X-Ray Vision with Only WiFI Power

Measurements Using Rytov Wave Models

Saandeep Depatla, Lucas Buckland and Yasamin Mostofi

Abstract

In this paper, unmanned vehicles are tasked with seeing gletety unknown area behind thick
walls based on only wireless power measurements using WLafsc We show that a proper mod-
eling of wave propagation that considers scattering an@ropinopagation phenomena can result in
a considerable improvement in see-through imaging. Moezifipally, we develop a theoretical and
experimental framework for this problem based on Rytov wanadels, and integrate it with sparse
signal processing and robotic path planning. Our experiadeasults show high-resolution imaging of
three different areas, validating the proposed framewddeeover, they show considerable performance
improvement over the state-of-the-art that only consideesLine Of Sight (LOS) path, allowing us to
image more complex areas not possible before. Finally, veavghe impact of robot positioning and

antenna alignment errors on our see-through imaging framew

. INTRODUCTION

Passive device-free localization and mapping of objectanrenvironment has recently re-
ceived considerable attention. There are several poteqications for such approaches, from
location-aware services, to search and rescue, and rabetticorks.

A survey of the related literature indicates that local@aiand mapping has been investigated
by three different communities. More specifically, in thewarking community, both device-
based and device-free localization based on RF signals heea explored, typically in the

context of tracking human motion [1]-[7]. However, in mokese setups, either the object of
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interest is not occluded or the information of the first lagéroccluder is assumed known.
Furthermore, most focus has been on motion tracking and mdtigh-resolution imaging. In
robotics, localization and mapping of objects is cruciaptoper navigation. As such, several
work, such as Simultaneous Localization and Mapping (SLANM) been developed for mapping
based on laser scanner measurements [8]-[11]. Howevehesetapproaches, mapping of
occluded objects is not possible. For instance, in [12],esarformation of the occluded objects
is first obtained with radar and then utilized as part of rab8LAM.

In the electromagnetic community, there has been interesbiving an inverse scattering
problem [13], i.e., deducing information about objects meavironment based on their impact
on a transmitted electromagnetic wave [14]-[16]. For incta remote sensing to detect oil
reserves beneath the surface of the earth is one exampléelfadjtional medical imaging based
on X-ray also falls into this category [13]. There has alserb@ number of work on using
a very general wave propagation model for inverse scatijednch as Distorted Born Iterative
method [14], contrast source inversion method [18], andtetstic methods [19]. However, the
computational complexity of these approaches makes itilpitole for high-resolution imaging
of an area of a reasonable size. Furthermore, most such agty@® utilize bulky equipments,
which makes their applicability limited.

In this paper, we are interested in high-resolution seedffin imaging of a completely un-
known area, based on only WiFi measurements, and its autmmaith unmanned vehicles.
With the advent of WiFi signals everywhere, this sensingraggh would make our framework
applicable to several indoor or outdoor scenarios. The tisgbotic platforms further allows for
autonomous imaging. However, the overall problem of degyalp an autonomous system that
can see everything through walls is considerably challendue to three main factors: 1) proper
wave modeling is crucial but challenging; 2) the resultimglgpem is severely under-determined,
i.e., the number of measurements typically amount to onlgve percentage of the number of
unknowns; and 3) robot positioning is prone to error, addidditional source of uncertainty to
the imaging. In our past work [20], [21], we have shown thatiisg through walls and imaging
a completely unknown area is possible with only WiFi sign&swever, we only considered
the Line of Sight (LOS) path and the impact of the objects gltims path when modeling
the receptions. A transmitted WiFi signal will experieneweral other propagation phenomena

such as scattering that an LOS model can not embrace. Thithearresult in a significant gap



between the true receptions (RF sensed values) and the epydre modelled (see Fig. 7 for
instance), and is one of the main bottlenecks of the statbeohtt in RF sensing.

Thus, the first contribution of this papeis to address this bottleneck and enable see-through
imaging of more complex areas not possible before. In ordedla so, we have to come up
with a way of better modeling the receptions to achieve a leafhe imaging results, while
maintaining a similar computational complexity. If we tak®e modeling approaches of the
communication/networking literature, the term multipesthypically used to describe propagation
phenomena beyond the LOS path. However, the modeling ofipatlitin these literature, which
is done via probabilistic approaches or ray tracing, is mtable for high-resolution detailed
imaging through walls. In this paper, we then tap into the evaxopagation literature to model
the induced electric field over the whole area of interestiaptide the impact of objects that
are not directly on the LOS path. While Maxwell's equatiora caccurately model the RF
sensed values, it is simply not feasible to start with thaell@f modeling. A further tapping
into the wave literature then shows several possible appations to Maxwell’s equations.
In this paper, we show that modeling the receptions basedybdovRvave approximation can
make a significant improvement in the see-through imagisylte Rytov approximation is
a linearizing wave approximation model, which also inclideattering effects [13]. While it
has been discussed in the electromagnetic literature ircanéext of inverse scattering [13],
[22], [23], there are no experimental results that show éfggmance for see through imaging,
especially at WiFi frequencies. In this paper, it is therefour goal to build on our previous
work and significantly extend our sensing model based on\Ry#ve approximation.

