresponding to the (i, j,k)th element in I. �e structure of Dm is

such thatDmO = [Ii+1, j,k −Ii, j,k , Ii, j+1,k −Ii, j,k , Ii, j,k+1
−Ii, j,k , ]T .

�en, the TV function is given by

TV(O) =
N∑
i=1

‖DiO‖2, (7)

where ‖.‖2 denotes the l2 norm of the argument. We then have the

following TV minimization problem:

minimize TV(O), subject to P = AO, (8)

where P,A and O are as de�ned in Eq. 5.

In order to solve the 3D TV minimization problem of Eq. 8,

an e�cient practical implementation using Nesterov’s algorithm,

TVReg has been proposed in [26]. TVReg is a MATLAB-based

solver that e�ciently computes the 3D TV minimization solution.

We use TVReg for solving the optimization problem of Eq. 8 in all

the results of the paper.

�e solution obtained from solving Eq. 8 is an approximation

to the object map O. As previously mentioned in Section 2, the

elements of O are all non-positive real numbers. We then �ip the

sign and normalize the values to the range [0, 1], so that they repre-

sent the grayscale intensities at the corresponding cells, which we

denote by ys . However, this solution is not a perfect representation

of the object map, due to modeling errors and the under-determined

nature of the linear system model, requiring further processing.

Furthermore, we are only interested in estimating the presence or

absence of an object at any location, as opposed to learning the

material properties in this paper. �erefore, we next describe our

approach for estimating the binary object map Ob of the domain

D, given the observed intensities ys .

3.2 3D Imaging Using Loopy Belief
Propagation

In this section, we consider the problem of estimating the 3D binary

image of the unknown domain D, based on the solution ys of the

previous section. As discussed earlier, ys can be interpreted as the

estimate of the gray-scale intensities at the cells in the 3D space. We

are then interested in estimating the 3D binary image, which boils

down to �nding the best labels (occupied/not occupied) for each

cell in the area of interest, while minimizing the impact of modeling

errors/noise and preserving the inherent spatial continuity of the

area.

To this end, we model the 3D binary image as a Markov Ran-

dom Field (MRF) [6] in order to capture the spatial dependencies

among local neighbors. Using the MRF model, we can then use the

Hammersley-Cli�ord �eorem to express the probability distribu-

tion of the labels in terms of locally-de�ned dependencies. We then

show how to estimate the binary occupancy state of each cell in the

3D domain, by using loopy belief propagation [6] on the de�ned

MRF. Utilizing loopy belief propagation provides a computationally-

e�cient way of solving the underlying optimization problem, as

we shall see. We next describe the details of our approach.

Consider a random vector X that corresponds to the binary

object map Ob . Each element Xi ∈ {0, 1} is a random variable that

denotes the label of the ith cell. Further, letY denote a random vector

representing the observed grayscale intensities. In general, there

exists a spatial continuity among neighboring cells of an area. An

MRF model accounts for such spatial contextual information, and is

thus widely used in the image processing and vision literature for

image denoising, image segmentation, and texture labeling [16, 22],

as we discussed earlier. We next formally de�ne an MRF.

De�nition 3.1. A random �eldU on a graph is de�ned as a Markov

Random Field (MRF) if it satis�es the following condition: P(Ui =
ui |Uj = uj ,∀j , i) = P(Ui = ui |Uj = uj ,∀j ∈ Ni ), where Ni is the

set of the neighboring nodes of i .

In summary, every node is independent of the rest of the graph in

an MRF, when conditioned on its neighbors. �is is a good assump-

tion for the 3D areas of interest to this paper. We thus next model

our underlying system as an MRF. Consider the graph G = (V, E)
corresponding to a 3D discrete grid formed from the cells in the

domain, whereV = {1, 2, . . . ,N } is the set of nodes in the graph.

Each node i is associated with a random variable Xi , that speci�es

the label assigned to that node. Furthermore, the edges of the graph

E de�ne the neighborhood structure of our MRF. In this paper, we

assume that each node in the interior of the graph is connected

via an edge to its 6 nearest neighbors in the 3D graph, as is shown

in Fig. 2. Additionally, since X is unobserved and needs to be es-

timated, all the nodes associated with X are referred to as hidden

nodes [6]. Furthermore, Yi is the observation of the hidden node

i . �ese observations are typically modeled as being independent

when conditioned on the hidden variables [6]. More speci�cally,

the observations are assumed to satisfy the following property:

P(Y = y|X = x) = ∏
i P(Yi = yi |Xi = xi ). �is is a widely-used

assumption in the image processing and computer vision literature

[6], where the observations correspond to the observed intensities

at the pixels. We adopt this model for our scenario by adding a

new set of nodes called the observed nodes to our graph G. Each

observed node Yi is then connected by an edge to the hidden node

Xi . Fig. 2 shows our described graph structure, where all the 6

hidden neighbors and an additional observed neighbor are shown

for a node in the interior of the graph. For the nodes at the edge of

the graph, the number of hidden node neighbors will be either 3, 4

or 5, depending on their position.

