
1

X-Ray Vision with Only WiFi Power

Measurements Using Rytov Wave Models

Saandeep Depatla, Lucas Buckland and Yasamin Mostofi

Abstract

In this paper, unmanned vehicles are tasked with seeing a completely unknown area behind thick

walls based on only wireless power measurements using WLAN cards. We show that a proper mod-

eling of wave propagation that considers scattering and other propagation phenomena can result in

a considerable improvement in see-through imaging. More specifically, we develop a theoretical and

experimental framework for this problem based on Rytov wavemodels, and integrate it with sparse

signal processing and robotic path planning. Our experimental results show high-resolution imaging of

three different areas, validating the proposed framework.Moreover, they show considerable performance

improvement over the state-of-the-art that only considersthe Line Of Sight (LOS) path, allowing us to

image more complex areas not possible before. Finally, we show the impact of robot positioning and

antenna alignment errors on our see-through imaging framework.

I. INTRODUCTION

Passive device-free localization and mapping of objects inan environment has recently re-

ceived considerable attention. There are several potential applications for such approaches, from

location-aware services, to search and rescue, and roboticnetworks.

A survey of the related literature indicates that localization and mapping has been investigated

by three different communities. More specifically, in the networking community, both device-

based and device-free localization based on RF signals havebeen explored, typically in the

context of tracking human motion [1]–[7]. However, in most these setups, either the object of
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interest is not occluded or the information of the first layerof occluder is assumed known.

Furthermore, most focus has been on motion tracking and not on high-resolution imaging. In

robotics, localization and mapping of objects is crucial toproper navigation. As such, several

work, such as Simultaneous Localization and Mapping (SLAM), has been developed for mapping

based on laser scanner measurements [8]–[11]. However, in these approaches, mapping of

occluded objects is not possible. For instance, in [12], some information of the occluded objects

is first obtained with radar and then utilized as part of robotic SLAM.

In the electromagnetic community, there has been interest in solving an inverse scattering

problem [13], i.e., deducing information about objects in an environment based on their impact

on a transmitted electromagnetic wave [14]–[16]. For instance, remote sensing to detect oil

reserves beneath the surface of the earth is one example [17]. Traditional medical imaging based

on X-ray also falls into this category [13]. There has also been a number of work on using

a very general wave propagation model for inverse scattering, such as Distorted Born Iterative

method [14], contrast source inversion method [18], and stochastic methods [19]. However, the

computational complexity of these approaches makes it prohibitive for high-resolution imaging

of an area of a reasonable size. Furthermore, most such approaches utilize bulky equipments,

which makes their applicability limited.

In this paper, we are interested in high-resolution see-through imaging of a completely un-

known area, based on only WiFi measurements, and its automation with unmanned vehicles.

With the advent of WiFi signals everywhere, this sensing approach would make our framework

applicable to several indoor or outdoor scenarios. The use of robotic platforms further allows for

autonomous imaging. However, the overall problem of developing an autonomous system that

can see everything through walls is considerably challenging due to three main factors: 1) proper

wave modeling is crucial but challenging; 2) the resulting problem is severely under-determined,

i.e., the number of measurements typically amount to only a few percentage of the number of

unknowns; and 3) robot positioning is prone to error, addingadditional source of uncertainty to

the imaging. In our past work [20], [21], we have shown that seeing through walls and imaging

a completely unknown area is possible with only WiFi signals. However, we only considered

the Line of Sight (LOS) path and the impact of the objects along this path when modeling

the receptions. A transmitted WiFi signal will experience several other propagation phenomena

such as scattering that an LOS model can not embrace. This canthen result in a significant gap
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between the true receptions (RF sensed values) and the way they were modelled (see Fig. 7 for

instance), and is one of the main bottlenecks of the state of the art in RF sensing.

Thus,the first contribution of this paperis to address this bottleneck and enable see-through

imaging of more complex areas not possible before. In order to do so, we have to come up

with a way of better modeling the receptions to achieve a leapin the imaging results, while

maintaining a similar computational complexity. If we takethe modeling approaches of the

communication/networking literature, the term multipathis typically used to describe propagation

phenomena beyond the LOS path. However, the modeling of multipath in these literature, which

is done via probabilistic approaches or ray tracing, is not suitable for high-resolution detailed

imaging through walls. In this paper, we then tap into the wave propagation literature to model

the induced electric field over the whole area of interest andinclude the impact of objects that

are not directly on the LOS path. While Maxwell’s equations can accurately model the RF

sensed values, it is simply not feasible to start with that level of modeling. A further tapping

into the wave literature then shows several possible approximations to Maxwell’s equations.

In this paper, we show that modeling the receptions based on Rytov wave approximation can

make a significant improvement in the see-through imaging results. Rytov approximation is

a linearizing wave approximation model, which also includes scattering effects [13]. While it

has been discussed in the electromagnetic literature in thecontext of inverse scattering [13],

[22], [23], there are no experimental results that show its performance for see through imaging,

especially at WiFi frequencies. In this paper, it is therefore our goal to build on our previous

work and significantly extend our sensing model based on Rytov wave approximation.

The second contribution of this paperis on achieving a higher level of automation. More

specifically, in [24], the two robots had to constantly coordinate their positioning and antenna

alignment, and their positioning errors were manually corrected several times in a route (e.g.

every 1 m). In this paper, each robot travels a route (see definition in Section IV ) autonomously

and without any coordination with the other robot or positioning error correction. It is therefore

feasible to collect measurements much faster, reducing theexperiment time from several hours

to a few minutes. However, this comes at the cost of non-negligible errors in robot positioning

and antenna alignment, the impact of which we discuss and experimentally validate in Section

V.

