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Wi-Flex: Reflex Detection with Commodity WiFi

MERT TORUN, University of California Santa Barbara, USA
YASAMIN MOSTOFI, University of California Santa Barbara, USA

In this paper, we are interested in startle reflex detection with WiFi signals. We propose that two parameters related to the 
received signal bandwidth, maximum normalized bandwidth and bandwidth-intense duration, can successfully detect reflexes 
and robustly differentiate them from non-reflex events, even from those that involve intense body motions (e.g., certain 
exercises). In order to confirm this, we need a massive RF reflex dataset which would be prohibitively laborious to collect. On 
the other hand, there are many available reflex/non-reflex videos online. We then propose an efficient way of translating the 
content of a video to the bandwidth of the corresponding received RF signal that would have been measured if there was a 
link near the event in the video, by drawing analogies between our problem and the classic bandwidth modeling work of J. 
Carson in the context of analog FM radios (Carson’s Rule). This then allows us to translate online reflex/non-reflex videos to 
an instant large RF bandwidth dataset, and characterize optimum 2D reflex/non-reflex decision regions accordingly, to be used 
during real operation with WiFi. We extensively test our approach with 203 reflex events, 322 non-reflex events (including 
142 intense body motion events), over four areas (including several through-wall ones), and with 15 participants, achieving a 
correct reflex detection rate of 90.15% and a false alarm rate of 2.49% (all events are natural). While the paper is extensively 
tested with startle reflexes, it is also applicable to sport-type reflexes, and is thus tested with sport-related reflexes as well. 
We further show reflex detection with multiple people simultaneously engaged in a series of activities. Optimality of the 
proposed design is also demonstrated experimentally. Finally, we conduct experiments to show the potential of our approach 
for providing cost-effective and quantifiable metrics in sports, by quantifying a goalkeeper’s reaction. Overall, our results 
confirm a fast, robust, and cost-effective reflex detection system, without collecting any RF training data, or training a neural 
network.
CCS Concepts: • Computing methodologies → Modeling and simulation; Machine learning; • Human-centered 
computing → Ubiquitous and mobile computing; • Hardware → Wireless devices.
Additional Key Words and Phrases: Reflex Detection, Computer Vision, Startle Reflexes, WiFi, RF Sensing, Sport Reflexes
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1 INTRODUCTION
Imagine these scenarios: touching a hot stove by accident; opening a bottle of champagne that causes a sudden 
splash in your face; putting on your headset without adjusting the volume, only to be exposed to a very sudden 
loud noise; your friend showing up as Pennywise right behind you. All these events will most likely result in what 
is known as a startle reflex reaction. More formally, the startle reflex (also referred to as escape reflex) is a sudden, 
involuntary and unsought defensive motor response to an intense sensory stimulus (e.g., sudden noise, sudden 
motion in the visual field, etc.) [6, 27, 61], and is a sub-category of r eflexes.1 Fig. 1 shows some sample startle
1In a different context, startle reflex refers to a particular involuntary motor response newborns exhibit temporarily. But that is different from 
the subject of this paper.
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Fig. 1. Sampler of our assembled reflex video dataset, using online videos ([25] and YouTube.) See color PDF for best viewing.

scenarios [25]. A startle response typically involves the activation of a number of muscle groups in a defensive
mode. The main distinctive feature of a reflex action is that it does not involve a conscious decision-making
process. A startle reflex is thus a considerably important body reaction that is developed through evolution to
protect us (as well as other species) from harm.

Startle-type reflexes are important and implicit in a number of physical/mental health conditions and have been
studied extensively in medical fields. For instance, startle reflexes are shown to intensify with anxiety disorder,
PTSD, phobias, or even stress [26, 39, 49, 50, 52, 56, 62, 71, 75], and further inhibit different characteristics in
schizophrenia [8, 88]. As such, startle reflexes have been studied in the context of mental health as part of both a
diagnostic and a treatment system (e.g., to measure phobia improvement after a gradual exposure). Studying startle
reflexes is also important for the diagnosis and monitoring of a number of physical health conditions, such as
post-stroke/brain injuries, autism, Tay-Sachs disease, Urbach-Wiethe disease, Alzheimer’s disease, Huntington’s
disease, and hyperekplexia, among others [31, 34, 38, 40, 51, 63, 68, 88].

Detection of a startle reflex can also be useful for safety/security applications. More specifically, since a startle
reflex can be an indication of a state of distress, pain, or harm, one can envision it to be used as a general measure
of the safety/well-being of an individual, for instance in a smart home/office space, and in particular for elderly
or children. Furthermore, detecting them can also be important for ambient sensing as part of smart spaces, for
instance for context inference.
In the medical domain, most related work has focused on using on-body sensors (e.g., electromyography), in

order to measure muscle contraction during a reflex, involving expensive bulky setups [9–11, 20]. Such work
further use the prior knowledge that a reflex is about to happen and are also not designed to operate in the wild.

In recent years, there has been interest in the area of vision to detect if an action in a given video was intentional,
using machine learning [25, 30, 81, 82]. While not directly on reflexes, some of the corresponding videos include
startle reflex reactions. However, cameras may not be present in all the environments, need a direct unobstructed
view of the participant at all the times, are not privacy-preserving and may thus not be comfortable for everyone
[3, 44] (Sec. 7 reports performance of such vision approaches). In this paper, we propose a new approach that
enables a WiFi link to detect startle reflexes and robustly differentiate them from non-reflex events, even
from challenging ones that involve fast body motions. To the best of our knowledge, there is currently no
existing approach that can enable robust startle reflex detection with any form of RF transceivers, or in particular
with WiFi.

Radio Frequency (RF) signals, such as WiFi, are ubiquitous these days, creating the possibility of using them for
sensing and learning about the environment. This sensing potential has created immense interest in the research
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community and WiFi signals are utilized for various applications, e.g., localization/tracking [35, 64, 79], smart
health [36, 37, 42], occupancy analytic [17, 41, 93], activity recognition [13, 72, 83], and imaging [58, 69, 90],
among others.
In this paper, we introduce Wi-Flex, a robust system for startle reflex detection, using only WiFi. In the

envisioned setup, a WiFi transmitter (TX) transmits a wireless signal, which bounces off the surroundings and is
then received by a WiFi receiver (RX) that measures the Channel State Information (CSI) of the received signal
(magnitude or phase difference) for the purpose of reflex detection. One challenge in developing a robust reflex
detection system is that there could be non-reflex daily events that would involve rapid body motions, such as
certain exercises (e.g., start of a sprint), or simply clapping hands. Our approach is robust in the sense that it
can successfully differentiate a reflex from non-reflex activities, even from challenging non-reflex
ones that involve rapid body motions. It furthermore does not rely on collecting any RF data for analysis,
learning, or training purposes, a task that would be laboriously prohibitive. Instead, we show that two received
signal bandwidth-related parameters can robustly detect a reflex. More specifically, we propose a methodology for
translating freely-available online reflex/non-reflex videos to their corresponding RF received signal bandwidth.
This then enables us to create an instant large RF received signal bandwidth dataset, and use it to characterize
optimum 2D reflex/non-reflex decision regions for our two bandwidth-related parameters, which can then be
used during the real operation with WiFi for decision making.

Remark 1:While we have so far discussed startle reflex detection, our proposed approach is also applicable
to sport reflexes. By a sport reflex, we refer to a sport-related event that requires a fast body reaction to a visual
input. For instance, consider a goalkeeper. As a fast ball approaches, a well-trained goalkeeper would act based
on a reflex-type reaction, and without conscious processing. Our proposed methodology for reflex detection
can also be applicable for measuring sport reflexes. As such, in this paper we also show experimental results in
this context, in addition to extensive experimentation with startle reflexes. We further discuss other potential
implications of the proposed work in sports domain.
Remark 2: In this paper, we use the term reflex event to describe an event that involves a body reflex.

The term non-reflex event then denotes otherwise, and is divided into two categories of normal events and
challenging normal events, where normal event refers to a non-reflex event that does not involve rapid body
motions (e.g., walking, eating), while the term challenging normal event denotes non-reflex events that involve
rapid body motions (e.g., running, certain exercises, etc.). Testing the system with both categories is important,
as we shall do, since challenging normal events can resemble a reflex and a robust system should differentiate
them correctly.
Remark 3: For brevity, we use the term reflex in the rest of the paper, without any prefix. The goal

of the paper is to develop a robust startle reflex detection system, and further demonstrate its applicability to
sport-type reflex events, as discussed.
Statement of Contributions:
1. Developing a robust reflex detection system with WiFi requires collecting a massive reflex RF dataset, for

analysis and design, which would be prohibitive. We instead propose to translate online available reflex videos to
a meaningful instant large RF-based dataset, for the purpose of RF analysis/design, as we elaborate next.
2. As a starting point, we ask if a small number of parameters can capture a reflex in a video. Along this line,

we set forth that maximum normalized speed and speed-intense duration suffice to robustly detect a reflex in a
video. We then validate this by using a large video dataset of 50 reflex and 82 non-reflex events (including several
challenging ones).