�e advantage of modeling the 3D image as an MRF is that the

joint probability distribution of the labels over the graph can be

solely expressed in terms of the neighborhood cost functions. �is

result follows from the Hammersley-Cli�ord theorem [5], which

we summarize next.

Theorem 3.2. Suppose that U is a random �eld de�ned over a
graph, with a joint probability distribution P(U = u) > 0. �en, U is
a Markov Random Field if and only if its joint probability distribution
is given by P(U = u) = 1

Z exp(−E(u)), where E(u) = ∑
c ∈C Φc (uc ) is

the energy or cost associated with the label u and Z =
∑
u exp(−E(u))

is a normalization constant. Further, C is the set of all the cliques in
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Figure 2: A depiction of the six-connected neighborhood
structure of the underlying graph that corresponds to the
Markov Random Field modeling of our 3D area of interest –
Each node in the interior of the graph has six hidden nodes
and one observed node as neighbors. �e shaded circular
nodes denote the neighbors that correspond to the hidden
nodes, and the shaded square represents the observed node.

the graph, Φc (uc ) is the cost associated with the clique c , and uc is
the realization (labels) associated with the nodes in c .3

Proof. See [5] for details. �

We next establish that our de�ned graph of hidden and observed

nodes is an MRF and thus satis�es the joint distribution of �eorem

3.2. More speci�cally, based on our de�ned neighborhood system,

every hidden node Xi in the interior of the graph has a neighbor-

hood of six hidden nodes and one observed node. Furthermore,

every observed nodeYi has one neighbor, the corresponding hidden

node Xi , as we established. Let Ui denote any node in this graph,

which can correspond to a hidden or an observed node. Such a node

Ui is independent of the rest of the graph, when conditioned on its

neighbors. �erefore, the overall graph consisting of hidden and

observed nodes is an MRF. �en, by using the Hammersley-Cli�ord

�eorem (�eorem 3.2), we get the following joint probability dis-

tribution for the nodes,

P(X = x,Y = y) = 1

Z
exp(−E(x, y)), (9)

where Z =
∑
x,y exp(−E(x, y)) is a normalization constant, and

E(x, y) is de�ned over the cliques of the graph. In our case, the

graph has cliques of size 2. Furthermore, there are two kinds of

cliques in the graph: cliques associated with two hidden nodes

and cliques associated with one hidden and one observed node.

�erefore, E(x, y) can be expressed as follows:

E(x, y) =
N∑
i=1

Φi (xi ,yi ) +
∑
(i, j)∈E

Φi j (xi ,x j ). (10)

In the above equation, Φi (xi ,yi ) is the cost of associating a label

xi to a hidden node that has a corresponding observation yi . Fur-

thermore, Φi j (xi ,x j ) is the cost of associating label (xi ,x j ) to a

neighboring pair of hidden nodes (i, j).

3
A clique in a graph is de�ned as a set of nodes that are completely connected.

Given a set of observations ys , we then consider �nding the x
(labels) that maximizes the posterior probability (MAP), i.e., P(X =
x|Y = ys ). From Eq. 9, we have,

P(X = x|Y = ys ) =
1

Zy
exp(−E(x, ys )), (11)

where Zy =
∑
x exp(−E(x, ys )) is a normalization constant. It then

follows from �eorem 3.2 and Eq. 11 that X given Y = ys is also an

MRF over the graph G of the hidden variables de�ned earlier.

However, directly solving for x that maximizes Eq. 11 is combi-

natorial and thus computationally prohibitive. Several distributed

and iterative algorithms have thus been proposed in the literature

to e�ciently solve this classical problem of inference over a graph

[28]. Belief propagation is one such algorithm, which has been

extensively used in the vision and channel coding literature [6, 37].

In this paper, we then utilize belief propagation to e�ciently solve

the problem of estimating the best labels over the graph, given the

observations ys .