Finally, the last contribution of this paperis to show that two robots can see through walls
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and image an area with a higher level of complexity, which wasnot possible before. More

specifically, we integrate modeling of the receptions, based on Rytov approximation, with sparse

signal processing (utilized in our past work for RF imaging)and robotic path planning and show

how a considerable improvement in imaging quality can be achieved. We experimentally validate

this by successfully imaging three different areas, one of which can not be imaged with the state

of the art while the two others show a considerable improvement in imaging quality.

The rest of the paper is organized as follows. In Section II, we mathematically formulate

our imaging problem based on Rytov wave approximation. In Section III, we pose the resulting

optimization problems and discuss how to solve them based ontotal variation minimization.

In Section IV, we introduce the hardware and software structures of our current experimental

robotic platform, which allows for more autonomy in WiFi measurement collection. In Section

V, we then present our imaging results of three different areas and show the impact of robot

positioning and antenna alignment errors. We conclude in Section VI.

II. PROBLEM FORMULATION

Consider a completely unknown workspaceD Ă R
3. Let Dout be the complement ofD, i.e.,

Dout “ R
3zD. We consider a scenario where a group of robots inDout are tasked with imaging

the areaD by using only WiFi. In other words, the goal is to reconstructD, i.e., to determine the

shapes and locations of the objects inD based on only a small number of WiFi measurements.

We are furthermore interested in see-through imaging, i.e., the area of interest can have several

occluded parts, like parts completely behind concrete walls and thus invisible to any node outside.

Fig. 1 shows an example of our considered scenario. The red superimposed volume marks the

area that the two unmanned vehicles are interested in imaging but that is completely unknown

to them. The area has several occluded parts, such as the parts blocked by the outer concrete

wall, which is highly attenuating. Note that both empty and full spaces inside the red volume

as well as its outer surfaces are all unknown to the robots andneed to be imaged. The robots

only have WiFi for imaging. As the robots move outside ofD, one robot measures the received

signal power from the transmissions of the other robot. The unknown areaD then interacts with

each transmission, as dictated by the locations and properties of its objects, leaving its impact

on each reception. The robots then need to image the structure based on all the receptions.
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volume D 

Fig. 1. Two robots are tasked with imaging the unknown areaD that is marked with the red superimposed volume, which

involves seeing through walls, based on only a small number of WiFi measurements. Note that this figure is generated for

illustrative purposes. For a true snapshot of the robots in operation, see Fig. 9.

In this section, we start with the volume integral wave equation and discuss how it can be

linearized and solved under certain assumptions, developing the system models that we shall

utilize later for our imaging. The readers are referred to [13], [25] for more details on the wave

propagation modeling.

A. Volume Integral Equations[13]

Let Eprq be the electric field,Jprq be the current density,ǫprq be the electric permittivity,

andµprq be the magnetic permeability atr P R
3, wherer is the position vector in the spherical

coordinates.1 Then, we have the following volume integral equation relating the electric field to

the current source and objects inD [13]

Eprq “ jωµ0

¡

R3

~Gpr, r1q ‚ Jpr1q dv1 `

¡

R3

~Gpr, r1q ‚ pOpr1qEpr1qq dv1, (1)

1Throughout the paper, single-frequency operation is assumed and all the materials are considered isotropic and non-magnetic,

i.e., µprq “ µ0, for all r P R
3, whereµ0 is the permeability of the freespace.
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where ~Gpr, r1q is the dyadic Green’s function given by

~Gpr, r1q “

ˆ

I `
∇∇

k20

˙

gpr, r1q, (2)

gpr, r1q “
ejk0|r´r1|

4π|r ´ r1|
, (3)

Oprq “ k2prq ´ k20 denotes the material property of the object at positionr , k20 “ ω2ǫ0µ0

denotes the wavenumber of the free space,2 k2prq “ ω2µ0ǫprq denotes the wavenumber of the

medium atr, ǫ0 andµ0 are the permittivity and permeability of the free space respectively,ω

is the angular frequency, and‚ denotes the vector dot product. The robots are then interested

in learningOprq, for r P D, as it carries the information of the location/material property of

the objects in the workspace. Note that (1) is valid for any inhomogeneous, isotropic, and non-

magnetic media. Also,OprqEprq is the equivalent current induced in the object atr. This induced

current in turn produces an electric field. The total field is then the sum of the electric field due

to the current in the transmit antenna, the first term on the right hand side (RHS) of (1), and

the electric field due to the induced current in the objects (the second term on the RHS of (1)).

First, we start by assuming free space inDout. Then, ǫprq “ ǫ0, for r P Dout, resulting in

k2prq “ k20 andOprq ” 0, for r P Dout. When there are no objects inD, we havek2prq “ k20

andOprq ” 0, for all r P R
3, and the second term on the RHS of (1) vanishes. This means

that the first term is the incident field when there are no objects in D and the second term is

the result of scattering from the objects inD. By denoting the first term on the RHS of (1) as

Eincprq, we then get

Eprq “ Eincprq `

¡

D

~Gpr, r1q ‚ pOpr1qEpr1qq dv1, (4)

where ~Gpr, r1q is a second-order tensor and can be represented as the following 3ˆ 3 matrix in

the Cartesian coordinates:

~Gpr, r1q “

»

—

—

—

–

Gxxpr, r1q Gxypr, r
1q Gxzpr, r

1q

Gyxpr, r1q Gyypr, r
1q Gyzpr, r

1q

Gzxpr, r1q Gzypr, r
1q Gzzpr, r

1q

fi

ffi

ffi

ffi

fl

.