3. Speed-related parameters (while the first-intuition choice), however, are not reliably measurable by a wireless
link during a reflex due to the corresponding abrupt motions, as we shall see. We then show how we can translate
a given video content to metrics that are robustly measurable by a wireless link, yet carry crucial differentiating
information on a reflex. More specifically, we propose a way of translating the content of a given video to
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the bandwidth signal of the corresponding received RF signal that would have been measured if there
was a wireless link in the vicinity of the event in the video. We use a bandwidth modeling of the received
wireless signal that is inspired by the classic work of J. Carson in the context of analog FM radios [15] (i.e.,
Carson’s Rule). Following the design principles learned from Item 2, we then introduce two received RF signal
bandwidth-based metrics,maximum normalized bandwidth and bandwidth-intense duration, and show
how they can be measured from a video using Carson’s Rule. This then allows us to translate available online
reflex/non-reflex videos to an instant large RF received signal bandwidth dataset, and accordingly characterize
reflex/non-reflex optimum decision regions for our two bandwidth-based parameters, to be used during the real
operation with WiFi for decision making.
4.We extensively test the proposed pipeline with 203 reflex events, 180 normal events and 142 challenging

normal events, over four areas (including several through-wall ones) and with 15 participants, achieving an
overall probability of correct classification of 90.15% and a false alarm rate of 2.49%. See Fig. 8 for sample reflex
experiments. As Section 7 shows, our proposed pipeline considerably outperforms the state-of-the-art in reflex
detection. We next show results where a person is engaged in a sequence of events comprised of reflex-inducing,
normal, and challenging normal ones. We further show that our proposed system can robustly detect a reflex
even when multiple people are present and simultaneously engaged in a variety of activities including both reflex
and non-reflex ones. Finally, we show how our bandwidth-based reflex parameters have the potential to provide
quantifiable metrics in sports domain to measure an athlete’s reaction response. More specifically, we show how
increasing the speed of an incoming ball results in the goalkeeper’s catch event changing from non-reflex to
reflex at some point.
We emphasize that all the events are natural and not acted out.We further note that designing reflex-

inducing scenarios that are effective, yet safe, is a challenging task. As such, the experiments are conscien-
tiously designed, via consultation with our IRB committee, to ensure the safety and well-being of the
participants, and were further deemed as not constituting human subject research. Overall, our results
show the potentials of our work for reflex detection with WiFi signals.

2 RELATED WORK
As discussed earlier, startle reflexes are implicit in a number of physical/mental health conditions, and have been
utilized for both diagnostic purposes and treatment progress assessment in themedical domain [8, 26, 34, 39, 40, 49–
52, 56, 62, 68, 71, 75, 88, 88]. From an academic standpoint, there has also been a considerable interest in studying
the impact of factors such as age, anxiety or stress on startle reflexes [47, 49, 60]. Most such work, however, use
elaborate, expensive setups involving on-body sensors [77]. For instance, electromyography (EMG) is commonly
used in order to directly measure muscle contraction during a reflex [4, 7, 88]. As such, a reliable, transportable,
and cost-effective startle reflex measurement system that can also be used as part of a smart home health system
is currently lacking in the medical domain.

In the area of vision, there has been recent interest in identifying if an action in a given video was intentional
or not [19, 25, 30, 81, 82]. While not directly on reflex detection (human mistakes are also included in these work),
some of the corresponding videos involve a startle reflex. More specifically, [25] presents the first work in the
area of vision to detect unintentional actions using machine learning and a large training dataset. This work is
then followed by others, who built on it and improved it, while keeping the core approach as machine learning on
a large dataset [19, 30, 81, 82]. These work are promising as they suggest that a reflex-like action can be inferred
from a video. However, cameras need a direct unobstructed view, are not privacy-preserving, and are thus not
a favorable sensing mechanism for everyone [18, 66]. Nevertheless, in this proposed work, we utilize the vast
freely-available reflex-related vision dataset (some from these work and some from YouTube) and show how
we can translate each video to the bandwidth signal of the corresponding received RF signal. This then allows
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us to create an instant large RF bandwidth-related dataset, in order to characterize optimum reflex/non-reflex
2D decision regions for two proposed bandwidth-related parameters, which can then be used during the real
operation with WiFi for decision making.

In recent years, there has also been interest in detecting abnormal activities (with different interpretations of the
word abnormal). For instance, crime-type abnormalities are detected in a video footage in [24, 65], while most other
work in this area focus on detecting actions such as falling (with accelerometer in [43, 59], with motion sensors
in [48], with WiFi in [1, 21, 57, 84, 91]). The general area of activity recognition has also received considerable
attention in recent years with the main focus on classifying daily normal activities, and typically based on
machine learning. For instance, WiFi has been used for gesture recognition [2, 33, 70], exercise classification
[13, 32, 45], and driver activity recognition [5, 23]. Similarly, activity recognition has been explored heavily in
vision [46, 54, 80]. However, there is no existing work in RF sensing where reflexes are considered as a type of
activity. Furthermore, utilizing existing RF sensing methods for reflex detection will not work well since existing
work on activity classification is not focused on activities that are abrupt and short-lived. We shall see this in
more details in Sections 4 and 7. The intersection of vision and RF has also been explored, for instance, to make
concurrent video and RF measurements for labeling purposes [89], or to simulate wave propagation given a
video input [13], both for the purpose of training machine learning systems. Overall, there is no existing work on
detecting the types of reflexes of interest to this paper with WiFi signals, which is the main motivation for the
proposed work of this paper.
Finally, as mentioned earlier, our proposed approach can also have implications for sport-type reflex events,

i.e., for situations that involve a fast reaction (without conscious processing) to a fast incoming ball. Along this
line, there is a considerable interest in measuring various aspects of the reaction of certain types of athletes
for training purposes [16, 53, 55]. Such approaches mainly rely on measuring the response time, with a variety
of gadgets, from cheap not so accurate ones [12] to expensive elaborate setups [55, 86]. As we shall see, our
proposed approach has the potential to provide a cost-effective, portable, and robust method for characterizing
the reaction of an athlete. As such, we not only test our proposed approach with sport-type reflex scenarios, but
also show experiments on how our bandwidth-based approach can be used to quantify an athlete’s response to
an incoming ball.

3 PROBLEM FORMULATION
Consider a pair of wireless transceivers in an area where a person is present. As the person’s body parts move,
the transmitted signal bounces off different body parts of the person. The complex baseband received signal 𝑠𝑏 (𝑡)
can then be written as follows [42],

𝑠𝑏 (𝑡) = 𝛼s𝑒
𝑗\𝑠 +

∑︁
𝑚∈Ω

𝛼𝑚𝑒
𝑗 ( 2𝜋

_
𝜓𝑚

∫
𝑣𝑚 (𝑡 )𝑑𝑡+ 2𝜋

_
𝑑𝑚) , (1)

where 𝛼s𝑒 𝑗\𝑠 includes the impact of both the direct path from the TX to the RX and the reflections from the static
objects, 𝛼𝑚 is the amplitude of the signal path reflected off of the𝑚th part of the body, 𝑑𝑚 is the length of that
path at time 𝑡 = 0, 𝑣𝑚 (𝑡) is the speed of the𝑚th body part at time 𝑡 , and𝜓𝑚 = cos𝜙𝑅,𝑚 + cos𝜙𝑇,𝑚 where 𝜙𝑅,𝑚 and
𝜙𝑇,𝑚 are the angles between the direction of motion of the𝑚th body part and the path to the transmitter and
receiver respectively, at time 𝑡 . The summation in Eq. 1 is over the body parts that are visible to the receiver at
that time instant (set Ω), and _ is the wavelength. Off-the-shelf devices, however, can only measure the received
power or phase difference (if multiple antennas are available onboard) of this signal. The following can then well
approximate the power of the received signal (after DC removal), as was shown in recent work [42],

𝑝 (𝑡) =
∑︁
𝑚∈Ω

𝐴𝑚 cos
(
2𝜋𝜓𝑚
_

∫
𝑣𝑚 (𝑡)𝑑𝑡 + Δ`𝑚

)
, (2)
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where 𝐴𝑚 =2𝛼𝑠𝛼𝑚 and Δ`𝑚 =`𝑚−`𝑑 is the difference between the initial phase of the reflected path off of the
𝑚th body part and the direct path.

A Note on CSI Phase Measurements: While the absolute phase on off-the-shelf WiFi devices cannot be
reliably measured [92], the phase difference of the antennas of the same card can be stably measured with the
CSI-Tool [29], as we shall also do in this paper. It is also recently shown that the phase difference between two
antennas on-board can be well approximated in a similar form to Eq. 2 (albeit with different values for 𝐴𝑚 and
Δ`𝑚) [42], allowing us to treat both the power and phase difference under the same unifying umbrella in this
paper (see Appendix A for more details).
In this paper, we are then interested in designing a system that can robustly detect reflexes, using only the

received signal power or phase difference of a pair of WiFi transceivers. We next lay out the details of our
proposed methodology.