3.2.1 Utilizing Loopy Belief Propagation.
Belief propagation based algorithms can �nd the optimum solu-

tion for graphs without loops, but provide an approximation for

graphs with loops.
4

In our case, the graph representing our in-

ference problem of interest has loops, which is a common trend

for graphs representing vision and image processing applications.

Even though belief propagation is an approximation for graphs

with loops, it is shown to provide good results in the literature [37].

�ere are two versions of the belief propagation algorithm: the

sum-product and the max-product. �e sum-product computes

the marginal distribution at each node, and estimates a label that

maximizes the corresponding marginal. �us, this approach �nds

the best possible label for each node individually. On the other hand,

the max-product approach computes the labels that maximize the

posterior probability (MAP) over the entire graph. �us, if the

graph has no loops, the max-product approach converges to the

solution of Eq. 11, which is the optimum solution.

Loopy belief propagation refers to applying the belief propaga-

tion algorithms to the graphs with loops. In such cases, there is

no guarantee of convergence to the optimum solution for the max-

product or sum-product methods. However, several work in the

literature have used these two methods with graphs with loops and

have shown good results [16, 34, 40]. In this paper, we thus utilize

the sum-product version, which has be�er convergence guarantees

[37], to estimate the labels of the hidden nodes. We next describe

the sum-product loopy belief propagation algorithm [39].

�e sum-product loopy belief propagation is a message passing

algorithm that computes the marginal of the nodes in a distributed

manner. Letm
(t )
i j (x j ) denote the message that node i passes to node

j, where t denotes the iteration number. �e update rule for the

messages is given by

m
(t )
i j (x j ) = λm

∑
xi

Ψi (xi ,yi )Ψi j (xi ,x j )
∏

k ∈Ni\j
m
(t−1)
ki (xi ), (12)

4
In a graph with loops, solving for the optimal set of labels is an NP-hard problem

[35].
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where Ψi (xi ,yi ) = exp(−Φi (xi ,yi )) corresponds to the observation

dependency, Ψi j (xi ,x j ) = exp(−Φi j (xi ,x j )) corresponds to the spa-

tial dependency,Ni denotes the set of neighbors of node i in G and

λm is a normalization constant. �e belief (marginal) at each node

is then calculated by

b
(t )
i (xi ) = λbΨi (xi ,yi )

∏
k ∈Ni

m
(t )
ki (xi ), (13)

where λb is a normalization constant. Finally, a�er the algorithm

converges, the �nal solution (labels) x̂ is calculated at each node as

follows:

x̂i = arg max

xi
bi (xi ). (14)

�e algorithm starts with the messages initialized at one. A stop-

ping criteria is then imposed by se�ing a threshold on the average

changes in the belief of the nodes, and a threshold on the maximum

number of iterations. �e �nal solution is then the estimated Ob ,

i.e., the 3D binary image of the area of interest.

3.2.2 Defining the Cost Functions.
We next de�ne the Φi and Φi j that we shall utilize as part of our

loopy belief propagation algorithm of Eq. 10 and 12. Based on

the cost functions chosen in the image restoration literature [16],

we choose Φi j (xi ,x j ) = (xi − x j )2 and Φi (xi ,yi ) = (xi − yi )2. In

several cases, the outer edge of the area of interest, e.g., the pixels

corresponding to the outer most layer of the boundary wall, can

be sensed with other sensors such as a camera or a laser scanner.

In such cases, we can then modify Φi (xi ,yi ) as follows to enforce

this information: Φi (xi ,yi ) =
{
(1 − xi ) if i ∈ ΩB

(xi − yi )2 otherwise

, where ΩB

denotes the set of graph nodes that constitute the outer boundary

of the domain.

In summary, the solution x̂ that we obtain from the loopy belief

propagation algorithm is the estimate of Ob , which is our 3D binary

image of the area of interest.

4 UAV PATH PLANNING
So far, we have described the system model and the proposed ap-

proach for solving the 3D through-wall imaging problem, given

a set of wireless measurements. �e TX/RX locations where the

measurements are collected can play a key role in the 3D imaging

quality. By using unmanned aerial vehicles, we can properly design

and control their paths, i.e., optimize the locations of the TX/RX,

in order to autonomously and e�ciently collect the measurements

that are the most informative for 3D imaging, something that would

be prohibitive with �xed sensors. In this section, we discuss our

approach for planning e�cient and informative paths for 3D imag-

ing with the UAVs. We start by summarizing the state-of-the-art in

path planning for 2D imaging with ground vehicles [19]. We then

see why the 2D approach can not be fully extended to 3D, which

is the main motivation for designing paths that are e�cient and

informative for 3D imaging with UAVs.