2In this paper, free space refers to the case where there is no object.
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In reality, there will be objects inDout. Then,Einc denotes the field when there are no objects

in D.3 Without loss of generality, we assume that the transceiver antennas are linearly polarized

in the z-direction. This means that we only need to calculate thez-component of the electric

field, which depends on the last row of~Gpr, r1q. Let Jeqprq “ rJxeq J
y
eq J

z
eqs

T “ OprqEprq. We

further assume near-zero cross-polarized componentsJxeq andJyeq and takeJeqprq ≅ r0 0 Jzeqs
T .

This approximation is reported to have a negligible effect [26]. By using this approximation in

(4) and only taking thez-component, we get the following scalar equation:

Ezprq “ Ez
incprq `

¡

D

Gzzpr, r
1qOpr1qEzpr1q dv1, (5)

whereEzprq andEz
incprq are thez-components ofEprq andEincprq, respectively.

B. Linearizing Approximations

In (5), the received electric fieldEzprq is a non-linear function of the object functionOprq,

sinceEzpr1q inside the integral also depends onOprq. This nonlinearity is due to the multiple

scattering effect in the object region [25]. Thus, we next use approximations that make (5) linear

and easy to solve under the setting of sparse signal processing.

1) Line Of Sight-Based Modeling [13], [20]:A simple way of modeling the receptions is to

only consider the LOS path from the transmitter to the receiver and the impact of the objects

on this path. This model has been heavily utilized in the literature due to its simplicity [20].

However, it results in a considerable modeling gap for see-through imaging since it does not

include important propagation phenomena such as scattering. In this part, we summarize the

LOS model in the context of wave equations.

At very high frequencies, such as in X-ray, the wave can be assumed to travel in straight lines

with negligible reflections and diffractions along its path[13]. Then, the solution to (5) is given

as follows by using Wentzel Kramers Brillouin (WKB) approximation,4

Eprq “
c

a

αprq
e
jω

ş

LTÑR
αpr1q dr1

, WKB Approximation (6)

3In our experiments, we will not have access to the exact incident field when there is nothing inD. Thus, the two robots

make a few measurements inDout where there are no objects in between them to estimate and remove the impact ofEinc. If the

robots have already imaged parts ofDout, that knowledge can be easily incorporated to improve the performance.

4Here, the field is along thez-direction, as explained before. From this point on, superscript z is dropped for notational

convenience.
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whereαprq is a complex number that represents the slowness of the medium at r and is related

to kprq,
ş

LTÑR
is a line integral along the line joining the positions of thetransmitter and the

receiver, andc is a constant that depends on the transmitted signal power.

It can be seen that the loss incurred by the ray is linearly related to the objects along that path,

resulting in a linear relationship between the received power and the objects, as we shall see.

This approximation is the base for X-ray tomography [27]. However, the underlying assumption

of this method is not valid at lower frequencies, like microwave frequencies, due to the non-

negligible diffraction effects [28]. In [20], [21], we proposed a see-through wall RF-based

imaging framework based on this approximation. In this paper, our goal is use a considerably

more comprehensive modeling of the receptions (which has been a bottleneck in see-through

imaging) by tapping into the wave literature. We show that byaddressing the modeling of the

receptions through using Rytov wave approximation, we can image areas not possible before.

2) Rytov Approximation [13]:In general, the field inside any inhomogeneous media can be

expressed as

Eprq “ ejψprq, (7)

and satisfies

r∇2 ` k2prqsEprq “ 0, (8)

whereψprq is a complex phase term. It can then be shown that the solutionto (8) can be

approximated as follows:

Eprq “ Eincprqejφprq, Rytov Approximation (9)

where

φprq “
´j

Eincprq

¡

D

gpr, r1qOpr1qEincpr
1q dv1. (10)

The validity of Rytov approximation is established by dimensional analysis in [13] and is accurate

at high frequencies,5 if

δǫprq
△
“
ǫprq

ǫ0
´ 1 ! 1,

5Throught this paper, high frequency refers to the frequencies at which the size of inhomogeneity of objects is much larger

than the wavelength.
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whereδǫprq is the normalized deviation of the electric permittivity from the free space. At lower

frequencies, the condition for validity of the Rytov approximation becomes

pk0Lq2δǫprq ! 1,

whereL is the order of the dimension of the objects. In our case, witha frequency of 2.4 GHz

andL of the order of 1 m, we satisfy the condition of high frequency, except at the boundaries

of the objects, where there are abrupt changes in the material.

For the sake of completion, a more commonly-used linearizing approximation, called Born

approximation, is summarized in the appendix. Rytov approximation is reported to be more

relaxed than the Born approximation at higher frequencies [13]. Also, Rytov approximation

lends itself to a simple linear form, when we only know the magnitude of the received electric

field, as described next. Thus, in this paper, we focus on Rytov wave modeling.

C. Intensity-Only Rytov Approximation

In the aforementioned equations, both magnitude and phase of the received field are needed.

In this paper, however, we are interested in imaging based ononly the received signal power.