The second contribution of this papér on achieving a higher level of automation. More
specifically, in [24], the two robots had to constantly caoade their positioning and antenna
alignment, and their positioning errors were manually ected several times in a route (e.g.
every 1 m). In this paper, each robot travels a route (seeiti@finn Section IV ) autonomously
and without any coordination with the other robot or positiy error correction. It is therefore
feasible to collect measurements much faster, reducingxperiment time from several hours
to a few minutes. However, this comes at the cost of non-gigddi errors in robot positioning
and antenna alignment, the impact of which we discuss andrigmpntally validate in Section
V.

Finally, the last contribution of this papes to show that two robots can see through walls



and image an area with a higher level of complexity, which \was possible before. More

specifically, we integrate modeling of the receptions, tase Rytov approximation, with sparse
signal processing (utilized in our past work for RF imagiagyl robotic path planning and show
how a considerable improvement in imaging quality can beexeld. We experimentally validate
this by successfully imaging three different areas, one litivcan not be imaged with the state
of the art while the two others show a considerable improverreimaging quality.

The rest of the paper is organized as follows. In Section B, mathematically formulate
our imaging problem based on Rytov wave approximation. IctiSe 111, we pose the resulting
optimization problems and discuss how to solve them basetbi@h variation minimization.
In Section IV, we introduce the hardware and software stinest of our current experimental
robotic platform, which allows for more autonomy in WiFi nse@ement collection. In Section
V, we then present our imaging results of three differenasirand show the impact of robot

positioning and antenna alignment errors. We conclude ati&@e VI.

[I. PROBLEM FORMULATION

Consider a completely unknown workspade— R3. Let D" be the complement db, i.e.,
DO = R3\D. We consider a scenario where a group of robot®it are tasked with imaging
the areaD by using only WiFi. In other words, the goal is to reconstrid¢i.e., to determine the
shapes and locations of the objectddrbased on only a small number of WiFi measurements.
We are furthermore interested in see-through imaging,the. area of interest can have several
occluded parts, like parts completely behind concretesnaid thus invisible to any node outside.
Fig. 1 shows an example of our considered scenario. The rneerisyposed volume marks the
area that the two unmanned vehicles are interested in igdgihthat is completely unknown
to them. The area has several occluded parts, such as tisebbacked by the outer concrete
wall, which is highly attenuating. Note that both empty antl §paces inside the red volume
as well as its outer surfaces are all unknown to the robotsneed to be imaged. The robots
only have WiFi for imaging. As the robots move outsideyfone robot measures the received
signal power from the transmissions of the other robot. Tienown areeD then interacts with
each transmission, as dictated by the locations and prepet its objects, leaving its impact

on each reception. The robots then need to image the steuctiged on all the receptions.



volume D

Fig. 1. Two robots are tasked with imaging the unknown dbethat is marked with the red superimposed volume, which

involves seeing through walls, based on only a small numibeni&i measurements. Note that this figure is generated for

illustrative purposes. For a true snapshot of the robotsperation, see Fig. 9.

In this section, we start with the volume integral wave emumind discuss how it can be
linearized and solved under certain assumptions, devedoghie system models that we shall
utilize later for our imaging. The readers are referred ),[]25] for more details on the wave

propagation modeling.

A. Volume Integral Equationgd.3]

Let E(r) be the electric fieldJ(r) be the current density,(r) be the electric permittivity,
and . (r) be the magnetic permeability ate R3, wherer is the position vector in the spherical
coordinates. Then, we have the following volume integral equation reigtihe electric field to

the current source and objectsn(13]

E(r) = jwo f H Gr,r') e J(r') du + Hf G(r,1) » (O()E(r)) d, 1)

Throughout the paper, single-frequency operation is asduand all the materials are considered isotropic and nameta,

i.e., u(r) = po, for all r e R, wherepy is the permeability of the freespace.



whereé(r, r’) is the dyadic Green’s function given by

é(r,r/) = <[ + V];) g(r,r'), (2)
jhkolr—r']
g(r, 1) Wa 3)

O(r) = k*(r) — k2 denotes the material property of the object at positiprt2 = w?egu
denotes the wavenumber of the free spaéé(r) = w?uee(r) denotes the wavenumber of the
medium atr, ¢, and i, are the permittivity and permeability of the free space eespely, w
is the angular frequency, anddenotes the vector dot product. The robots are then ineaftest
in learning O(r),for r € D, as it carries the information of the location/material pedy of
the objects in the workspace. Note that (1) is valid for artyomogeneous, isotropic, and non-
magnetic media. Als@)(r)E(r) is the equivalent current induced in the object.athis induced
current in turn produces an electric field. The total fieldhert the sum of the electric field due
to the current in the transmit antenna, the first term on tgktrand side (RHS) of (1), and
the electric field due to the induced current in the objedts @econd term on the RHS of (1)).
First, we start by assuming free spaceIdi". Then,¢(r) = ¢, for r € D, resulting in
k*(r) = k¢ andO(r) = 0, for r € D°". When there are no objects I, we havek?(r) = k2
andO(r) = 0, for all r € R3, and the second term on the RHS of (1) vanishes. This means
that the first term is the incident field when there are no dbjeatD and the second term is
the result of scattering from the objectslh By denoting the first term on the RHS of (1) as
Einc(r), we then get

E(r) = Einc(r Jf G (r,r") (rYE(r")) dv', 4)

whereG(r,1’') is a second-order tensor and can be represented as theifgldw 3 matrix in

the Cartesian coordinates:
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2In this paper, free space refers to the case where there ijaoto