4 SYSTEM DESIGN
In this section, we lay out the details of our proposed pipeline for robust reflex detection with WiFi signals. Our
proposed approach does not rely on collecting massive RF data for analysis, learning, or training purposes, a task
that would be laboriously prohibitive. Instead, it relies on the massive available online videos for characterizing a
small number of key reflex-related parameters that are both extractable from a video while also robustly
measurable by a wireless link. In other words, our approach is multi-disciplinary, drawing from both areas
of vision and wireless systems. Our first step towards achieving our goal is to show that a small number of
video-related parameters would suffice for robustly detecting a reflex in a video. More specifically, we first set
forth that there are two parameters, maximum normalized speed and speed-intense duration, that can
robustly indicate presence of a reflex in a video, and validate it by using a large video dataset.
This is promising as it indicates that a small number of parameters can capture a reflex in a video. However,

speed-related parameters, while an intuitive first-step design choice, are not reliably measurable by a wireless
link during a reflex, due to the resulting abrupt motions, as we shall see. We then show how we can translate a
video content to metrics that are robustly measurable by a wireless link. More specifically, by using the design
principles learned from our speed analysis, we propose two parameters related to the received RF signal bandwidth:
maximum normalized bandwidth and bandwidth-intense duration. We then show how we can translate each
video to its corresponding RF received signal bandwidth. Towards this goal, our pipeline first extracts the speeds
of body parts from each video. It then draws similarity between the form of the received RF signal in front of body
motions and the form of an analog FM radio signal, which allows us to mathematically characterize the overall
bandwidth of the received signal as a function of the speeds of different body parts, using Carson’s Rule from
decades-old FM radio literature [15]. In a recent work [42] on nocturnal seizure detection with WiFi, authors drew
an analogy between the received power signal in front of a series of movements and the summation of a number
of FM radio waves, and successfully characterized the whole Fourier response of the received signal (i.e., the
Bessel coefficients), using Carson’s Rule [15]. Here we are only interested in the overall bandwidth of the signal.
We then design a pipeline to translate our video dataset to a large RF received signal bandwidth dataset, utilizing
Carson’s Rule [15]. We then show how to characterize the 2D optimum reflex/non-reflex decision regions for the
aforementioned two bandwidth-related parameters accordingly, confirming that they can robustly detect a reflex.
In the operation phase, a WiFi link then measures these two parameters of the received signal and uses their
corresponding video-derived decision regions to robustly detect a reflex. We next start by analyzing a large video
dataset and establishing that a small number of parameters can robustly capture a reflex in a video.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 127. Publication date: September 2023.



Wi-Flex: Reflex Detection with Commodity WiFi • 127:7
V

id
eo

 i
n

p
u

t

Extracting the

joint locations

Extracting max. 

normalized speed and

speed-intense duration

Plot max. normalized speed 

and speed-intense duration

for each video data point in 2D

Calculating speed

signals of the joints

Confirm robust 

separability of reflex

and non-reflex events

Fig. 2. Steps of initial video dataset analysis to confirm that a reflex can robustly be detected in a video with only two
parameters. These two speed-related parameters, while the most intuitive starting point, are not robustly measurable by
WiFi during a reflex, necessitating a different design as we shall see.

4.1 Video Data Analysis
As discussed earlier in Section 2, a number of recent work in vision have developed algorithms to detect a
non-intentional action in a video. These work are promising as they suggest that reflex-like actions can be
inferred from a video. Most of these work, however, use machine learning for extensive training on related
video datasets. In this part, we are instead interested in establishing that a few key video-related parameters can
robustly detect a reflex.

Consider a video of a person engaged in an activity. We expect that when there is a reflex, the speed of some
of the body parts goes up high. As such, instantaneous speed of a body part, normalized by its local average,
presents a good potential starting-point metric for capturing the impact of a reflex. We next assemble a large
dataset, using freely-available online reflex videos, to formalize the impact of a reflex on the speed of body parts,
and characterize related parameters that can separate reflex from non-reflex events.

Video Dataset: We have assembled a large dataset consisting of 50 reflex videos and 50 normal-event videos
(no challenging event included for this analysis), using freely-available videos from YouTube as well as existing
vision datasets [25]. Fig. 1 shows snapshots of sample reflex videos of our assembled dataset. As can be seen, the
dataset includes a diverse set of reflex-inducing incidents. Our normal activity dataset then includes a diverse set
of daily activities (e.g., walking, eating, cleaning, cooking, etc.).

Processing Videos: The processing steps are summarized in Fig. 2. As can be seen, frames of each video are fed
to OpenPose [14], an open source vision pipeline, in order to extract the joint locations. For all the visible joints,
the joint speed as a function of time (in terms of pixels per frame) is calculated by considering the differential
over consequent frames. To reduce estimation error, joints for which OpenPose has a low confidence are not
considered. Furthermore, only the joints that appear in the majority of the frames are considered for speed
calculation, and a low-pass filter is applied to the resulting speed profiles to smooth out the impact of estimation
noise. We then define normalized speed as the speed signal of each joint normalized at each time instant by its
local average over the prior𝑇win seconds (thus it is a function of time).Maximum normalized speed is then defined
as the maximum of the normalized speed signal over time, and further over the body parts.
Video Histogram Analysis: Fig. 3 (left) shows the histogram of the maximum normalized speeds for the

aforementioned assembled reflex-and normal-event video dataset. As can be seen, there is a clear separability
between the two events. The figure then confirms that reflex events produce a significantly higher maximum
normal- ized speed as compared to normal events, creating a possibility for differentiating the two in a video
accordingly.
A Need for a Temporal Metric: So far, we established that the maximum normalized speed can well

differentiate reflex from normal events in a video. However, as discussed earlier, there could be non-reflex daily
events that involve high body speeds (i.e., challenging normal events in this paper), such as certain exercises
(e.g., running), or simply clapping hands. In order to study the differentiability of such events from reflex, based
on max. normalized speed, we further assemble a comprehensive video dataset of 32 such fast non-reflex daily
events (using freely-available YouTube videos). The dataset is diverse encompassing both sport-related and
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Fig. 3. Video dataset analysis – (left) histogram of maximum normalized speed for reflex and normal events, showing a
clear separability, (middle) histogram of maximum normalized speed for reflex and challenging normal events, indicating
challenging normal events can have high max. normalized speed, thus not differentiable from reflex based on max. normalized
speed, (right) histogram of speed-intense duration for reflex and challenging normal events, showing that speed-intense
duration can separate reflex from challenging normal events.

non-sport-related actions.2 Fig. 3 (middle) shows the histogram of the maximum normalized speed of such events,
superposed on the corresponding histogram of the reflex events. As can be seen, the maximum normalized speed
of the challenging normal events can become high, making them non-differentiable from reflex events based only
on the corresponding maximum normalized speed. This necessitates a second metric that can further differentiate
challenging normal events from reflexes.
Towards this goal, we have studied several reflex and challenging normal videos. Consider the joint that

resulted in the maximum normalized speed in a given video. We have observed that the time duration, where the
normalized speed signal of this joint stays highly correlated with its maximum value, is typically much smaller for
a reflex event as compared to challenging normal events. In other words, in a reflex event, the normalized speed
typically goes up and comes down abruptly (i.e., the speed changes are abrupt), while in a challenging normal
event, the normalized speed can get high but the time duration to the high peak and back down is typically larger.
This makes sense as in case of a non-reflex challenging event, the action is intentional and, as such, it takes
longer for the motor system to execute the brain’s command. On the contrary, in case of a reflex event, there is
no conscious planning, resulting in an abrupt increase and decrease of the speed. As such, we propose that the
time duration where the normalized speed (of the joint with the max. normalized speed) stays highly correlated
with its max. value, can serve as a robust metric to differentiate reflex events from the challenging normal ones.
We next formally define our metric and extensively validate our hypothesis with a large video dataset.

Definition – Full Width at Half Maximum: Consider a given signal as a function of a variable. The full
width at half maximum (FWHM) is defined as the difference between the two variable values where the signal is
equal to half of its maximum value [76]. FWHM is an established metric that has been heavily used in different
fields to characterize a duration where a signal stays highly correlated with its maximum value. For instance, it
is related to half-power bandwidth (3dB point) in the context of filter design, or half-power beamwidth in the
context of antenna design.
Consider the joint with the maximum normalized speed value. Let speed-intense duration denote the Full

Width at Half Maximum (FWHM) of this joint’s normalized speed signal. We then propose to use speed-intense
duration as our secondmetric, to separate reflex from challenging normal events. Fig. 3 (right) shows the histogram
of the speed-intense duration of reflex and challenging normal events, indicating a clear separability. Overall,
these results are promising as they suggest that the two metrics of maximum normalized speed and speed-intense
duration have the potential to robustly separate reflex from non-reflex events, even challenging ones, in a video
(See Fig. 2 for the whole pipeline).