Then, by conjugating (9), we get

E˚prq “ E˚
incprqe´jφ˚prq. (11)

From (9) and (11), we then have

|Eprq|2 “ |Eincprq|2e´2Imagpφprqq, (12)

where Imagp.q and|.| denote the imaginary part and the magnitude of the argument,respectively.

Since the received power6 is proportional to the square of the magnitude of the received field,

we have the following equation by taking logarithms on both sides of (12):

PrprqpdBmq “ PincprqpdBmq ` 10 log10pe´2qImagpφprqq, (13)

wherePrprqpdBmq “ 10 log10

´

|Eprq|2

120πˆ10´3

¯

is the received power in dBm atr, andPincprqpdBmq “

10 log10

´

|Eincprq|2

120πˆ10´3

¯

is the power incident in dBm atr when there are no objects.

6This is the received power by an isotropic antenna. For a directional antenna, this should be multiplied by the gain of the

antenna.
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To solve (12) for objectOprq, we discretizeD into N equal-volume cubic cells. The position

of each cell is represented by its center position vectorrn, for n P t1, 2, ¨ ¨ ¨ , Nu. The electric

field and the object properties are assumed to be constant within each cell. We then have

Oprq “
N
ÿ

n“1

OprnqCn, (14)

Eincprq “
N
ÿ

n“1

EincprnqCn, (15)

wherer, rn P D, Cn is a pulse basis function which is one inside celln and zero outside. By

substituting (14) and (15) into (10), we get

φprq “
´j

Eincprq

N
ÿ

n“1

OprnqEincprnq

¡

Vn

gpr, r1q dv1

≅
´j

Eincprq

N
ÿ

n“1

gpr, rnqOprnqEincprnq∆V, (16)

where
¡

Vn

gpr, r1q dv1
≅ gpr, rnq∆V, (17)

Vn is thenth cell and∆V is the volume of each cell. Note thatCn is not included in (16) since

we are evaluating the integral inside celln whereCn is one.

Let ppi,qiq, for pi,qi P Dout, denote the transmitter and receiver position pair where the ith

measurement is taken. Also, letΦ “ rφp1
pq1q φp2

pq2q ¨ ¨ ¨φpM
pqMqsT , whereM is the number

of measurements,φpi
pqiq “ ´j

Einc,pi
pqiq

řN

n“1 gpqi, rnqOprnqEinc,pi
prnq∆V , andEinc,pi

prnq is the

incident field atrn when the transmitter is atpi. Then, we have

Φ “ ´jF O, (18)

whereF is anMˆN matrix withFi,j “
gpqi,rjqEinc,pi

prjq∆V

Einc,pi
pqiq

andO “ rOpr1q Opr2q ¨ ¨ ¨ OprNqsT .

Using (13) for each measurement and stacking them together,we get

Pryt “ ImagpΦq, (19)

wherePryt “ PrpdBmq´PincpdBmq
10 log10pe´2q

,PrpdBmq “ rPr,p1
pq1qpdBmq Pr,p2

pq2qpdBmq ¨ ¨ ¨ Pr,pM
pqMqpdBmqsT ,

PincpdBmq “ rPinc,p1
pq1qpdBmq Pinc,p2

pq2qpdBmq ¨ ¨ ¨ Pinc,pM
pqMqpdBmqsT , andPr,pi

pqiqpdBmq
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andPinc,pi
pqiqpdBmq are the received power and incident power corresponding to the transmitter

and receiver pairppi,qiq, respectively. Using (18) and (19), we get

Pryt “ RealpFOq “ FROR ` FIOI, (20)

where Realp.q is the real part of the argument, andFR, FI, OR andOI are the real part ofF ,

imaginary part ofF , real part ofO, and imaginary part ofO, respectively. This can be further

simplified by noting thatFROR " FIOI [29]. Therefore, the above equation becomes

Pryt ≅ FROR, (21)

which is what we shall use for our RF-based robotic imaging.

D. Intensity-Only LOS Approximation

Starting from (6) and following similar steps to the intensity-only Rytov approximation, we

get:

PrprqpdBmq “PincprqpdBmq ´ 10 log10pe´2qω

ż

LTÑR

Imagpαpr1qq dr1, (22)

where the integration is the line integral along the line joining the positions of the transmitter

and receiver, andr is the position of the receiver. DenotingPLOS “ PrpdBmq´PincpdBmq
10 log10pe´2q

and stacking

M measurements together, we have

PLOS “ AΓ, (23)

whereA is a matrix of sizeM ˆ N with its entryAi,j “ 1 if the j th cell is along the line

joining the transmitter and receiver of theith measurement, andAi,j “ 0 otherwise,Γ “

rαIpr1q αIpr2q ¨ ¨ ¨αIprNqsT , andαIp.q “ Imagpαp.qq.

Equation (23) is what we then utilize in our setup when showing the performance of the state

of the art.

III. B RIEF OVERVIEW OF SPARSE SIGNAL PROCESSING [30]

In the formulations of the Rytov and LOS approximations in Section II, we have a system of

linear equations to solve for each approach. However, the system is severely underdetermined

as the number of wireless measurements typically amount to asmall percentage of the number

of unknowns. More specifically, letx P R
N be a general unknown signal,y P R

M be the
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measurement vector, andy “ Bx be the observation model, whereB is anM ˆN observation

matrix. We consider the case whereN " M , i.e., the number of unknowns is much larger than

the number of measurements. Thus, it is a severely underdetermined problem which cannot be

solved uniquely forx giveny. In this section, we briefly summarize how sparse signal processing

can be utilized to solve this problem.