In reality, there will be objects iD°". Then,E;,. denotes the field when there are no objects
in D.2 Without loss of generality, we assume that the transceintsmmas are linearly polarized
in the z-direction. This means that we only need to calculate #f@®mponent of the electric
field, which depends on the last row 6f(r,r’). Let Jeq(r) = [Jog J&y Jog)" = O(r)E(r). We
further assume near-zero cross-polarized compongptand J¢, and takeJeq(r) = [0 0 Jg].
This approximation is reported to have a negligible eff@&]] By using this approximation in

(4) and only taking the-component, we get the following scalar equation:
E*(r) = E.(r) + JJJ G..(r, v )O(r")E*(r') dv', (5)
D

where E#(r) and E(r) are thez-components oE(r) and Ei..(r), respectively.

B. Linearizing Approximations

In (5), the received electric fiel&*(r) is a non-linear function of the object functiagn(r),
since E#(r’) inside the integral also depends Oifr). This nonlinearity is due to the multiple
scattering effect in the object region [25]. Thus, we nex approximations that make (5) linear
and easy to solve under the setting of sparse signal progessi

1) Line Of Sight-Based Modeling [13], [20]A simple way of modeling the receptions is to
only consider the LOS path from the transmitter to the resreand the impact of the objects
on this path. This model has been heavily utilized in therdiiere due to its simplicity [20].
However, it results in a considerable modeling gap for seedgh imaging since it does not
include important propagation phenomena such as scatdnnthis part, we summarize the
LOS model in the context of wave equations.

At very high frequencies, such as in X-ray, the wave can berasd to travel in straight lines
with negligible reflections and diffractions along its pil3]. Then, the solution to (5) is given

as follows by using Wentzel Kramers Brillouin (WKB) appromation?

B(r) = —— /N p o0 \WKB Approximation (6)

a(r)

3In our experiments, we will not have access to the exact emtidield when there is nothing iD. Thus, the two robots
make a few measurements D" where there are no objects in between them to estimate aruvesthe impact oEiqc. If the
robots have already imaged parts@f*, that knowledge can be easily incorporated to improve thifopmaance.

“Here, the field is along the-direction, as explained before. From this point on, sup@ssz is dropped for notational

convenience.



wherea(r) is a complex number that represents the slowness of the meativ and is related
to k(r), SLTHR is a line integral along the line joining the positions of tihensmitter and the
receiver, and: is a constant that depends on the transmitted signal power.

It can be seen that the loss incurred by the ray is linearbtedlto the objects along that path,
resulting in a linear relationship between the received ggoand the objects, as we shall see.
This approximation is the base for X-ray tomography [27]wdger, the underlying assumption
of this method is not valid at lower frequencies, like micem& frequencies, due to the non-
negligible diffraction effects [28]. In [20], [21], we proged a see-through wall RF-based
imaging framework based on this approximation. In this paper goal is use a considerably
more comprehensive modeling of the receptions (which has lzebottleneck in see-through
imaging) by tapping into the wave literature. We show thatalogressing the modeling of the
receptions through using Rytov wave approximation, we caage areas not possible before.

2) Rytov Approximation [13]:In general, the field inside any inhomogeneous media can be
expressed as

E(r) = eIV ), (7)

and satisfies
[V + k*(r)]E(r) = 0, (8)

where ¢(r) is a complex phase term. It can then be shown that the solttiof8) can be

approximated as follows:
E(r) = Einc(r)e’®™), Rytov Approximation (9)
where

o) = = ][ o100 ety (10)

The validity of Rytov approximation is established by diraemal analysis in [13] and is accurate

at high frequencies,if

SThrought this paper, high frequency refers to the frequemnait which the size of inhomogeneity of objects is much large

than the wavelength.



whereé,(r) is the normalized deviation of the electric permittivitpfn the free space. At lower

frequencies, the condition for validity of the Rytov approation becomes
(koL)?6.(r) < 1,

where L is the order of the dimension of the objects. In our case, wiffrequency of 2.4 GHz
and L of the order of 1 m, we satisfy the condition of high frequerexcept at the boundaries
of the objects, where there are abrupt changes in the materia

For the sake of completion, a more commonly-used lineagizpproximation, called Born
approximation, is summarized in the appendix. Rytov apipmaxon is reported to be more
relaxed than the Born approximation at higher frequencied. [Also, Rytov approximation
lends itself to a simple linear form, when we only know the magle of the received electric

field, as described next. Thus, in this paper, we focus on\Rytwve modeling.

C. Intensity-Only Rytov Approximation
In the aforementioned equations, both magnitude and phatbe weceived field are needed.

In this paper, however, we are interested in imaging basednbnthe received signal power.

Then, by conjugating (9), we get

E*(r) = B (r)e 97", (11)

inc
From (9) and (11), we then have
[B(r)[* = |Eine(r)[ e~ 2meset)), (12)

where Imag.) and|.| denote the imaginary part and the magnitude of the argumesgectively.
Since the received powkeis proportional to the square of the magnitude of the reckefiad,

we have the following equation by taking logarithms on battes of (12):
Pi(r)(dBm) = Pie(r)(dBm) + 101og,, (e ?)Imag(¢(r)), (13)

whereP;(r)(dBm) = 101log,, (M) is the received power in dBm af and Pn(r)(dBm) =

1207 x10—3

10 logyq (%) is the power incident in dBm at when there are no objects.