In [19], the authors have shown the impact of the choice of

measurement routes on the imaging quality for the case of 2D

imaging with ground vehicles. Let the spatial variations along a

given direction be de�ned as the variations of the line integral

described in Eq. 2, when the TX and RX move in parallel along

x

y
z

Figure 3: An example scenario with an L-shaped structure
located behind the walls.

(a) (b) (c)

Figure 4: 2D cross sections corresponding to three x-z planes
at di�erent y coordinates for the area of Fig. 3. As can be
seen, the information about the variations in the z direction
is only observable in (b).

that direction outside of the area of interest [12, 19]. Fig. 5, for

example, marks the 0
◦

and 45
◦

directions for a 2D scenario. We

then say that the two vehicles make parallel measurements along

the 45
◦

route if the line that connects the positions of the TX and

RX stays orthogonal to the 45
◦

line that passes through the origin.
5

�en, for every TX/RX position pair along this route, we evaluate

the line integral of Eq. 2 and de�ne the spatial variations along

this direction as the variations of the corresponding line integral.

Furthermore, let the jump directions be de�ned as those directions

of measurement routes along which there exist most abrupt spatial

variations.

For the case of 2D imaging using unmanned ground vehicles,

the authors in [19] have shown that one can obtain good imaging

results by using parallel measurement routes at diverse enough

angles to capture most of the jumps. Since in a horizontal 2D

plane, there are typically only a few major jump directions, then

measurements along a few parallel routes that are diverse enough

in their angles can su�ce for 2D imaging. For instance, as a toy

example, consider the area of interest of Fig. 3. For the 2D imaging

of a horizontal cut of this area, we only need to choose a few diverse

angles for the parallel routes in a constant z plane.

Next, consider the whole 3D area of Fig. 3. �e measurements

that are collected on parallel routes along the jump directions would

still be optimal in terms of imaging quality. However, collecting

such measurements can become prohibitive, as it requires additional

parallel routes in many x-z or y-z planes. �is is due to the fact

that the added dimension can result in signi�cant spatial variations

along all three directions in 3D. For instance, in order to obtain

5
We note that such routes are sometimes referred to as semi-parallel routes in the

literature, as opposed to parallel routes, since the two vehicles do not have to go in

parallel. Rather, the line connecting the two needs to stay orthogonal to the line at the

angle of interest. For the sake of simplicity, we refer to these routes as parallel routes

in this paper.
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Figure 5: An illustration showing the projection of the pro-
posed routes onto the x-y plane. �e routes corresponding
to 0
◦ and 45

◦ are shown as examples.

information about the jumps in the z direction in Fig. 3, one would

need to design additional parallel routes in various x-z or y-z planes.

However, there exist many such planes that will not provide any

useful information about the unknown domain. For instance, Fig. 4

shows three x-z plane cross-sections for the area of Fig. 3. As can

be seen, only the plane corresponding to Fig. 4 (b) would provide

valuable information about the jumps in the z direction. �erefore,

a large number of parallel measurements along x-y, x-z, or y-z

planes are required to capture useful information for 3D imaging.

In summary, since the jump directions are now distributed over

various planes, it can become more challenging to collect infor-

mative measurements unless prohibitive parallel measurements in

many x-y, x-z, or y-z planes are made. We then propose a path

planning framework that would e�ciently sample the unknown

domain, so that we obtain information about the variations in the z

direction as well as the variations in x-y planes, without directly

making several parallel routes in x-z or y-z planes. More specif-

ically, in order to e�ciently capture the changes in all the three

dimensions, we use two sets of parallel routes, as described below:

(1) In order to capture the variations in the x-y directions, we

choose a number of constant z planes and make a diverse

set of parallel measurements, as is done in 2D. Fig. 5 shows

sample such directions at 0
◦

and 45
◦
.

(2) In order to capture the variations in the z direction, we

then use sloped routes in a number of planes, two examples

of which are shown in Fig. 6. More speci�cally, for a pair

of parallel routes designed in the previous item for 2D,

consider a similar pair of parallel routes with the same

x and y coordinates for the TX and RX, but with the z

coordinate de�ned as z = aδ + b, where δ is the distance

traveled along the route when projected to a 2D x-y plane,

and a and b are constants de�ning the corresponding line

in 3D. We refer to such a route as a sloped route, and the

corresponding plane (that contains two such parallel routes

x

z

Figure 6: Example routes corresponding to two horizontal
and two sloped routes for one UAV. �e other UAV is on the
other side of the domain at the corresponding parallel loca-
tions.

traveled in parallel by two UAVs) as a sloped plane. Fig. 5

can then also represent the projection of the parallel routes

of the sloped planes onto the x-y plane as well.