Supposex can be represented as a sparse vector in another domain as follows:x “ ΘX, where

Θ is an invertible matrix andX is S-sparse, i.e., cardpsupppXqq ! N , where cardp.q denotes the

cardinality of the argument and suppp.q denotes the set of indices of non-zero elements of the

argument. Then, we havey “ KX, whereK “ BΘ andX has a much smaller number of the

non-zero elements thanx. In general, the solution to the above problem is obtained bysolving

the following non-convex combinatorial problem:

minimize }X}0, subject to y “ KX. (24)

Since solving (24) is computationally-intensive and impractical, considerable research has been

devoted towards developing approximated solutions for (24).

In our case, we are interested in imaging and localization ofthe objects in an area. Spatial

variations of the objects in a given area are typically sparse. We thus take advantage of the

sparsity of the spatial variations to solve our under-determined system.7 More specifically, let

R “ rRi,js denote anmˆ n matrix that represents the unknown space. Since we are interested

in the spatial variations ofR, let

Dh,i,j “

$

&

%

Ri`1,j ´ Ri,j if 1 ď i ă m,

Ri,j ´ R1,j if i “ m,
and Dv,i,j “

$

&

%

Ri,j`1 ´ Ri,j if 1 ď j ă n,

Ri,j ´ Ri,1 if j “ n.

Then, the Total Variation (TV) ofR is defined as:

TVpRq “
ÿ

i,j

}Di,jpRq}, (25)

where Di,jpRq “ rDh,i,j Dv,i,js, and}.} can represent eitherl1 or l2 norm. TV minimization then

solves the following convex optimization problem:

minimize TVpRq, subject to y “ KX. (26)

7It is also possible to solve anl1 convex relaxation of (24). However, our past analysis has indicated a better performance

with spatial variation minimization [20].
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In the context of the current problem formulation,X represents the object mapD, R represents

the spatial variations ofX, K represents the observation model, i.e.,K “ FR for the Rytov

approach andK “ A for the LOS approach, andy represents the received power (after removing

path loss). In solving (26),l1 or l2 norm results in a similar reconstruction [31]. Thus, unless

otherwise stated, all results of this paper are based onl1 norm.

To solve the general compressive sensing problem of (26) robustly and efficiently, TVAL3

(TV Minimization by Augmented Lagrangian and Alternating Direction Algorithms) is proposed

in [32]. TVAL3 is a MATLAB-based solver that solves (26) by minimizing the augmented

Lagrangian function using an alternating minimization scheme [33]. The augmented Lagrangian

function includes coefficients which determine the relative importance of the terms TV(R) and

}y´KX} in (26). The readers are referred to [32] for more details on TVAL3. We use TVAL3

for all the experimental results of this paper.

IV. EXPERIMENT SETUP

In this section, we briefly describe our enabling experimental testbed. As compared to our past

testbed (results of which with an LOS modeling of the receptions were reported in the literature),

in our current setup, the robots can take channel measurements over a given route autonomously,

and without any coordination between themselves or stopping. More specifically, in [24], the

two robots had to constantly stop and coordinate their positioning and antenna alignment, and

their positioning errors were manually corrected a few times in a route (e.g. every 1 m). In

this paper, each robot travels a route autonomously and without any coordination with the other

robot or positioning error correction. It is therefore feasible to collect measurements much faster,

reducing the experiment time from several hours to a few minutes. However, this comes at the

cost of non-negligible errors in robot positioning and antenna alignment, as we discuss later

in the paper. In the rest of this section, we describe the software and hardware aspects of our

testbed in more details, emphasizing the main differences from our previously-reported testbed

[34].

In our setup, we use two Pioneer 3-AT (P3-AT) mobile robots from MobileRobots Inc.

[35], each equipped with an onboard PC, and an IEEE 802.11g (WLAN) card. Each robot

can simultaneously follow a given path and take the corresponding received signal strength

measurements (RSSI) as it moves. The data is then stored and transferred back to a laptop at
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the end of the operation.

A. Hardware Architecture

P3-AT mobile robots [35] are designed for indoor, outdoor, and rough-terrain implementations.

They feature an onboard PC104 and a Renesas SH7144-based micro-controller platform for

control of the motors, actuators and sensors. By utilizing aC/C++ application programming

interface (API) library provided by MobileRobots, users are able to program and control the

robot via the micro-controller platform. Fig. 2 shows the P3-AT robot. We have furthermore

utilized directional antennas for better imaging results.In order to hold the directional antennas,

we have built an additional electromechanical fixture, as can be seen from Fig. 2. This antenna

is rotated and positioned via a Hitec HA-7955TG digital servo mounted on the antenna fixture.

Via a serial port, PWM values are passed from the onboard PC104 to a Digilent Cerebot II

micro-controller on the side of the antenna frame. These PWMwaveforms are then outputted

to the Hitec Servo, specifying a range of 0 - 180 degree angle.We use a GD24-15 2.4 GHz

parabolic grid antenna from Laird Technologies [36]. This model has a 15 dBi gain with 21 degree

horizontal and 17 degree vertical beamwidth and is suitablefor IEEE 802.11 b/g applications.

Fig. 2. The figure shows a Pioneer 3-AT robot with the additionally-mounted servomechanism and a directional antenna.