This is the received power by an isotropic antenna. For actiineal antenna, this should be multiplied by the gain of the

antenna.
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To solve (12) for objecO(r), we discretizeD into N equal-volume cubic cells. The position
of each cell is represented by its center position veetorfor n € {1,2,--- , N}. The electric

field and the object properties are assumed to be constamnveiach cell. We then have

O(r) = Z O(r,,)C,, (14)

N
|nc Z inc rn ny (15)

wherer,r, € D, C, is a pulse basis function which is one inside celand zero outside. By
substituting (14) and (15) into (10), we get

—ﬁﬂiowmmw ﬂ | ateyao

N
Z g(r,r,)O(ry,) Einc(r,) AV, (16)

n:I

J f | atey v = gte.)av, (17)

V,, is then'" cell and AV is the volume of each cell. Note thét, is not included in (16) since

EInC

where

we are evaluating the integral inside cellwhereC,, is one.
Let (p;,q;), for p;,q; € D°, denote the transmitter and receiver position pair wheeei'th
measurement is taken. Also, t= [¢,, (q1) ¢p,(q2) - dp,, (arr)]”, whereM is the number
— N .
of measurementsy,,(q;) = m D1 9(di, 1) O(1y) Eing p, (rn) AV, @nd Einc p, (r5,) is the
incident field atr,, when the transmitter is gi;. Then, we have

d=—jF O, (18)

whereF is anM x N matrix with F ; = 29 r;;m]f'“{’é(? andO = [O(ry) O(ry) --- O(ry)]".

Using (13) for each measurement and stacking them togetieeget

P, = Imag(®), (19)

wherePyy, = PAEM -PucldE) b (qBm) — 7, (1) (ABM) Prpo (q2) (ABM) - Prp,, () (dBM)]7,

Pinc(dBM) = [Picp, (q1)(dBM) Picp,(q2)(ABM) - - - Pacp,, (qar) (dBmM)]", and  , (q;) (dBm)
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and P p; (q;)(dBm) are the received power and incident power correspondinigetdransmitter

and receiver paifp;, q;), respectively. Using (18) and (19), we get
Pryt = Rea(FO) = FrRORr + F1 O, (20)

where Redl) is the real part of the argument, ai@, £}, Or and O, are the real part of,
imaginary part ofF’, real part ofO, and imaginary part o®), respectively. This can be further

simplified by noting thatFrOr » F,O, [29]. Therefore, the above equation becomes
Pryt ~ FROR, (21)

which is what we shall use for our RF-based robotic imaging.

D. Intensity-Only LOS Approximation

Starting from (6) and following similar steps to the intépsanly Rytov approximation, we

get:

P(r)(dBm) =Ppe(r)(dBm) — 1010g10(e_2)wf Imag(«(r')) dr’, (22)
Lr—r
where the integration is the line integral along the linaiog the positions of the transmitter

Py (dBm)—Pjnc(dBm
101ogyg(e™?)

and receiver, and is the position of the receiver. DenotiiR) o5 = ) and stacking
M measurements together, we have

Pros = AT, (23)

where A is a matrix of sizeM x N with its entry 4;; = 1 if the ;™ cell is along the line
joining the transmitter and receiver of th® measurement, andl,; = 0 otherwise,I' =
[au(ry) au(r2) - au(ry)]F, anday(.) = Imaga(.)).

Equation (23) is what we then utilize in our setup when shgwire performance of the state

of the art.

I1l. BRIEF OVERVIEW OF SPARSE SIGNAL PROCESSING [30]

In the formulations of the Rytov and LOS approximations irct®m Il, we have a system of
linear equations to solve for each approach. However, tetesyis severely underdetermined
as the number of wireless measurements typically amountstoal percentage of the number

of unknowns. More specifically, let € RY be a general unknown signa, € RY be the
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measurement vector, and= Bx be the observation model, whefeis an M x N observation
matrix. We consider the case wheke>» M, i.e., the number of unknowns is much larger than
the number of measurements. Thus, it is a severely undemtatd problem which cannot be
solved uniquely fox giveny. In this section, we briefly summarize how sparse signalgssiog
can be utilized to solve this problem.

Supposex can be represented as a sparse vector in another domaitoasfal = ©X, where
© is an invertible matrix an& is S-sparse, i.e., cafdupdX)) « N, where card) denotes the
cardinality of the argument and suppdenotes the set of indices of non-zero elements of the
argument. Then, we hawe = KX, where K = BO andX has a much smaller number of the
non-zero elements that In general, the solution to the above problem is obtaineddlying

the following non-convex combinatorial problem:
minimize || X[o, subjectto y = KX. (24)

Since solving (24) is computationally-intensive and ingbical, considerable research has been
devoted towards developing approximated solutions foj. (24

In our case, we are interested in imaging and localizatiothefobjects in an area. Spatial
variations of the objects in a given area are typically spaWe thus take advantage of the
sparsity of the spatial variations to solve our under-aaieed systeni. More specifically, let
R = [R; ;] denote ann x n matrix that represents the unknown space. Since we aregtéer

in the spatial variations ofz, let

RZ‘ _Rz If1<z<m, RZ —RZ" if1<'<n,
Dy ;= o I and D,;; = 7 T /
Ri,j - Rlvj if i = m, Ri,j - Ri,l if ] =n.