Fig. 6 shows an example of these two types of routes, for one

UAV, along two horizontal and two sloped routes. For each route,

the other UAV will traverse the corresponding parallel route on the

other side of the structure. When projected to the z = 0 plane, all

the depicted routes will correspond to θ = 0
◦

route of Fig. 5 in this

example.

In summary, while designing parallel routes along x-z or y-z

planes can directly capture the changes in the z direction, the sloped

routes can also be informative for capturing the variations in the

z direction while reducing the burden of navigation and sampling

considerably.

5 EXPERIMENTAL TESTBED
In this section, we describe our experimental testbed that enables 3D

through-wall imaging using only WiFi RSSI and UAVs that collect

wireless measurements along their paths. Many challenges arise

when designing such an experimental setup for imaging through-

walls with UAVs. Examples include the need for accurate localiza-

tion, communication between UAVs, coordination and autonomous

route control. We next describe our setup and show how we address

the underlying challenges.

Component Model/speci�cations

UAV 3DR X8 octo-copter [1]

WiFi router D-Link WBR 1310

WLAN card TP-LINK TL-WN722N

Localization device Google Tango Tablet [20]

16dBi gain Yagi antenna

Directional antenna 23
◦

vertical beamwidth

26
◦

horizontal beamwidth

Raspberry Pi Raspberry Pi 2 Model B

Table 1: List of the components of our experimental setup
and their corresponding speci�cations.
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Remote PC

TX - Tango RX - Tango

TX - UAV RX - UAV

WiFi Router
Raspberry Pi

WLAN card

WiFi RSSI Measurement

Wireless communication link

Wired communication link

Physical mount/support

Figure 7: A high-level block diagram of the experimental
components and their interactions.

Figure 8: A 3DR X8 octo-copter used in our experiments.

Table 1 shows the speci�cations of the components that we use

in our experiments. �e details of how each component is used

will be described in the following sections. Fig. 7 shows the overall

block diagram of all the components and their interactions. We

next describe the details of the experimental components.

5.1 Basic UAV Setup
We use two 3DR X8 octo-copters [1] in our experiments. Fig. 8

shows one of our octo-copters. Each UAV has an on-board Pixhawk

module, which controls the �ight of the UAV. �e Pixhawk board

receives information about the �ight from a controller (e.g., manual

controller, auto-pilot or other connected devices), and regulates

the motors to control the �ight based on the received information.

We have further added various components to this basic setup, as

described next.

5.2 Localization
Localization is a crucial aspect of our experimental testbed. In order

to image the unknown region, the UAVs need to put a position

stamp on the TX/RX locations where each wireless measurement

is collected. Furthermore, the UAVs need to have a good estimate

of their position for the purpose of path planning. However, UAVs

typically use GPS for localization, the accuracy of which is not

adequate for high quality imaging. �erefore, we utilize Google

Tango Tablets [20] to obtain localization information along the

routes. �e Tangos use various on-board cameras and sensors to

localize themselves with a high precision in 3D, and hence have

been utilized for robotic navigation purposes [30]. In our setup,

one Tango is mounted on each UAV. It then streams its localization

information to the Pixhawk through a USB port that connects to

the serial link of the Pixhawk. �e Tango sends information to the

Pixhawk using an android application that we modi�ed based on

open source C++ and Java code repositories [21, 24]. �e Pixhawk

then controls the �ight of the UAVs based on the location estimates.

Based on several tests, we have measured the MSE of the localization

error (in meters) of the Tango tablets to be 0.0045.

5.3 Route Control and Coordination
�e UAVs are completely autonomous in their �ight along a route.

Each Tango initially receives the route information and way-points

(short-term position goals) from the remote PC at the beginning

of the route. �ese way-points are equally-spaced position goals

located along the route. In our experiments, the projections of

these way-points onto the x-y plane are spaced 5 cm apart. During

the �ight, each Tango uses its localization information to check

if it has reached the current way-point along its route (within a

desired margin of accuracy). If it has reached its own way-point,

it then checks if the other Tango has reached the corresponding

way-point along its route. If the other Tango indicates that it has

not reached its current way-point, then the �rst Tango waits until

the other Tango reaches its desired way-point. Once the Tangos

are coordinated, each Tango sends information about the next way-

point to its corresponding Pixhawk. �e Pixhawk then controls

the �ight of the UAV so that it moves towards the next way-point.