2Note that some sports will involve a reflex reaction, such as reacting to a fast ball as a goalkeeper. Those sport reflex reactions are true
reflexes and are considered in the reflex category. On the other hand, other sport-related activities, such as running, can involve high speeds
but does not involve a reflex and are thus considered in the challenging normal event category.
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Remark 4: Note that while challenging normal events typically have a larger speed-intense duration, general
non-challenging normal events can have any intense duration. This is due to the fact that some normal non-
challenging events can have relatively small maximum normalized speed, making it possible for the body to
achieve the maximum in a short period of time. As such, we can not separate such events from reflex, solely
based on the corresponding intense duration and need the maximum normalized speed for this separation. In
Section 7, we show how the performance can degrade considerably if only one such parameter is utilized.

4.2 A Need for a New Vision-RF Metric
The previous section established that two speed-related parameters have the potential to robustly detect reflexes
in a video. Thus, if we can extract them fromWiFi measurements, we can then detect a reflex with WiFi. Robustly
extracting these speed-related parameters in the presence of reflex events, however, can be challenging, as we
discuss next.

In the RF sensing literature, short-time analysis, i.e., processing the signal over short time intervals, has been
utilized to extract velocity profiles of some body parts when there is a motion in the vicinity of the link [28, 78, 85].
Such processing approaches include Short-Time-Fourier-Transform (STFT), or other related more sophisticated
adaptive multi-widow variations (e.g., Hermite spec- trograms). Ideally, if the time period is short enough for the
speeds to be considered constant, short-time analysis can result in useful transient information on the speeds. In
practice, however, the short time window can result in a low-resolution in the Fourier domain, which would
result in the frequency content mixing up. When the motions are not abrupt, the time window does not have to
be as small, resulting in a reasonable frequency-domain resolution. Thus, one can extract useful information
on the speeds from the frequency-time signal (i.e, spectrogram), as has been done in the context of gait-based
person identification or activity recognition with RF signals [72–74, 83, 87].

When there is a reflex, however, the speeds of body parts can change very abruptly. As such, we cannot robustly
extract the aforementioned speed-related parameters of maximum normalized speed and speed-intense duration
from the spectrogram (even after using more sophisticated functions). In other words, processing the signal over
short time intervals will result in a poor frequency-domain resolution and our speed-related parameters are
not robustly extractable. This then necessitates introducing new metrics for reflex detection that can
be characterizable from our video dataset, yet robustly measurable in practice by an RF link, which
motivates our proposed approach of the next part. More specifically, we show how speed signals of a given
video can be translated to the bandwidth-time signal of the corresponding RF measurement, which is then easily
measurable in practice. By using the design principles learned in Section 4.1 regarding the differentiability of
the reflex and non-reflex events, and by extending the same design principle from speed to bandwidth, we then
introduce two new bandwidth-related metrics for robust reflex detection. It is noteworthy that ourmathematical
characterization of the RF signal bandwidth of the next section explicitly shows why the speed-related
parameters are not reliably extractable from the spectrogram during a reflex. In Section 7, we further
confirm with experimental data that if velocity-related parameters are chosen for design, instead of
the bandwidth-related ones, one loses performance considerably.

4.3 Translating a Video Input to the Corresponding RF Signal Bandwidth
While the maximum normalized speed and the speed-intense duration are not robustly extractable from a WiFi
spectrogram during a reflex, the bandwidth of the received signal can be easily evaluated. Thus, if we can
characterize reflex detection metrics from our video dataset, based on the bandwidth of the received signal, we
can then utilize them for RF-based reflex detection in practice.

Mathematically characterizing the bandwidth of the received RF signal in the presence of a body motion and
relating it to video-related parameters (velocity of different body parts), however, is considerably challenging.
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Fig. 4. (left) Proposed pipeline to translate a video input to its corresponding RF received signal bandwidth – (right) The two
extracted bandwidth parameters of all the videos are then used to find the optimum 2D reflex/non-reflex decision regions
using SVM.

More specifically, this would involve a theoretical characterization of the bandwidth of the signal of Eq. 2, when
taking its Fourier transform over a period of time. Along this line, a recent result drew analogies between the
signal form of a received RF signal in the presence of a body motion (e.g., Eq. 2) and a classic analog FM signal,
and utilized the classic 1922 bandwidth results of J. Carson in the context of FM radios [15, 42], in order to
theoretically characterize the bandwidth of the received signal. We next summarize these results, which will
allow us to extract robust RF-bandwidth-based metrics from videos for reflex detection.
Frequency Modulation (FM) is a classic analog transmission technique, introduced in 1902 [67], to ensure

robust transmissions for radio applications. Characterizing the bandwidth of an FM signal was crucial at that time,
yet considerably challenging. In his seminal paper [15], J. Carson was the first to theoretically characterize
the bandwidth of an FM signal (i.e., Carson’s rule). A typical FM transmitted signal has the form cos(2𝜋 𝑓𝑐𝑡 +
𝑘𝑓

∫
𝑚(𝑡)𝑑𝑡), where 𝑚(𝑡) is the signal to be transmitted, 𝑓𝑐 is the carrier frequency, and 𝑘𝑓 is a constant. By

carefully examining Eq. 2, we can think of it as a summation of a number of FM signals, in which the velocity of
each body part is the modulating signal and 𝑓𝑐 = 0. In other words, each moving body part can be thought of as
modulating the corresponding body motion into an FM signal that is then received by the WiFi receiver. This
then allows one to borrow mathematical tools from the seminal 1922 paper of Carson [15] to characterize the
bandwidth of the received signal and relate it to the speed of the body parts. For instance, in a recent work on
seizure detection with WiFi, the authors utilized tools from analog FM radio design in order to mathematically
characterize the whole Fourier response of the received signal and the corresponding Bessel function coefficients
[42]. In this paper, we are only interested in characterizing the overall bandwidth of the received signal. We next
present a key result along this line.

Bandwidth of the received RF signal in the presence of a motion: Consider 𝑝 (𝑡) of Eq. 2 over a moving
time window of duration 𝑇mov. The bandwidth of this signal, corresponding to its Fourier transform over the
window of 𝑇mov, can be characterized as follows, as a function of time:

𝐵𝑊 (𝑡) = max
𝑚

(𝜓𝑚 (𝑡)𝑣max,𝑚 (𝑡)/_ + 𝑓𝑚 (𝑡)), (3)

where 𝑓𝑚 (𝑡) is the bandwidth of the 𝑚th speed (𝑣𝑚 (𝑡)) at time 𝑡 , i.e., the bandwidth when directly taking
the Fourier transform of 𝑣𝑚 (𝑡) at time 𝑡 , over the window 𝑇mov, and evaluating its maximum spectral content.
Moreover, 𝑣max,𝑚 is the maximum of 𝑣𝑚 (𝑡) over the window of 𝑇mov at time 𝑡 . See [15, 42] for details.
Note that Eq. 3 is applicable to both the received power or phase difference signals since both have a form

dictated by Eq. 2, as discussed earlier. As can be seen, Eq. 3 allows us to mathematically characterize the bandwidth
of the received RF signal in the presence of body motions, and relate it to speed of different body parts.

Remark 5: As discussed earlier, when body speeds do not change abruptly (not high temporal changes), some
speed information can be extracted from the received signal’s spectrogram. We can clearly see this scenario as
a special case of Eq. 3. Basically, if the speeds do not change that abruptly, the second term, 𝑓𝑚 , can become
negligible and the maximum spectral content is well characterized by the first speed-based term. However, during
a reflex, the speed can change abruptly and the second term is not negligible, motivating using bandwidth instead.
As a comparison, the second term is about 6% of first term during a walk, and 10% in a jumping jack, while it is
more than 20% for many reflexes (at 5 GHz). In Section 7, we shall further show, with extensive experimental
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Fig. 5. 2D plot of max. normalized bandwidth and bandwidth-intense duration of the corresponding received RF signal. The
bandwidth data points are directly found from our assembled video dataset. The figure shows a clear separability for reflex
and non-reflex events. The optimum decision regions (using SVM) are also plotted on the figure.

results, that if speed is instead chosen for design, the performance degrades considerably, since it is not reliably
extractable from spectrogram during a reflex.
Remark 6: It is worth emphasizing that here we are merely drawing resemblance between our high-level

approximated received signal of Eq. 2 and the general form of a classic analog FM signal. However, this should
not be mistaken as the body actively trans- mitting a signal, or the transmitter sending an analog FM signal. Our
transmitter is an off-the-shelf transmitter, such as WiFi, and we simply observe that our approximation of the
received signal power/phase difference of Eq. 2 resembles a classic analog FM signal (albeit with 𝑓𝑐 = 0), allowing
us to borrow mathematical tools from the seminal work of Carson [15].