One of the robots has a D-Link WBR-1310 wireless router attached to its antenna. It constantly

outputs a wireless signal for the other robot to measure the signal strength. The overall operation

is overseen by a remote PC, which is in charge of passing the initial plan to the robots to execute,
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and collecting the final signal strength readings at the end of the operation. A block diagram of

the hardware architecture of the robots is shown in Fig. 3, and is similar to what we have used

in [34].

Fig. 3. Block diagram of the hardware architecture of one of the robots.

B. Software Architecture

The overall software architecture of our system can be seen in Fig. 4. The software system

is composed of two application layers, one running on a remote PC to control the experiment

and one running on the robots themselves. The programs are developed in C++ using the ARIA

library developed by MobileRobots. They communicate via a TCP/IP connection between the

robot-side application, which acts as the server, and the PC-side application, which acts as the

client. The remote PC is in charge of overseeing the whole operation and giving initial control

commands and route information to the robots. The user can specify the route information

involving the direction of movement, the length of the routeand the coordinates of the starting

positions of the robots. While the overall software structure is similar to our previous work [24],

significant changes are made in programming each block of Fig. 4. These changes enable a

different level of autonomy as compared to our previous work. Next, we explain these changes

made in the software in more details.



16

In order to synchronize all the operations - robot movement,antenna alignment and signal

strength measurement, the robot execution is divided into four separate in-software threads: the

antenna control thread, signal strength thread, motor control thread, and main thread, which

respectively control the antenna rotation, manage the reading of the wireless signal strength,

operate the motor such as in driving forward, and send the overall commands. The main thread

initializes/finalizes other threads and communicates withthe remote PC. Before a route begins,

the main thread first creates the threads needed to run the other operations and freezes their

operations using Mutex. It then receives the path information of both robots from the remote

PC. This information is passed to the antenna control and signal strength threads, where it will

be used to calculate when to read the signal strength, and howto rotate the antenna over the

route to keep the antennas on both robots aligned. Once the threads are properly initialized, the

path information is passed to the motor control thread to begin the operation. The measurements

gathered by one robot will be stored on its PC and are transferred back to the remote PC at the

end of the operation. This is because any kind of TCP communication introduces unnecessary

delays in the code during the measurements. It is necessary,however, to be able to control the

robot movement and operation at all times from the remote PC in case of emergency. Therefore,

the code is designed to maximize the autonomy and precision of the operation, through threading,

while being able to shut down via remote control at any time. This is achieved with the main

thread utilizing a polling approach.

C. Robot Positioning

Accurate positioning is considerably important as the robots need to constantly put a position

stamp on the locations where they collect the channel measurements and further align their

antennas based on the position estimates. In our setup, our robots utilize on-board gyroscopes and

wheel encoders to constantly estimate their positions. Since we use a dead reckoning approach

to localize our robots, timing is very important to the accuracy of position estimation. We thus

employ precise timers in software to help the robot determine its own position as well as the

position of the other robot based on the given speed. More specifically, when the motor control

thread begins its operation, timers are simultaneously initiated in all the threads, allowing them

to keep track of when and where they are in their operations. Also, the threads’ Mutex are

released, allowing the robots to move and take measurements.
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Fig. 4. Software architecture of the robot platform.

It is important to note that once the robots start a route, there is no communication or

coordination between them. Each robot constantly uses the set speed and timer information

to estimate its own location as well as the location of the other robot for antenna alignment

and measurement collection. Thus, all the measurements andalignments are naturally prone to

positioning errors. Currently, we use speeds up to 10 cm/s. Asample route is shown in Fig. 5

(see the 0 degree angle route, for instance). Our current localization error is less than 2.5 cm

per one meter of straight line movement, and our current considered routes typically span 10

- 20 meters. Additionally, the robot also experiences a drift from the given path. These robot

positioning errors will also result in antenna alignment errors. In Section V, we discuss the

impact of both errors on our imaging results in details.

D. Robot Paths

So far, we have explained the hardware and software aspects of the experimental testbed. Next,

we briefly explain the routes that the robots would take. Morespecifically, the transmitting and

receiving robots move outside ofD, similar to how CT-scan is done, in parallel, along the lines

that have an angleθ with the x-axis. This means that the line connecting the transmitter and

receiver would ideally (in the absence of positioning errors) stay orthogonal to the line with

angleθ. Sample routes along0 and 45 degree angles are shown in Fig. 5. Both of the robots

move with a same velocity of 10 cm/s and take measurements every 0.2 sec (i.e., measurements
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are taken with 2 cm resolution). As explained earlier, thereis no coordination between the robots

when traveling a route. To speed up the operation, we currently manually move the robots from

the end of one route to the beginning of another route. This part can also be automated as part of

future work. Additionally, random wireless measurements,a term we introduced in [24], where

the transmitter is stationary and the receiver moves along agiven line, can also be used. In

the next section, we only consider the case of parallel routes, as shown in Fig. 5. Readers are

referred to [34] for more details and tradeoff analysis on using parallel or random routes in the

context of LOS reception modeling.
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RX Route - 0 degRX Route - 0 degRX Route - 0 deg
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eg

Fig. 5. Sample routes for measurement collection are shown for 0 and45 degree angles.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we show the results of see-through wall imaging with Rytov wave approxi-

mation and further compare them with the state of the art results based on LOS modeling. We

consider three different areas, as shown in Fig. 8, 9 and 10 (top-left). We name these cases as
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follows for the purpose of referencing in the rest of the paper: T-shape, occluded cylinder, and

occluded two columns. Two robots move outside of the area of interest and record the signal

strength. These measurements are then used to image the corresponding unknown regions using

both Rytov and LOS approaches, as described in Section II. Fig. 8, 9 and 10 further show

the horizontal cuts of these areas. In this paper, we only consider 2D imaging, i.e., imaging a

horizontal cut of the structure.