As a result, both the UAVs are coordinated with each other while

moving along their respective routes.

5.4 WiFi RSSI Measurements
We next describe our setup for collecting WiFi RSSI measurements.

A WiFi router is mounted on the TX UAV, and a WLAN card is

connected to a Raspberry Pi, which is mounted on the RX UAV. �e

WLAN card enables WiFi RSSI measurements, and the Raspberry Pi

stores this information during the route, which is then sent to the

RX Tango upon the completion of the route. In our experiments,

the RX UAV measures the RSSI every 2 cm. More speci�cally, the

RX Tango periodically checks if it has traveled 2 cm along the

route from the previous measurement location, when projected

onto the x-y plane. If the RX Tango indicates that it has traveled 2

cm, then it records the current localization information of both the

Tangos, and communicates with the Raspberry Pi to record an RSSI

measurement. At the end of the route, we then have the desired

RSSI measurements along with the corresponding positions of the

TX and RX UAVs. Finally, in order to mitigate the e�ect of multipath,

directional antennas are mounted on both the TX and RX UAVs for

WiFi signal transmission and reception. �e speci�cations of the

directional antennas are described in Table 1.
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(a) (b)

Figure 9: �e two areas of interest for 3D through-wall imaging. (a) shows the two-cube scenario and (b) shows the L-shape
scenario. For better clarity, two views are shown for each area.

6 EXPERIMENTAL RESULTS
In this section, we �rst show the results of our proposed framework

for 3D through-wall imaging, and then compare our proposed ap-

proach with the state-of-the-art in robotic 2D through-wall imaging

using WiFi. We use our experimental testbed of Section 5 in order

to collect WiFi RSSI measurements outside an unknown area. �e

area is then reconstructed in 3D based on the approach described in

Section 3. In this section, we consider the two areas shown in Fig. 9.

We refer to the areas of Fig. 9 (a) and Fig. 9 (b) as the two-cube and

L-shape respectively, in reference to the shapes of the structures

behind the walls. For both areas, the unknown domain that we

image consists of both the outer walls and the enclosed region.

Implementation Details
We �rst discuss the speci�c details of our experiments. �e dimen-

sions of the unknown areas to be imaged are 2.96 m × 2.96 m × 0.4

m for the two-cube scenario, and 2.96 m × 2.96 m × 0.5 m for the

L-shape scenario.
6

Each WiFi RSSI measurement recorded by the

RX-UAV is an average of 10 samples collected at the same position.

A median �lter is used on the RSSI measurements to remove spu-

rious impulse noises in the measured data. �e routes are chosen

according to the design described in Section 4. For capturing the

variations in the x-y directions, two horizontal planes are chosen.

�e �rst horizontal plane is at a height of 5 cm above the lower

boundary of the area to be imaged, while the second horizontal

plane is at a height of 5 cm below the upper boundary of the area

to be imaged. In each of these planes, parallel routes are taken

with their directions corresponding to {0◦, 45
◦, 90

◦, 135
◦} (see Fig.

5 for examples of 0
◦

and 45
◦
). Additionally, for every pair of such

parallel routes, there are two corresponding pairs of sloped routes

as de�ned in Section 4 (z coordinate varying as z = aδ + b), with

0.2/D representing the slope of each sloped route, where D is the

total distance of the route when projected to the x-y plane, 0.2

corresponds to the total change in height along one sloped route,

and the o�set b is such that the intersection of the sloped routes

shown in Fig. 6 corresponds to the height of the mid-point of the

area to be imaged. �is amounts to the total of eight sloped routes

and eight horizontal routes, four of which are shown in Fig. 6.

6
�e area to be imaged does not start at the ground, but at a height of 0.65 m above

the ground. �is is because the Tangos need to be at least 0.35 m above the ground

for a proper operation and the antenna mounted on the UAV is at a height of 0.3 m

above the Tango. Also, note that the UAVs �y well below the top edge of the walls,

and therefore do not have any visual information about the area inside.