Then, the Total Variation (TV) of? is defined as:

TV(R) = ) [Di;(R). (25)
i?j
where D ;(R) = [Dh,ij Dy ;], and|.|| can represent eithéy or [, norm. TV minimization then

solves the following convex optimization problem:

minimize TV(R), subjectto y = KX. (26)

"It is also possible to solve ah convex relaxation of (24). However, our past analysis haiciied a better performance

with spatial variation minimization [20].
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In the context of the current problem formulatiag represents the object m&p R represents
the spatial variations oX, K represents the observation model, iE.,= Fy for the Rytov
approach and{ = A for the LOS approach, angrepresents the received power (after removing
path loss). In solving (26); or l; norm results in a similar reconstruction [31]. Thus, unless
otherwise stated, all results of this paper are based oorm.

To solve the general compressive sensing problem of (28)sthband efficiently, TVAL3
(TV Minimization by Augmented Lagrangian and Alternatingé&xtion Algorithms) is proposed
in [32]. TVAL3 is a MATLAB-based solver that solves (26) by mmnizing the augmented
Lagrangian function using an alternating minimizationesole [33]. The augmented Lagrangian
function includes coefficients which determine the relaimportance of the terms TYR) and
|y — KX| in (26). The readers are referred to [32] for more details ¥AO3. We use TVAL3

for all the experimental results of this paper.

V. EXPERIMENT SETUP

In this section, we briefly describe our enabling experiraktegistbed. As compared to our past
testbed (results of which with an LOS modeling of the reaepgtiwere reported in the literature),
in our current setup, the robots can take channel measutemegr a given route autonomously,
and without any coordination between themselves or stgppvore specifically, in [24], the
two robots had to constantly stop and coordinate their jpositg and antenna alignment, and
their positioning errors were manually corrected a few #inre a route (e.g. every 1 m). In
this paper, each robot travels a route autonomously andutithny coordination with the other
robot or positioning error correction. It is therefore filldes to collect measurements much faster,
reducing the experiment time from several hours to a few temuHowever, this comes at the
cost of non-negligible errors in robot positioning and ante alignment, as we discuss later
in the paper. In the rest of this section, we describe theveoft and hardware aspects of our
testbed in more details, emphasizing the main differenaas bur previously-reported testbed
[34].

In our setup, we use two Pioneer 3-AT (P3-AT) mobile robotsmrMobileRobots Inc.
[35], each equipped with an onboard PC, and an IEEE 802.11gANY card. Each robot
can simultaneously follow a given path and take the cormedipg received signal strength

measurements (RSSI) as it moves. The data is then storedarslerred back to a laptop at
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the end of the operation.

A. Hardware Architecture

P3-AT mobile robots [35] are designed for indoor, outdoad eough-terrain implementations.
They feature an onboard PC104 and a Renesas SH7144-basedcontroller platform for
control of the motors, actuators and sensors. By utilizinG/@++ application programming
interface (API) library provided by MobileRobots, usere able to program and control the
robot via the micro-controller platform. Fig. 2 shows the-RB robot. We have furthermore
utilized directional antennas for better imaging resuhisorder to hold the directional antennas,
we have built an additional electromechanical fixture, aslwa seen from Fig. 2. This antenna
is rotated and positioned via a Hitec HA-7955TG digital semounted on the antenna fixture.
Via a serial port, PWM values are passed from the onboard #@i& Digilent Cerebot I
micro-controller on the side of the antenna frame. These PwWéiMeforms are then outputted
to the Hitec Servo, specifying a range of 0 - 180 degree ajie.use a GD24-15 2.4 GHz
parabolic grid antenna from Laird Technologies [36]. Thizd®l has a 15 dBi gain with 21 degree
horizontal and 17 degree vertical beamwidth and is suitdsléEEE 802.11 b/g applications.

Fig. 2. The figure shows a Pioneer 3-AT robot with the addéilyamounted servomechanism and a directional antenna.

One of the robots has a D-Link WBR-1310 wireless router agddo its antenna. It constantly
outputs a wireless signal for the other robot to measureigmakstrength. The overall operation

is overseen by a remote PC, which is in charge of passing iti@ jplan to the robots to execute,



15

and collecting the final signal strength readings at the drileooperation. A block diagram of
the hardware architecture of the robots is shown in Fig. &,iarsimilar to what we have used
in [34].

Remote Wireless
PC Router

Wireless
| Directional Mm
Antenna H“I 'mﬂm

Link
4
HiTec
H5-7955TG
Servo
Motor

Wireless | ..,
Link £

PC104
RS§-232

AVR-based
Servo Motor
Controller

Fig. 3. Block diagram of the hardware architecture of onehef iobots.