4.4 Characterizing RF Bandwidth-Related Reflex Metrics from Video Datasets:
We next show that bandwidth of the received signal can also be used, in a similar manner to the velocity, to
differentiate reflex from non-reflex events. In order to establish this, we need to use a large RF dataset of several
reflex and non-reflex events, something that would be prohibitive to collect in practice. Instead, we propose to
use our large video dataset, discussed in Section 4.1, and our bandwidth characterization of Eq. 3, to directly find
the corresponding RF received signal bandwidth that would have been measured if the person in the video was
performing the corresponding action near a pair of WiFi transceivers. Fig. 4 shows the steps of the proposed
pipeline. For each video input, the speed signal (speed as a function of time) of each joint is extracted using
existing vision algorithms, as discussed in Section 4.1. For the𝑚th joint’s speed signal, the bandwidth-time signal,
i.e., the bandwidth as a function of time, is calculated by using a small moving window and taking the Fourier
transform of the corresponding windowed speed signal to get 𝑓𝑚 (𝑡). Maximum speed of the𝑚th joint is similarly
calculated for each moving window, in order to generate 𝑣max,𝑚 (𝑡). Consider a TX-RX pair placed in the area
where the motion is occurring in the video. The TX transmits a signal, which will be reflected by the body parts
and received by the receiver. We are then interested in finding the bandwidth of the corresponding received
RF signal, which we can characterize from Eq. 3. More specifically, we use 𝑓𝑚 (𝑡) and 𝑣max,𝑚 (𝑡) of each joint,
extracted from the video, and calculate BW(t), the bandwidth-time signal of the corresponding received RF signal
using Eq. 3. This then allows us to translate each video to the bandwidth of its corresponding RF received signal
(BW(t)), resulting in a large RF bandwidth dataset. We next use this dataset to confirm robust reflex/non-reflex
separability using bandwidth as a metric, following the same design principle we established from the earlier
velocity analysis. More specifically, we define maximum normalized bandwidth, 𝐵𝑊max

n , as the maximum
of normalized RF bandwidth signal, normalized by its local average over prior𝑇win seconds. We further
define bandwidth-intense duration, 𝑇bid, as the Full Width at Half Maximum of the measured BW(t).
We next show that these two parameters can robustly differentiate reflex from non-reflex events.
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Fig. 6. Reflex detection with WiFi during operation, using our two RF bandwidth-based parameters and their corresponding
optimum decision regions, which are derived using a video dataset and our proposed video to RF-bandwidth translation.

Fig. 7. Experiment locations-An office area (through-wall setting), a kitchen, a living room, and a semi-covered outdoor area.

Practical aspects of translating a video to the bandwidth of the corresponding RF signal: The temporal
speed signal of the joints in a video will naturally be given in pixels per frame (by the vision algorithms). However,
in order to translate them to the corresponding received signal bandwidth, using Eq. 3, we need the speeds in
meters per second (to be consistent with _). In order to solve this practical challenge, we propose to use an adult’s
interpupillary distance. More specifically, let 𝑑ip denote the interpupillary distance of the person in the video,
which will be in pixels. Studies have shown that the interpupillary distance of an adult is in the following range:
63.36 ± 3.83mm [22]. As such, we use the mean distance of 63.36mm, resulting in a pixel-to-meter conversion of
𝑑ip/0.06336. In summary, for each video input, we take the maximum interpupillary distance over all the frames as
𝑑ip. Any video where the person is never facing the camera is not used to make sure the pixel-to-m conversion is
accurate. We can then convert the pixel/frame speed signal of each joint to m/s, using this pixel-to-m conversion
and the fps (frames per second) of the video.
While our successful experimental classification results of the future sections implicitly confirm the validity

of the proposed video to RF-bandwidth pipeline, we further explicitly confirm this pipeline in Section 7 via
concurrent video-WiFi measurements.

RF bandwidth analysis and optimum decision regions: Consider our assembled video dataset of 50 reflex
and 82 non-reflex events, discussed earlier in Section 4.1, samples of which are shown in Fig. 1. For each video
input, we then implement the steps of the proposed pipeline of Fig. 4, using a moving window of length 0.4
seconds, and for a given TX/RX position pair (more on TX/RX locations later), in order to get the corresponding
RF signal bandwidth as a function of time, and further extract the corresponding maximum normalized bandwidth
(𝐵𝑊 max

n ) and bandwidth-intense duration (𝑇bid). This results in a large RF bandwidth dataset, where each data
point is comprised of the corresponding two parameters of 𝐵𝑊 max

n and 𝑇bid, for both reflex and non-reflex events.
This then allows us to characterize the differentiability of reflex and non-reflex events based on these bandwidth-
related parameters. More specifically, Fig. 5 shows the 2D plot for all the resulting data points (𝐵𝑊 max

n and 𝑇bid)
of all the videos. It can be seen that there is a clear differentiability between reflex and non-reflex
events, confirming that our proposed bandwidth-related parameters can be used to robustly detect
a reflex. In order to formally characterize the optimum reflex/non-reflex decision regions, we apply Support
Vector Machine (SVM) to the data points of Fig. 5 (class size imbalance is accounted for), resulting in the marked
decision boundary, which we shall use in the rest of the paper.

Remark 7 (Optimum decision regions’ independence of TX/RX locations): In principle, TX/RX locations
affect the bandwidth through 0 ≤ 𝜓𝑚 (𝑡) ≤ 2 (see Eq. 1 for definition). However,we emphasize that the derived
decision regions have little dependency on locations of inserted TX/RX in the videos. In general, if the
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link is not too close to the person, and a motion is not close to parallel to the link, the resulting𝜓 will be close to
the maximum value of two. From studying several reflex videos, for instance, we observed that when there is a
reflex, several muscles exhibit intense motions and as such the𝜓 of the maximizing𝑚 will be close to two in Eq. 3.
As such, we simply fixed our TX/RX locations for all the videos, which randomized the initial location/orientation
of the person with respect to the link. But the resulting𝜓 of the maximizing𝑚, once there was an event, was
indeed near 2 for all the videos (the same was the case for non-reflex events). The derived decision regions will
then become independent of TX/RX placement, which is important. During real WiFi experiments, we have no
control over the person’s body motions. However, our successful classification results of the next section further
confirm that the decision regions are independent of TX/RX locations. In Section 7, we also confirm this from a
different angle by deriving decision regions when TX/RX are individually placed in each video such that the𝜓 of
maximizing𝑚 is exactly two. As we shall see, this has little impact on the performance.

4.5 Reflex Detection with WiFi
During the operation, the optimum decision regions derived in Section 4.4 will be used for reflex detection based
on the received wireless measurements of a pair of transceivers. The overall WiFi pipeline is shown in Fig. 6.
More specifically, the received WiFi CSI data is the input to the WiFi pipeline. The spectral content of the received
signal (power or phase difference), and the associated bandwidth is then generated as a function of time, using a
small moving window. The two key parameters of maximum normalized bandwidth and the bandwidth-intense
duration are then extracted and compared with the optimum decision regions of Section 4.4 (Fig. 5), to make a
reflex/non-reflex decision. In the next section, we extensively test the performance of the proposed approach.

5 EXPERIMENTAL SETUP
We next discuss our experimental details, including our subjects, the experiment locations, extensive description
of all reflex, and non-reflex activities (including the challenging ones), and our WiFi data collection process,
before presenting extensive results.
Experiment Subjects: To test our pipeline, we recruited 15 subjects.3 During recruitment, each subject was

informed (in a formal letter) that she/he will take part in a series of activities, which are all safe. The informing
letter was phrased to inform the subjects that they may have different responses to different activities, but without
explicitly mentioning reflex responses. The letter further indicated that all the activities are safe. The letter and
the corresponding participant agreement form were written in consultation with our IRB committee.

Experiment Settings: The experiments took place in 4 different locations: an office, a living room, a kitchen
and a semi-covered outdoor area, as shown in Fig. 7. The experiments further include extensive through-
wall reflex detection in the office area. Overall, the experimental areas are diverse in order to show the
robustness of the proposed approach in different settings.

Experiment Activities: We next discuss the reflex, normal, and challenging normal activities that took place
during the experiments, a summary of which can be found in Table 1.We emphasize that all the events are
naturally occurring and not acted out. In particular, all the reflexes are naturally-induced responses.
Furthermore, the type of experimental reflex activities are majorly different from the reflex activities of the online
videos that were used to find the optimum decision regions in Section 4.1. While a few of the non-reflex normal
activities are similar in their high-level nature to the ones in the non-reflex videos (e.g., walking, eating, sitting
down), the setup, execution, and details are completely different.