We initially discretize the domain into small cells of dimensions

2 cm × 2 cm × 2 cm. �e image obtained from TV minimization

is then resized to cells of dimensions 4 cm × 4 cm × 4 cm in order

to reduce the computation time of the loopy belief propagation

algorithm. �e intensity values of the image obtained from TV

are normalized to lie in the range from 0 to 1. Furthermore, those

values in the top 1% and bo�om 1% are directly mapped to 1 and

0 respectively, since they are inferred so close to 1/0, with a very

high con�dence. �e stopping criteria for the belief propagation

algorithm is 10
−4

for the mean change in beliefs, with a maximum

of 100 iterations. �e information about the outer boundary of the

area may be known using cameras or laser scanners. However, only

the cells on the boundary (i.e., the last layer of cells on the outer

edge) would be known to be occupied by a wall in such a case, and

the rest of the outer walls need to be imaged, as we shall show next.

We next discuss the imaging results for the two scenarios.

3D Imaging Results

Here, we show the experimental 3D imaging results for the two

areas shown in Fig. 9. Fig. 10 (le�) shows the region of interest for

the two-cube scenario and Fig. 10 (middle) shows the 3D binary

ground-truth image of the area. Fig. 10 (right) then shows the 3D

reconstructed image from our proposed approach, using only 3.84%

measurements. �e percentage measurements refers to the ratio of

the total number of measurements to the total number of unknowns

in the discretized space (corresponding to the cells of dimensions

4 cm × 4 cm × 4 cm), expressed as a percentage. As can be seen,

the inner structure and the outer walls are imaged well, and the

variations in the structure along the z direction are clearly visible.

For instance, as the �gure shows, the distance to the wall from the

center of the top part is imaged at 1.50 m, which is very close to

the real value of 1.48 m.

We next consider imaging the L-shape area. Note that we are

imaging a larger area as compared to the two-cube scenario in this

case. Fig. 11 (le�) shows the region of interest for the L-shape area

while Fig. 11 (middle) shows the 3D binary ground-truth image of

the area. Fig. 11 (right) then shows the 3D image obtained from

our proposed approach using only 3.6% measurements. As can be

seen, the area is imaged well and the L shape of the structure is

observable in the reconstruction. Furthermore, the distance to the

wall from the center of the top part is imaged at 1.12 m, which is

very close to the real value of 1.08 m. It is noteworthy that the
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Area of Interest - Top View

3D binary ground-truth image 

of the unknown area to be imaged

(2.96 m x 2.96m x 0.4 m)

Our 3D image of the area, 

based on 3.84 % measurements

1.48 m 1.50 m

Figure 10: (le�) �e area of interest for the two-cube scenario, (middle) 3D binary ground-truth image of the unknown area
to be imaged, which has the dimensions of 2.96 m × 2.96 m × 0.4 m, and (right) the reconstructed 3D binary image using our
proposed framework.

Area of Interest - Top View

1.08 m 1.12 m

3D binary ground-truth image 

of the unknown area to be imaged

(2.96 m x 2.96m x 0.5 m)

Our 3D image of the area, 

based on 3.6 % measurements

Figure 11: (le�) �e area of interest for the L-shape scenario, (middle) 3D binary ground-truth image of the unknown area
to be imaged, which has the dimensions of 2.96 m × 2.96 m × 0.5 m, and (right) the reconstructed 3D binary image using our
proposed framework.

inner two-cube structure is imaged at the center, while the inner

L-shape structure is imaged towards the le�, capturing the true

trends of the original structures. Overall, the results con�rm that

our proposed framework can achieve 3D through-wall imaging

with a good accuracy.

We next show a few sample 2D cross sections of the binary 3D

images of Fig. 10 and 11. Fig. 12 (a) and (d) show two horizontal

cross sections of the 3D binary ground-truth image of the two-cube

area of Fig. 9 (a), while Fig. 12 (b) and (e) show the corresponding

cross-sections in our reconstructed 3D image. Similarly, Fig. 13 (a)

and (d) show two horizontal cross sections for the L-shape area of

Fig. 9 (b), while Fig. 13 (b) and (e) show the corresponding images

reconstructed from our proposed framework. In both cases, the

di�erent shapes and sizes of the inner structures at the two imaged

cross sections are clearly observable.

Comparison with the State-of-the-art
In this section, we compare the proposed 3D imaging approach with

the state-of-the-art for through-wall imaging with WiFi RSSI. More

speci�cally, in the current literature [12, 31], robotic through-wall

imaging with WiFi power measurements is shown in 2D, with an

approach that comprises of the measurement model described in

Section 2, and sparse signal processing based on Total Variation

minimization. However, directly extending the 2D approach for 3D

imaging results in a poor performance. �is is due to the fact that

3D imaging is a considerably more challenging problem, due to the

severely under-determined nature of the linear model described in

Section 2. Furthermore, by utilizing four measurement routes in

the 2D case, every cell in the unknown domain (i.e., a plane in the

case of 2D) appears multiple times in the linear system formulation.