Fig. 6 shows a sample of the real measurement along the0 degree line for the T-shape, with

the distance-dependent path loss component removed. As mentioned previously, the distance-

dependent path loss component does not contain any information about the objects. Thus, by

making a few measurements in the same environment where there are no objects between the

robots, it is estimated and removed. To compare how well the WKB (LOS modeling) and

Rytov approximations match the real measurements, the simulated received signal loss using

each approximation is plotted in Fig. 7 for the route along the 0 degree angle for the occluded

cylinder structure. As can be seen, the Rytov approximationmatches the real measurement

considerably better than the LOS modeling.
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Fig. 6. Real received signal power along the0 degree line for the T-shape, with the distance-dependent path loss component

removed.
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Fig. 7. Comparisons of the Rytov and LOS approximations for the route along the 0 degree angle for the occluded cylinder. As

can be seen, the Rytov approximation matches the real measurement considerably better than the LOS modeling through WKB

approximation.

Our imaging results for the T-shape, the occluded cylinder and the occluded two columns

are shown in Fig. 8, 9 and 10 respectively. For the T-shape andthe occluded cylinder, we have

measurements along four angles of0, 90, 45, and135 degrees. For the occluded two columns we

have measurements along five angles of0, 90, 80, -10 and10 degrees. The total measurements

thus amount to only20.12%, 4.7% and 2.6% for the T-shape, the occluded cylinder, and the

occluded two columns respectively. Fig. 8 (left) shows the T-shape structure with its horizontal

cut marked. This horizontal cut, which is the true original image that the robots need to construct,

is an area of0.64 m ˆ 1.82 m, which results in2912 unknowns to be estimated. Fig. 8 further

shows the imaging results with both Rytov and LOS for this structure. As can be seen, Rytov

provides a considerably better imaging quality, especially around the edges. The reconstructions

after thresholding are also shown in Fig. 8, which uses the fact that we are interested in a

black/white image that indicates absence/presence of objects (more details on this will follow

soon).

Fig. 9 shows the imaging of the occluded cylinder. This area of interest is2.98 m ˆ 2.98 m,
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amounting to22201 unknowns to be estimated based on only4.7% measurements. This structure

is more challenging than the T-shape to reconstruct because1) it is fully behind thick brick walls,

and 2) it consists of materials with different properties (metal and brick). Similarly, we can see

that Rytov provides a better imaging result for this structure as well, with the details reconstructed

more accurately. Thresholded images are also shown.

Horizontal

    Cut

Original Completely Unknown Area

(0.64 m x 1.82 m)

Reconstructed Image - Rytov

with 20.12% measurements

Reconstructed Image - LOS

 with 20.12% measurements

Thresholded Image - Rytov Thresholded Image - LOS

 42 cm

 56 cm 43.4 cm

Fig. 8. The left figures show the T-shape structure of interest that is completely unknown and needs to be imaged, as well as

its horizontal cut (its dimension is0.64 m ˆ 1.82 m). The white areas in the true image indicate that there is anobject while

the black areas denote that there is nothing in those spots. Imaging results based on20.12% measurements are shown for both

Rytov and LOS approaches. Sample dimensions of the originaland the reconstructed images are also shown. It can be seen that

Rytov provides a considerably better imaging result.

Fig. 10 shows the imaging of the occluded two columns. This area of interest is4.56 m ˆ

5.74 m (amounting to65436 unknowns) and is estimated only with2.6% WiFi measurements.

This structure is more challenging to image than both the T-shape and the occluded cylinder

since 1) there are two columns close to each other, which results in a higher multipath and other

propagation phenomena and, 2) smaller percentage of measurements are available for imaging

(half of that used for the occluded cylinder). The figure shows the thresholded imaging results

as well. More specifically, any value above 40% and below 20% of the maximum value is

thresholded to the 40% and 20% values respectively (the samethresholding approach is used

for the past two areas). As can be seen from Fig. 10, the LOS approach fails to image this more

complex structure while Rytov can image it. From Fig. 8 and 9,it can be seen that imaging

based on LOS modeling can vaguely image the details. But for more complex areas such as Fig.

10, its performance becomes unacceptable while Rytov can locate the objects fairly accurately.
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Fig. 9. The left figures show the occluded cylinder structureof interest that is completely unknown and needs to be imaged, as

well as its horizontal cut (its dimension is2.98 m ˆ 2.98 m). The white areas in the true image indicate that there is anobject

while the black areas denote that there is nothing in those spots. Imaging results based on4.7% measurements are shown for

both Rytov and LOS approaches. It can be seen that Rytov provides a considerably better imaging result.

This signifies the importance of properly modeling the receptions.