Reflex Events: In general, it is challenging to design events that can induce a reflex, while ensuring that they
are safe, causing no harm or pain. For instance, touching a hot stove can induce a reflex but is a pain-causing

3The Institutional Review Board (IRB) committee has reviewed/approved this research and determined that it does not constitute human
subject research.
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Table 1. OurWiFi experimental activities including 21 reflex-inducing, 20 normal, and 17 challenging normal events. Activities
are majorly different from those of online videos that were used to find the optimum reflex decision regions in Section 4.1.

Reflex Events Non-Reflex Events
Normal Events Challenging Normal Events

RE1) Holding a suddenly-vibrating item RE2) Unexpected shoulder contact NE1) Eating NE2) Drinking CNE1) Dancing CNE2) Jumping
RE3) Watching a video with a jump scare RE4) Empty cup splash prank4 NE3) Studying NE4) Lying down CNE3) Clapping
RE5) An unexpected nearby water splash RE6) Sudden loud noise NE5) Reading NE6) Watching TV CNE4) Dumbbell exercises
RE7) Unexpected item falling down nearby RE8) Acting as a goalkeeper NE7) Tying shoes NE8) Drawing CNE5) Doing lunges
RE9) Dodging an unexpected plastic bat swing RE10) Playing dodgeball game NE9) Opening a door/cabinet CNE6) Shaking a bottle
RE11) Reacting to catch a fast-approaching ball RE12) Playing keepie uppie NE10) Preparing a drink CNE7) Sit-ups

RE13) Reacting to re-balance an item on hand before losing it NE11) Applying hand sanitizer CNE8) Hammering a nail
RE14) Playing a video game with a gradual close-up jump scare NE12) Wearing a jacket CNE9) Running

RE15) Reacting to prevent a fall while walking on a narrow wooden plank NE13) Solving crossword puzzle CNE10) Throwing an object
RE16) Plastic spider jumping out of a box unexpectedly NE14) Picking up an item CNE11) Sitting down

RE17) Reacting to prevent a fall after holding chicken pose for a while N15) Playing video games CNE12) Jump rope
RE18) A soft item thrown unexpectedly at participant NE16) Having a conversation CNE13) Scrubbing a surface

RE19) Attempting to catch an item that is unexpectedly rolling off table NE17) Walking around CNE14) Rock paper scissors
RE20) Reacting to maintain balance after losing it standing on one foot NE18) Vacuum cleaning CNE15) Jumping Jacks

RE21) Moving hand out of the way of a (soft) NE19) Walking into/out of an area CNE16) Intense yoga poses
object unexpectedly falling down towards it NE20) Opening a package CNE17) Push-ups

incident. As such, we have carefully designed a set of reflex-inducing experiments, with a particular attention
to the safety and well-being of the participants. More specifically, our reflex category includes 21 events, as
summarized in Table 1. Sample reflex events are also shown in Fig. 8. We crafted the events such that a variety
of different sensory-motor reflex responses are included. For instance, some events have an unexpected visual
component (e.g., an unexpected object appearing in the visual field) that would induce a motor response, while
some have an unexpected audio component (e.g., an unexpected loud noise). While majority of the events have an
unexpected sensory component that can induce a reflex response in the participant, there are a few sport-related
events, such as acting as a goalkeeper or playing dogdeball, that would naturally include a reflex response to a
fast incoming ball.
Normal Events: This category includes several normal daily activities, as listed in Table 1.
Challenging Normal Events: As mentioned earlier, some normal activities may involve high-speed body

motions. In order to ensure the robustness of our approach, it is important to test it with such challenging normal
events, to confirm that they are classified as non-reflex. Table 1 shows a detailed list of these events.

We note that, in general, if a participant had pauses while engaged in a non-reflex activity (e.g., chewing for a
bit, then pausing for a bit, before proceeding to chew again), we only report the performance once, and for the
worst-performing chunk.

Remark 8:We note that for each participant, we designed the sequence of events very carefully so they do
not anticipate a reflex after their first encounter. In other words, once a participant experiences his/her first
reflex-inducing event, he/she may anticipate another immediate unexpected event, which can reduce/eliminate
their reflex response. In order to prevent this, we carefully planned the sequence of events such that several

4In this event, after offering to make tea for a participant, with two empty cups nearby, hot boiling water is poured into one cup during a
casual chat. After the first cup is filled, instead of filling the 2nd cup, the 2nd cup is suddenly splashed at them, creating an immediate reflex
response to avoid what the participant thinks holds boiling water.
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Fig. 8. Snapshots of sample reflex events from our WiFi experiments. See Table 1 for details and color PDF for better viewing.

normal and challenging normal activities occur between the reflex events, resulting in a successful induction of a
reflex throughout the experimentation.
Remark 9: As mentioned earlier, our goal for explicitly separating the non-reflex events to normal and

challenging normal was to motivate the need for the two proposed reflex parameters. During experimentation,
we need to include extensive events from both categories, as summarized in Table 1. However, we note that we
have no control over how a participant executes such an event. For instance, a person may sit down very rapidly,
making it a challenging event, or may sit slowly, making it more of a normal event (based on our observations,
most participants sat down rapidly, and so we put it under challenging normal events in Table 1). In other words,
the boundary between the two categories can be blurry in practice. This, however, does not impact our reflex
detection performance since it is focused on robust classification between reflex and non-reflex categories.

WiFi Data Collection During Operation: We use the internal antennas of two laptops equipped with Intel
5300 NICs as transceivers. The laptops are placed 1 m above the ground, and 1 m apart (see Fig. 7). Furthermore,
the distance of an event to the link varies between 1.5 m and 4 m for all the experiments since the participants
can move freely and unexpectedly. The CSI information is collected at 5.32 GHz on 30 sub-carriers. We use one
internal antenna of the TX laptop and all 3 of the RX laptop for CSI data collection, resulting in 90 data streams.

We then extract the complex CSI from these streams, using the CSI-Tool [29], and generate two phase difference
signals between successive receiver antennas, per subcarrier. We further denoise the data using PCA. More
specifically, we generate the spectrograms of the first 5 PCA components, using a time window 𝑇mov = 0.4 sec,
with a shift of 0.01 sec. We then average these 5 spectrograms to obtain the final one. The bandwidth signal (BW(t))
is then generated by finding the frequency where the power is at 95% of the total power in the spectrogram,
at time 𝑡 . For event detection, we use bandwidth of 5 Hz as a cut-off for determining both the start and end
of an event. We note that all the events were successfully captured. Finally, for each detected event, our two
classification parameters, maximum normalized bandwidth and bandwidth-intense duration, are generated using
a local average window of 𝑇win = 1 second.
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Table 2. Classification accuracy of the proposed pipeline (top) through walls, (middle) in non through-wall settings, and
(bottom) over all the experiments.

Reflex Events Non-Reflex Events
Probability of correct 89.57% 96.91%classification through-walls

Probability of correct classification 92.50% 98.94%in non through-wall settings
Overall correct classification prob. 90.15% 97.51%

6 EXPERIMENTAL EVALUATION
In this section, we present the results of our proposed WiFi-based reflex detection framework, in different
environments, with people engaged in different kinds of reflex-inducing activities, and through walls. Our
experimentation also includes several challenging normal events, in addition to normal events, to show system’s
robustness. We further show the variability of reflex detection performance per activity as well as per individual.
Moreover, we show results where a person is engaged in a sequence of events comprised of reflex-inducing ones,
normal activities, and challenging normal ones. We also show that our proposed system can robustly detect a
reflex even when multiple people are present and simultaneously engaged in a variety of activities, from normal,
challenging normal, to reflex-inducing ones. Finally, we show how increasing the speed of an incoming ball
results in the goalkeeper’s catch event changing from non-reflex to reflex, showing the potential of our introduced
reflex parameters to provide quantifiable metrics in sports.

6.1 Overall Performance of Wi-Flex
We have conducted a total of 203 reflex events, 180 normal events and 142 challenging normal events over the
four areas of Fig. 7 (including several through-wall ones) with 15 participants. Table 1 shows a list of the 21
reflex-inducing events, 20 normal events, and 17 challenging normal events that occurred in our experiments, as
discussed earlier. Fig. 8 further shows sample snapshots of the reflex-inducing events. We next discuss the results.
Through-wall Reflex Detection: We conducted extensive experiments (163 reflex, 126 normal, and 101

challenging normal events) through walls in the office area of Fig. 7 (left), with the transceivers behind the wall.
The experiments spanned 10 partic- ipants, performing the events listed in Table 1. Table 2 (top-row) shows the
results in this through-wall area. As can be seen, our system can robustly detect 89.57% of reflexes through walls,
with a very small probability of false alarm of 3.09%.

Reflex Detection in non through-wall settings: We conducted extensive experiments (40 reflex, 54 normal,
and 41 challenging normal events) over the three non through-wall areas of Fig. 7 (right). Table 2 (middle row)
shows the results in these areas. As can be seen, our system can robustly detect 92.50% of reflexes in these areas,
with a very small probability of false alarm of 1.06%.