However, in the case of 3D imaging, there are many cells in the

unknown domain that do not lie along the line connecting the TX

and RX for any of the measurement routes, thereby never appearing

in the linear system formulation. �us, there is a higher degree of

ambiguity about the unknown area in 3D, as compared to the 2D

counterpart, which could have only been avoided by collecting a

prohibitive number of measurements. �erefore, the contributions

of this paper along the lines of MRF modeling, loopy belief prop-

agation, and 3D e�cient path planning are crucial to enable 3D

imaging.

In order to see the performance when directly extending the

prior approach to 3D, we next compare the two approaches for the

imaging scenarios considered in the paper. Consider the two-cube

area of Fig. 9 (a). Fig. 12 (c) and (f) show the corresponding 2D cross

sections of the 3D image obtained by utilizing the prior imaging

approach [31] for our 3D problem. Similarly, for the L-shape area

of Fig. 9 (b), Fig. 13 (c) and (f) show the corresponding 2D cross

sections of the 3D image obtained by utilizing the prior imaging

approach [31] for our 3D problem.
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Proposed 3D imaging

approach

Prior 2D imaging approach

directly extended to 3D

(a) (b) (c)

(d) (e) (f)

Ground-truth image

Figure 12: Sample 2D cross-sections of the 3D imaging re-
sults for the two-cube scenario. (a) and (d) show two 2D cross
sections of the ground-truth image, (b) and (e) show the cor-
responding cross sections of the imaging results obtained
from the 3D imaging approach proposed in this paper, and
(c) and (f) show the corresponding 2D cross sections of the
3D image obtained by directly extending the state-of-the-art
imaging approach [31] to 3D.

As can be seen, it is challenging to obtain a good 3D reconstruc-

tion when directly utilizing the prior approach that was successful

for imaging in 2D. �ere exists signi�cant noise in the image due

to the under-determined nature of the system and modeling er-

rors. On the other hand, by incorporating Markov Random Field

modeling and solving for the occupancy of each cell via utilizing

loopy belief propagation, as we have done in this paper, we can

see that the shapes and locations of the objects are reconstructed

considerably more clearly.

7 POSSIBLE FUTURE EXTENSIONS
In this paper, we assumed that the unmanned vehicles can move

on all sides of the area of interest. As part of the future work,

considering the scenario where the UAVs can only access one side

of the area of interest would be of interest. In this case, a new

method for the optimization of the TX/RX positions is needed that

restricts the positions to only one side of the area. Furthermore,

environmental factors like extreme winds and minimal lighting

can a�ect the performance of the Google Tangos and as a result

the positioning performance of the UAVs, which will impact the

overall imaging performance. A more advanced localization or joint

imaging and localization can then possibly address these issues as

part of future work.

8 CONCLUSIONS
In this paper, we have considered the problem of 3D through-wall

imaging with UAVs, using only WiFi RSSI measurements, and pro-

posed a new framework for reconstructing the 3D image of an

unknown area. We have utilized an LOS-based measurement model

Proposed 3D imaging

approach

Prior 2D imaging approach

directly extended to 3D

(a) (b) (c)

(d) (e) (f)

Ground-truth image

Figure 13: Sample 2D cross-sections of the 3D imaging re-
sults for the L-shape scenario. (a) and (d) show two 2D cross
sections of the ground-truth image, (b) and (e) show the cor-
responding cross sections of the imaging results obtained
from the 3D imaging approach proposed in this paper, and
(c) and (f) show the corresponding 2D cross sections of the
3D image obtained by directly extending the state-of-the-art
imaging approach [31] to 3D.

for the received signal power, and proposed an approach based

on sparse signal processing, loopy belief propagation, and markov

random �eld modeling for solving the 3D imaging problem. Fur-

thermore, we have shown an e�cient aerial route design approach

for wireless measurement collection with UAVs. We then described

our developed experimental testbed for 3D imaging with UAVs and

WiFi RSSI. Finally, we showed our experimental results for high-

quality 3D through-wall imaging of two unknown areas, based on

only a small number of WiFi RSSI measurements (3.84% and 3.6%).
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