In general, the computational complexity of our imaging approach depends on the size of

the unknown area and the number of gathered measurements. Furthermore, the utilized solver

typically converges faster if the model better matches the real measurements. Hence, we expect
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              (4.56 m x 5.74 m)
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with 2.6 % measurements

Thresholded Image - LOS

with 2.6 % measurements
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Fig. 10. The top figures show the occluded two columns structure of interest that is completely unknown and needs to be

imaged, as well as its horizontal cut (its dimension is4.56 m ˆ 5.74 m). The white areas in the true image indicate that there

is an object while the black areas denote that there is nothing in those spots. Imaging results based on2.6% measurements are

shown in the bottom figures for both Rytov and LOS approaches.Sample dimensions are also shown. It can be seen that the

LOS approach fails to properly image the occluded objects while Rytov performs significantly better.

that the Rytov approach runs faster than LOS approach because of its better match with the

real measurement. We verify this on a desktop equipped with a3.7 GHz CPU. For the T-shape

with 4096 unknowns and586 measurements, the Rytov approach takes3.6 seconds, while the

LOS approach takes5.74 seconds. For the occluded cylinder with22201 unknowns and1036

measurements, the Rytov approach takes17.01 seconds, while the LOS approach takes27.14

seconds. For the occluded two columns inside with65436 unknowns and1699 measurements,

the Rytov approach takes54.8 seconds, while the LOS approach takes64 seconds. However, it

should be noted that Rytov also requires an offline calculation of theFR matrix for a given set
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of routes. This takes9 minutes for the occluded cylinder structure for example. Once this matrix

is calculated, it can be used for any setup that uses the same routes.

Finally, we note that the measurements of the T-shape were collected with our past experimental

setup since we do not have access to this site anymore. However, we expect similar results with

our new experimental setup for this site, for the reasons explained in Section V-A.

A. Effect of robot positioning and antenna alignment errors

As each robot travels a route autonomously and without coordination with the other robot or

positioning error correction, there will be non-negligible positioning and antenna alignment errors

accumulated throughout the route. We next show the impact ofthese errors on our see-through

imaging performance.

Fig. 11 and 12 show the impact of localization and antenna alignment errors on Rytov and LOS

approaches respectively. More specifically, each figure compares experimental imaging results

of three cases with different levels of localization/antenna alignment errors. The most accurate

localization case was generated with our old setup where positioning errors were corrected

every 1 m. The middle and right cases are both automated but the robot has different speeds,

which results in different positioning accuracy. In each case, the positioning error leads to a

non-negligible antenna alignment error, the value of whichis reported (as a % of the antenna

beamwidth). However, we can see that the combination of bothantenna alignment and positioning

errors, which are not negligible, has a negligible impact onthe imaging result. This is due to the

fact that the main current bottleneck in see-through imaging is the modeling of the receptions,

which is the main motivation for this paper. For instance, aswe showed in Fig. 7, the gap

between the state of the art modeling (LOS) and the true receptions is huge, which we have

reduced considerably by a proper modeling of the receptionsin this paper. However, the gap is

still non-negligible as compared to other sources of errorssuch as robot positioning and antenna

alignment errors, as Fig. 11 and 12 confirm. It is needless to say that if these errors become

more considerable, they will inevitably start impacting the results. Thus, Fig. 11 and 12 imply

that with our current setup and the size of the areas we imagedin this paper, the impact of robot

positioning and antenna alignment errors was negligible onour results.
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(a) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 2 cm

 Antenna alignment error = 0%

(b) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 18.7 cm

 Antenna alignment error = 9.5%

(c) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route  = 22.36 cm

 Antenna alignment error = 27%

Fig. 11. The figure shows the effect of robot positioning and antenna alignment errors on imaging based on Rytov approximation.

It can be seen that they have negligible impact.

(a) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 2 cm

 Antenna alignment error = 0%

(b) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route = 18.7 cm

 Antenna alignment error = 9.5%

(c) Length of the Route = 4.88 m

Accumulated robot positioning
error of the route  = 22.36 cm

 Antenna alignment error = 27%

Fig. 12. The figure shows the effect of robot positioning and antenna alignment errors on imaging based on LOS modeling. It

can be seen that they have negligible impact.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered the problem of high-resolution imaging through walls, with

only WiFi signals, and its automation with unmanned vehicles. We have developed a theoretical
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framework for this problem based on Rytov wave models, sparse signal processing, and robotic

path planning. We have furthermore validated the proposed approach on our experimental robotic

testbed. More specifically, our experimental results have shown high-resolution imaging of three

different areas based on only a small number of WiFi measurements (20.12%, 4.7% and2.6%).

Moreover, they showed considerable performance improvement over the state-of-the-art that

only considers the Line Of Sight path, allowing us to image more complex areas not possible

before. Finally, we showed the impact of robot positioning and antenna alignment errors on our

see-through imaging framework. Overall, the paper addresses one of the main bottlenecks of

see-through imaging, which is the proper modeling of the receptions. Further improvement to

the modeling, while maintaining a similar computational complexity, is among future directions

of this work.
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APPENDIX

Born Approximation:Consider the case of weak scatterers, where the electric properties of

the objects inD are close to free space, i.e.,ǫprq is close toǫ0. In the Born approximation,

this assumption is used to approximate the electric field inside the integral of (5) withEz
incprq,

resulting in the following approximation:

Ezprq “ Ez
incprq `

¡

D

Gzzpr, r
1qpOpr1qEz

incpr
1qq dv1. (27)

The validity of the Born approximation is established by dimensional analysis in (5) and it is

accurate at high frequencies, only if

k0Lδǫprq ! 1, for all r P D,

Born approximation is a theory of single scattering, wherein the multiple scattering due to object

inhomogeneities is neglected.
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