B. Software Architecture

The overall software architecture of our system can be sedtig. 4. The software system
is composed of two application layers, one running on a renRf to control the experiment
and one running on the robots themselves. The programs aeéoged in C++ using the ARIA
library developed by MobileRobots. They communicate via@PMP connection between the
robot-side application, which acts as the server, and thai&€ application, which acts as the
client. The remote PC is in charge of overseeing the wholeatipe and giving initial control
commands and route information to the robots. The user canifgpthe route information
involving the direction of movement, the length of the roated the coordinates of the starting
positions of the robots. While the overall software stroetis similar to our previous work [24],
significant changes are made in programming each block of &ighese changes enable a
different level of autonomy as compared to our previous wbhixt, we explain these changes

made in the software in more details.
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In order to synchronize all the operations - robot movemantenna alignment and signal
strength measurement, the robot execution is divided im0 $eparate in-software threads: the
antenna control thread, signal strength thread, motorrabtitread, and main thread, which
respectively control the antenna rotation, manage theingaaf the wireless signal strength,
operate the motor such as in driving forward, and send theabhvaommands. The main thread
initializes/finalizes other threads and communicates withremote PC. Before a route begins,
the main thread first creates the threads needed to run tlee oflerations and freezes their
operations using Mutex. It then receives the path inforomabf both robots from the remote
PC. This information is passed to the antenna control amiabstrength threads, where it will
be used to calculate when to read the signal strength, andtdoatate the antenna over the
route to keep the antennas on both robots aligned. Once ithaddh are properly initialized, the
path information is passed to the motor control thread torbége operation. The measurements
gathered by one robot will be stored on its PC and are traesfdrack to the remote PC at the
end of the operation. This is because any kind of TCP comnmatinit introduces unnecessary
delays in the code during the measurements. It is necessamgver, to be able to control the
robot movement and operation at all times from the remoterPé&ase of emergency. Therefore,
the code is designed to maximize the autonomy and precisitthre @peration, through threading,
while being able to shut down via remote control at any timieisTis achieved with the main

thread utilizing a polling approach.

C. Robot Positioning

Accurate positioning is considerably important as the tel@ed to constantly put a position
stamp on the locations where they collect the channel meamsnts and further align their
antennas based on the position estimates. In our setuploetsrutilize on-board gyroscopes and
wheel encoders to constantly estimate their positioneSme use a dead reckoning approach
to localize our robots, timing is very important to the a@ayr of position estimation. We thus
employ precise timers in software to help the robot deteeniis own position as well as the
position of the other robot based on the given speed. Moreifsgadly, when the motor control
thread begins its operation, timers are simultaneoustiated in all the threads, allowing them
to keep track of when and where they are in their operationso,Ahe threads’ Mutex are

released, allowing the robots to move and take measurements
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Fig. 4. Software architecture of the robot platform.

It is important to note that once the robots start a routeretie no communication or
coordination between them. Each robot constantly uses eéhesgeed and timer information
to estimate its own location as well as the location of theeottobot for antenna alignment
and measurement collection. Thus, all the measurementalaranents are naturally prone to
positioning errors. Currently, we use speeds up to 10 cm/sarple route is shown in Fig. 5
(see the 0 degree angle route, for instance). Our curreatization error is less than 2.5 cm
per one meter of straight line movement, and our currentidersd routes typically span 10
- 20 meters. Additionally, the robot also experiences at dirifm the given path. These robot
positioning errors will also result in antenna alignmentoes. In Section V, we discuss the

impact of both errors on our imaging results in details.

D. Robot Paths

So far, we have explained the hardware and software aspdtis experimental testbed. Next,
we briefly explain the routes that the robots would take. Mgpecifically, the transmitting and
receiving robots move outside &f, similar to how CT-scan is done, in parallel, along the lines
that have an anglé with the z-axis. This means that the line connecting the transmitter a
receiver would ideally (in the absence of positioning esyastay orthogonal to the line with
angled. Sample routes along and 45 degree angles are shown in Fig. 5. Both of the robots

move with a same velocity of 10 cm/s and take measurementyg 6\ sec (i.e., measurements



18

are taken with 2 cm resolution). As explained earlier, themo coordination between the robots
when traveling a route. To speed up the operation, we cuyrerdnually move the robots from
the end of one route to the beginning of another route. Thisgaen also be automated as part of
future work. Additionally, random wireless measuremeatserm we introduced in [24], where
the transmitter is stationary and the receiver moves alogiven line, can also be used. In
the next section, we only consider the case of parallel spuae shown in Fig. 5. Readers are
referred to [34] for more details and tradeoff analysis omgiparallel or random routes in the

context of LOS reception modeling.

Tx - Robot

Fig. 5. Sample routes for measurement collection are showfi &nd45 degree angles.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we show the results of see-through wall im@agvith Rytov wave approxi-
mation and further compare them with the state of the artliedased on LOS modeling. We

consider three different areas, as shown in Fig. 8, 9 andd®I¢ft). We name these cases as
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follows for the purpose of referencing in the rest of the papeshape, occluded cylinder, and
occluded two columns. Two robots move outside of the areanteirést and record the signal
strength. These measurements are then used to image teepmrding unknown regions using
both Rytov and LOS approaches, as described in Sectiondl. &i 9 and 10 further show
the horizontal cuts of these areas. In this paper, we onlgiden 2D imaging, i.e., imaging a
horizontal cut of the structure.