The overall classification accuracy of our pipeline, over all the experiments, is shown in the last row
of Table 2. As can be seen, Wi-Flex can correctly classify 90.15% (183/203) of the reflex events as reflex and
97.51% (314/322) of non-reflex events as non-reflex, resulting in a very small false alarm rate of 2.49%.

6.2 Performance Variability per Activity
Our experiments include several reflex and non-reflex activities as summarized in Table 1. As can be seen, the
activities are diverse in each group and, as such, may induce different responses. In other words, some reflex
activities may be more challenging to detect, while some non-reflex activities may have a higher chance of
resembling reflex. Fig. 9 explicitly shows the probability of correct classification for 13 sample reflex events as
well as the probability of false alarm for 19 non-reflex events. All the activities are performed through walls, in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 127. Publication date: September 2023.



Wi-Flex: Reflex Detection with Commodity WiFi • 127:17

1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.1

0.2

0.3

Reflex Activities

Non-Reflex Activities

1

0.8

0.6

0.4

0.2

0P
ro

b
ab

il
it

y
 o

f 
C

o
rr

ec
t

R
ef

le
x
 D

et
ec

ti
o
n

F
al

se
 A

la
rm

 P
ro

b
ab

il
it

y

0.2

0.1

0

0.3

RE6RE1 RE13 RE18RE16RE11RE5 RE7 RE14RE8 RE10RE2 RE3

NE10
NE15NE1

NE8
NE12

NE17
NE18

NE2 NE13
NE3 NE9

CNE7
CNE11

CNE13CNE10
CNE9

NE19
CNE15CNE1

Empty values indicate 0

Fig. 9. Performance per activity (through walls) – (top) correct classification probability of 13 reflex activities, (bottom) false
alarm probability of 19 non-reflex activities (12 normal, 7 challenging normal), averaged over 10 participants. See Table 1 for
the description of activities.

the office area of Fig. 7 (left) and with 10 of our participants (i.e., each result is averaged over all 10). To show
the impact of the activity on the performance, the ones with the most diverse performance are chosen. As can
be seen, the performance can vary depending on the activity, as expected. For instance, unexpected shoulder
contact event resulted in a correct reflex detection rate of 80%, while events such as an unexpected loud noise or
the plastic spider jumping out of a box, resulted in 100% correct classification rate. On the other hand, in the
non-reflex category, throwing an object resulted in the highest false alarm rate, due to its high-intensity nature.
Overall, however, we can see that Wi-Flex can robustly detect reflexes across different activities.

6.3 Performance Variability per Individual
Different people can have different levels of reflex reactions. Furthermore, people can have different ways of
performing a challenging normal event. We next study the impact of an individual on the reflex detection results.
Fig. 10 shows the probability of correct reflex detection averaged over 13 reflex events, as well as the false alarm
probability averaged over 19 non-reflex events (12 normal and 7 challenging normal), for 10 participants. As can
been seen, the performance varies among the participants, as expected. However, our pipeline can still detect
reflexes robustly in different individuals.

6.4 Impact of the Different Environments on the Performance
We next study the impact of different environments on the performance of Wi-flex. Table 3 shows Wi-flex
performance in four different areas: office space, kitchen, living room and a semi-covered outdoor area. The areas
further have different dimensions, allowing us to study the impact of the size of the area on the performance
as well. As can be seen, Wi-flex performs robustly in all the areas. Nevertheless, we can see some performance
variability over the areas, as they experience different levels of multipath. For instance, the kitchen and the
office areas experience more clutter and thus more multipath, resulting in a slightly lower probability of correct
classification, as compared to the semi-covered outdoor area, which experiences the least amount of multipath.
Overall, however, the table confirms that Wi-flex is robust to environmental changes.
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Fig. 10. Performance per individual (through walls) – (left) correct classification probability for 10 participants, each averaged
over 13 reflex activities and (right) false alarm probability for 10 participants, each averaged over 19 non-reflex activities (12
normal, 7 challenging normal).
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Fig. 11. Reflex Detection for a sequence of events in the kitchen area while a participant takes part in a series of activities
including normal, challenging normal and reflex. Events are marked and reflex/non-reflex events are correctly classified.

6.5 Explicit Analysis of a Sequence of Events
In many of our experiments, an action of a participant that constitutes a particular type of event was naturally
preceded/followed by an action that constitutes another type of action (e.g., a person grabbing something before
having a reflex reaction). In previous parts, we focused on reporting performance for an individual event. In
this part, we explicitly run experiments involving a sequence of events that includes all the three categories of
events. Fig. 11 shows the normalized bandwidth signal for 105 seconds of WiFi data collected in the kitchen area
of Fig. 7, while a participant takes part in a series of activities. The detected events are also shown in the figure.
As can be seen, the events are diverse, embodying normal, challenging normal and reflex events, which are all
correctly classified. In particular, we can see that the participant takes part in challenging normal events at 2, 63,
86, and 97 second marks, which all result in a high maximum normalized bandwidth, but are correctly classified
as non-reflex due to their high bandwidth-intense duration. Finally, the participant has a reflex reaction to a
sudden loud noise at 77 second mark, which is also correctly classified.

6.6 Reflex Detection with Multiple People
In some of our reflex-inducing events, we had to help set up the event, for instance by throwing a ball at the
participant or by swinging a bat. While we tried to make sure that our impact on the received signal is minimal in
such cases (e.g., we are far enough) in order to focus on the performance with one person, some of the reported
results were already in a multiple-people setting. In this part, however, we explicitly show the performance when
multiple people are present and simultaneously engaged in a variety of activities. For instance, multiple people
may be all doing exercises, one having a reflex while others engaged in other activities, or in general all involved
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Table 3. Impact of the environment on Wi-flex performance – As can be seen, Wi-flex performs robustly in different areas.

Experiment Location Area Dimensions Reflex Events Non-Reflex Events
(width x length) Correct Classification Prob. Correct Classification Prob.

Office Area (through-wall) 2.9𝑚 x 3.8𝑚 89.57% 96.91%
Kitchen (non-through wall) 1.3𝑚 x 2.8𝑚 90.90% 97.29%

Living Room (non-through wall) 3.5𝑚 x 4.1𝑚 91.66% 100.00%
Semi-Covered Outdoor (non-through wall) N/A 94.11% 100.00%
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Fig. 12. Reflex Detection with Multiple People in the living room area while three people simultaneously engage in a series
of activities, including normal, challenging normal and reflex. Events are marked on the figure and are correctly classified.

in any combination of reflex/normal/challenging normal events at the same time. Fig. 12 shows an example case
where three people are engaged in a series of activities (marked on the figure) in the living room area of Fig. 7,
while WiFi is collecting data for 129 seconds. As can be seen, at several instances, multiple people are doing
a variety of activities at the same time, but reflex/non-reflex cases are all correctly classified. For instance, at
52 and 123 second marks, two people were both doing a challenging normal event, but were all classified as
non-reflex. Furthermore, two people were having a reflex at 31 second mark (due to a video jump scare) while
another person was engaged in a challenging normal event (exercising), but the reflex was correctly detected.
Overall, the results show the potential of Wi-Flex for operation in multiple-people settings.

6.7 Goalkeeper-Catch with Varying Ball Speeds
We next show how our proposed two bandwidth-based parameters have the potential to provide quantifiable
metrics in sports domain to measure an athlete’s reaction response. More specifically, we run four goalkeeper-type
experiments with varying incoming ball speeds, while WiFi is making measurements. We expect that for low ball
speeds, the goalkeeper will not have a reflex, while fast incoming balls will induce a reflex. Fig. 13 shows the
results for 4 speeds of 2.92, 4.37, 5.83, 7.78 m/s, thrown at the participant from a distance of 3.5 meters, and at
directions that require a lateral jump. As can be seen, the catch event is classified as reflex once the ball speed
reaches 7.78 m/s, while the first three lower speeds are classified as non-reflex as the ball speed was too low for
the person to have a reflex-type response. The results are also consistent with the participant’s description of their
experience and show the potential of the proposed pipeline in sports domain by introducing new quantifiable
metrics for reflex detection, using only cheap WiFi signals.

7 DISCUSSION AND FUTURE DIRECTIONS
We next discuss several aspects of the proposed work, and motivate future directions.
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Fig. 13. Goalkeeper’s response is classified by our system as the incoming ball speed increases. The results are consistent
with the participant’s description of their experience.