Fig. 6 shows a sample of the real measurement alon@ thegree line for the T-shape, with
the distance-dependent path loss component removed. Asomeah previously, the distance-
dependent path loss component does not contain any infmmabout the objects. Thus, by
making a few measurements in the same environment where #nerno objects between the
robots, it is estimated and removed. To compare how well tHeBWLOS modeling) and
Rytov approximations match the real measurements, thelaietureceived signal loss using
each approximation is plotted in Fig. 7 for the route alonghdegree angle for the occluded
cylinder structure. As can be seen, the Rytov approximati@iches the real measurement

considerably better than the LOS modeling.
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Fig. 6. Real received signal power along thalegree line for the T-shape, with the distance-dependetht Ipas component

removed.
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Fig. 7. Comparisons of the Rytov and LOS approximations lierroute along the 0 degree angle for the occluded cylinder. A
can be seen, the Rytov approximation matches the real neasut considerably better than the LOS modeling through WKB

approximation.

Our imaging results for the T-shape, the occluded cylindet the occluded two columns
are shown in Fig. 8, 9 and 10 respectively. For the T-shapettamaccluded cylinder, we have
measurements along four angled)pf0, 45, and135 degrees. For the occluded two columns we
have measurements along five angle$,090, 80, -10 and 10 degrees. The total measurements
thus amount to onh\20.12%, 4.7% and 2.6% for the T-shape, the occluded cylinder, and the
occluded two columns respectively. Fig. 8 (left) shows th&h@pe structure with its horizontal
cut marked. This horizontal cut, which is the true origimahge that the robots need to construct,
is an area 0f).64 m x 1.82 m, which results ir2912 unknowns to be estimated. Fig. 8 further
shows the imaging results with both Rytov and LOS for thisicitire. As can be seen, Rytov
provides a considerably better imaging quality, especielbund the edges. The reconstructions
after thresholding are also shown in Fig. 8, which uses tlo¢ tlaat we are interested in a
black/white image that indicates absence/presence ottsb{enore details on this will follow
soon).

Fig. 9 shows the imaging of the occluded cylinder. This aremterest is2.98 m x 2.98 m,
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amounting ta22201 unknowns to be estimated based on ohl§f% measurements. This structure
is more challenging than the T-shape to reconstruct becBuses fully behind thick brick walls,

and 2) it consists of materials with different propertieetat and brick). Similarly, we can see
that Rytov provides a better imaging result for this struetas well, with the details reconstructed

more accurately. Thresholded images are also shown.

Original Completely Unknown Area Reconstructed Image - Rytov Reconstructed Image - LOS
(0.64 m x 1.82 m) with 20.12% measurements with 20.12% measurements

v | i R |
E Horizontal [
§ Cut

-. -
434 cm|

Thresholded Image - Rytov Thresholded Image - LOS

Fig. 8. The left figures show the T-shape structure of intetteast is completely unknown and needs to be imaged, as well as
its horizontal cut (its dimension i8.64 m x 1.82 m). The white areas in the true image indicate that there ishject while

the black areas denote that there is nothing in those spoggiihg results based d@.12% measurements are shown for both
Rytov and LOS approaches. Sample dimensions of the origimdlthe reconstructed images are also shown. It can be saen th

Rytov provides a considerably better imaging result.

Fig. 10 shows the imaging of the occluded two columns. Thém af interest ist.56 m x
5.74 m (amounting to65436 unknowns) and is estimated only with6% WiFi measurements.
This structure is more challenging to image than both théape and the occluded cylinder
since 1) there are two columns close to each other, whichtsdsua higher multipath and other
propagation phenomena and, 2) smaller percentage of nemasnts are available for imaging
(half of that used for the occluded cylinder). The figure stdhe thresholded imaging results
as well. More specifically, any value above 40% and below 2G%he maximum value is
thresholded to the 40% and 20% values respectively (the shrasholding approach is used
for the past two areas). As can be seen from Fig. 10, the LO®agip fails to image this more
complex structure while Rytov can image it. From Fig. 8 andt $an be seen that imaging
based on LOS modeling can vaguely image the details. But toeroomplex areas such as Fig.

10, its performance becomes unacceptable while Rytov azatdahe objects fairly accurately.
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Original Completely Unknown Area
(298 mx2.98 m)

¥ Horizontal
cut

Reconstructed Image - Rytov Reconstructed Image - LOS
with 4.7% measurements with 4.7% measurements

» -y - -
'

‘.l I

Thresholded Image - Rytov Thresholded Image - LOS

Fig. 9. The left figures show the occluded cylinder strucofrenterest that is completely unknown and needs to be imaged
well as its horizontal cut (its dimension 2598 m x 2.98 m). The white areas in the true image indicate that there igbject
while the black areas denote that there is nothing in thosesspmaging results based dn7% measurements are shown for

both Rytov and LOS approaches. It can be seen that Rytovdas\va considerably better imaging result.

This signifies the importance of properly modeling the réioss.
In general, the computational complexity of our imaging raagh depends on the size of
the unknown area and the number of gathered measurementiseffuore, the utilized solver

typically converges faster if the model better matches #a measurements. Hence, we expect
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cut

Original Completely Unknown Area
(4.56 mx 5.74 m)

‘——_

4m

Thresholded Image - Rytov Thresholded Image - LOS
with 2.6 % measurements with 2.6 % measurements

Fig. 10. The top figures show the occluded two columns stracti interest that is completely unknown and needs to be
imaged, as well as its horizontal cut (its dimensionl.is6 m x 5.74 m). The white areas in the true image indicate that there
is an object while the black areas denote that there is mptinirihose spots. Imaging results based2di?%. measurements are
shown in the bottom figures for both Rytov and LOS approacBesnple dimensions are also shown. It can be seen that the

LOS approach fails to properly image the occluded objectdevRytov performs significantly better.

that the Rytov approach runs faster than LOS approach beazfugs better match with the
real measurement. We verify this on a desktop equipped w8lY &5Hz CPU. For the T-shape
with 4096 unknowns and:86 measurements, the Rytov approach takésseconds, while the
LOS approach takes.74 seconds. For the occluded cylinder witb201 unknowns andl 036

measurements, the Rytov approach také$1 seconds, while the LOS approach tak¥si4

seconds. For the occluded two columns inside W36 unknowns andl699 measurements,
the Rytov approach takesl.8 seconds, while the LOS approach takdsseconds. However, it

should be noted that Rytov also requires an offline calcutatif the Fr matrix for a given set
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of routes. This take8 minutes for the occluded cylinder structure for examplec®this matrix
is calculated, it can be used for any setup that uses the sautesr

Finally, we note that the measurements of the T-shape wdlectad with our past experimental
setup since we do not have access to this site anymore. Howeyexpect similar results with

our new experimental setup for this site, for the reasonsaex in Section V-A.

A. Effect of robot positioning and antenna alignment errors

As each robot travels a route autonomously and without ¢oatidn with the other robot or
positioning error correction, there will be non-negligilgositioning and antenna alignment errors
accumulated throughout the route. We next show the impatitesfe errors on our see-through
imaging performance.

Fig. 11 and 12 show the impact of localization and antenmgaient errors on Rytov and LOS
approaches respectively. More specifically, each figurepaoes experimental imaging results
of three cases with different levels of localization/am@ralignment errors. The most accurate
localization case was generated with our old setup wherd&iquag errors were corrected
every 1 m. The middle and right cases are both automated butotbot has different speeds,
which results in different positioning accuracy. In eaclsezathe positioning error leads to a
non-negligible antenna alignment error, the value of whgheported (as a % of the antenna
beamwidth). However, we can see that the combination of &atitnna alignment and positioning
errors, which are not negligible, has a negligible impactr@imaging result. This is due to the
fact that the main current bottleneck in see-through imgggnthe modeling of the receptions,
which is the main motivation for this paper. For instance was showed in Fig. 7, the gap
between the state of the art modeling (LOS) and the true tecepis huge, which we have
reduced considerably by a proper modeling of the recepiioiisis paper. However, the gap is
still non-negligible as compared to other sources of ersoh as robot positioning and antenna
alignment errors, as Fig. 11 and 12 confirm. It is needlessayotisat if these errors become
more considerable, they will inevitably start impacting ttesults. Thus, Fig. 11 and 12 imply
that with our current setup and the size of the areas we imegeds paper, the impact of robot

positioning and antenna alignment errors was negligiblewnresults.
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(a) Length of the Route =4.88 m (b) Length of the Route =4.88 m (c) Length of the Route =4.88 m

Accumulated robot positioning Accumulated robot positioning Accumulated robot positioning
error of the route = 2 cm error of the route = 18.7 cm error of the route = 22.36 cm
Antenna alignment error = 0% Antenna alignment error = 9.5% Antenna alignment error = 27%

Fig. 11. The figure shows the effect of robot positioning angtana alignment errors on imaging based on Rytov apprdima

It can be seen that they have negligible impact.

(a) Length of the Route =4.88 m (b) Length of the Route =4.88 m (c) Length of the Route = 4.88 m

Accumulated robot positioning Accumulated robot positioning Accumulated robot positioning
error of the route = 2 cm error of the route = 18.7 cm error of the route =22.36 cm
Antenna alignment error = 0% Antenna alignment error = 9.5% Antenna alignment error = 27%

Fig. 12. The figure shows the effect of robot positioning anteana alignment errors on imaging based on LOS modeling. It

can be seen that they have negligible impact.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have considered the problem of high-résolimaging through walls, with

only WiFi signals, and its automation with unmanned velsic\e have developed a theoretical
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framework for this problem based on Rytov wave models, gpsignal processing, and robotic
path planning. We have furthermore validated the propoppdoach on our experimental robotic
testbed. More specifically, our experimental results héaeve high-resolution imaging of three
different areas based on only a small number of WiFi measemés0.12%, 4.7% and2.6%).
Moreover, they showed considerable performance improweroeer the state-of-the-art that
only considers the Line Of Sight path, allowing us to imagerencomplex areas not possible
before. Finally, we showed the impact of robot positioningl @antenna alignment errors on our
see-through imaging framework. Overall, the paper addseesse of the main bottlenecks of
see-through imaging, which is the proper modeling of theepéons. Further improvement to
the modeling, while maintaining a similar computationaigexity, is among future directions
of this work.
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APPENDIX

Born Approximation: Consider the case of weak scatterers, where the electrpegres of
the objects inD are close to free space, i.e(r) is close toe,. In the Born approximation,
this assumption is used to approximate the electric fieltlenthe integral of (5) withZ7 . (r),

resulting in the following approximation:
E(r) = Eielo) + ||| Goatr) 00 Bl @7)
D

The validity of the Born approximation is established by dimgional analysis in (5) and it is
accurate at high frequencies, only if

koLd.(r) « 1, for all r € D,

Born approximation is a theory of single scattering, whetbe multiple scattering due to object

inhomogeneities is neglected.
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