The need for twometrics:We established that we need two parameters to characterize a reflex. We next show
the performance if only one parameter is used. If only normalized bandwidth is used, correct classification prob.
becomes 69.43% for reflex and 82.29% for non-reflex events. On the other hand, if bandwidth-intense duration is
only used, correct classification prob. becomes 73.89% for reflex and 76.08% for non-reflex events, showing the
need for two parameters, after comparison with Table 2.
Bandwidth vs. Speed: We established that due to abrupt speed changes during a reflex, extracting speed-

related parameters from spectrogram will not be as reliable (Remark 5), while the bandwidth can be easily
evaluated. We then proposed two bandwidth-related parameters and showed how we can translate each video
to the corresponding RF signal bandwidth, to generate a large RF bandwidth dataset and find the optimum 2D
decision regions accordingly. We next show the performance if the speed was used instead. More specifically, we
use the two speed-related parameters of Section 4.1 and find their optimum decision regions, using our video
dataset, to be used during testing. This results in correct classification prob. of 72.90% for reflex events and 94.41%
for non-reflex events, which is considerably worse than Table 2 (90.15% and 97.51% respectively), confirming that
bandwidth is the right design choice.

Using both bandwidth and speed parameters: For the sake of completeness, we next show the performance
if both bandwidth and speed parameters are utilized for the classification task. More specifically, consider the
case where the two speed-related parameters of section 4.1 as well as the two bandwidth-related parameters
of section 4.4 are used for classification (total of 4 parameters). We then find the corresponding 4D decision
regions, using SVM and our assembled video dataset. During the operation, these four parameters are extracted
from the received signal for classification. This results in the overall correct classification prob. of 80.29% for
reflex events and 95.34% for non-reflex events (over all areas), which are still considerably worse than Table 2
(90.15% and 97.51% respectively). These results further confirm that speed-related parameters are not reliably
extractable during a reflex due to its short-lived abrupt nature, making the introduced bandwidth-parameters the
right choice.

Comparison with the state-of-the-art: As discussed earlier, there are work in the area of vision on detecting
an unintentional act in a video, based on extensive training using machine learning. While not directly on reflexes,
we nevertheless report their best performance for completeness. In [82], an overall classification accuracy of
81.6% is achieved. We, on the other hand, have an overall classification accuracy of 94.66%, without the use of RF
training data or deep learning, showing the great potential of the proposed framework.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 127. Publication date: September 2023.



Wi-Flex: Reflex Detection with Commodity WiFi • 127:21

0 2 4 6 8

20

40

60

80

100

0 2 4 6 8

20

40

60

80

100

Time (sec)Time (sec)

R
ea

l 
R

F
 s

ig
n
al

 b
an

d
w

id
th

 (
H

z)

E
st

im
at

ed
 R

F
 s

ig
n
al

 b
an

d
w

id
th

 f
ro

m
 v

id
eo

 (
H

z)

Fig. 14. Concurrent video-WiFi measurements during a jumping jack activity – (left) real bandwidth from the received WiFi
signal measurement and (right) estimated bandwidth from the video signal via our proposed method.

Can existing state-of-the-art WiFi sensing work be extended for reflex detection? As discussed earlier,
there is no existing work on reflex detection based on RF sensing. Activity recognition is the closest work in the
area of RF sensing to the problem of interest in this paper (see sample reviewed papers in Section 2). Here we
show how to extend existing RF sensing work for reflex detection and compare with the performance. Existing
approaches are typically based on extracting speed-related features from the spectrogram. As such, we first need
to find speed-related thresholds for reflex detection, something that is not done in the literature, necessitating
our proposed vision-based approach of Section 4 for speed-related thresholds. Once we extract the speed-related
thresholds, the previous discussion point titled ”Bandwidth vs. Speed” explicitly showed the performance if
speed-related parameters are instead utilized for reflex detection. It can be seen that the performance drops
significantly (from 90.15% to 72.90% for instance). This analysis confirms that directly extending existing work
in RF sensing to reflex detection will not work properly, due to the abrupt and short-lived nature of reflexes,
motivating the proposed work of this paper.
Impact of TX/RX Locations: In Section 4.4 we discussed how the derived decision regions have little

dependency on the location of the inserted TX/RX in the videos. As such, we simply fixed the TX/RX locations
for all the videos. We next further confirm this by deriving decision regions when TX/RX are placed in each
video such that the𝜓 of maximizing𝑚 is exactly two. This will then result in the correct classification prob. of
89.66% for reflex events and 97.83% for non-reflex events, which shows a negligible impact on our results, as
compared to Table 2.

To see the impact of the TX/RX separation, we next run a series of experiments, with both reflex and non-reflex
activities, with the TX/RX separation of 0.4, 0.6 and 0.75 m, in addition to the original distance of 1 meter. This
results in a less than 5.67% difference in extracted feature values, confirming robustness to the distance between
the transmitter and receiver. Once the distance becomes larger than 1 meter, the angle dependency can become
more dominant, and should be taken into account as part of future work.
Concurrent video-WiFi measurements to explicitly confirm the proposed video to RF-bandwidth

pipeline: In this paper, we have proposed how a video footage can be translated to the corresponding RF signal
bandwidth, using tools from vision and based on a mathematical modeling inspired by Carson’s rule (i.e., Eq.
3). This has then allowed us to generate a large synthetic RF bandwidth dataset, for both reflex and non-reflex
events, from available online videos, and utilize them to derive key bandwidth-based metrics for reflex detection.
While the successful performance of our extensive experimentation with real data implicitly confirms the validity
of the proposed video to RF-bandwidth pipeline, we have also explicitly confirmed the validity of the proposed
approach by collecting simultaneous video and WiFi measurements. For instance, Fig. 14 (left) shows the real
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Table 4. Comparison of different classification methods (RBF SVM (utilized), kNN and MLP) in terms of accuracy and total
computation time.

Classification Method Reflex Events Non-Reflex Events Total Computation TimeCorrect Classification Prob. Correct Classification Prob.
kNN 88.66% 96.27% 2.351 s
MLP 90.64% 97.20% 36.342 s

RBF SVM (utilized) 90.15% 97.51% 0.758 s
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Fig. 15. Impact of the distance between the wireless link and the subject for (left) reflex events, (middle) non-reflex events,
and (right) all events.

bandwidth from a received WiFi signal measurement while a person is involved in a jumping jack activity, while
the right figure shows the estimated bandwidth from the collected video via the proposed pipeline. As can be
seen, the two plots match well.

Performance comparison with other classification methods: So far, we utilized the radial basis function
(RBF) kernel SVM to come up with the 2D decision regions, once we translated the online videos to their
corresponding two bandwidth-related parameters (Fig. 5). We next show the performance if other well-known
classification methods are used to devise the decisions. More specifically, Table 4 shows the performance for 3
methods: RBF SVM (utilized), k-nearest neighbor (kNN), and multi-layer perceptron (MLP) feed forward neural
network. As can be seen, the results are very comparable, with the perceptron having the slight edge in correct
reflex classification and SVM in correct non-reflex classification. However, utilizing a neural network has a
much higher total computation time, in comparison to simpler statistical learning methods such as SVM and
kNN, and not necessary in this case. In other words, since we have shown that we only need two bandwith-
related parameters to capture the essence of a reflex, a simple strategy such as SVM presents a solid choice for
classification.
Impact of the distance between the wireless link and the subject: We next analyze the impact of the

distance between the subject and the link on the performance. Fig. 15 provides the histogram of the classification
accuracies for reflex and non-reflex events, based on their distance to the wireless link. We can see that if the
subject is too close to the link, the classification accuracy slightly drops, as expected. Overall, however, we see
that Wi-flex achieves a high accuracy for all the distances.

Execution Time: On an Intel Core i7-9700K processor, our pipeline takes 107 ms, on average, to process one
second of data.

Beyond Reflex Detection: In this paper, we brought a foundational understanding to the impact of a reflex
on an RF link and proposed a robust reflex detection system accordingly. Our bandwidth-related parameters can
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also provide quantifiable metrics for characterizing the intensity of a reflex response, which is of importance for
a number of applications, as discussed next.

Application in Smart Health: As discussed earlier, startle reflex assessment, in particular measuring reflex
intensity, is important in the medical domain. Our proposed approach not only has the potential to detect a reflex
but can provide quantifiable metrics for measuring the intensity of the reflex, and can thus be tested with/tailored
to the relevant medical conditions as part of future work. It can further enable a smart home health system
accordingly.
Application in Sports: As discussed, measuring the reflex reaction of athletes in certain sports/positions is

important for training purposes. Wi-Flex can provide a reliable, yet cost-effective metric for reflex characterization,
without a need for an elaborate setup, and can thus be tested in sports-domain as part of future work.

8 CONCLUSIONS
We considered reflex detection with WiFi, while considering startle reflexes as well as sport-type reflexes. We
proposed that the maximum normalized bandwidth and bandwidth-intense duration of the received signal can
successfully detect reflexes and robustly differentiate them from non-reflex events that involve intense body
motions. We proposed an efficient way of translating the content of a video to the bandwidth of the corresponding
received RF signal that would have been measured if there was a link near the event in the video, by drawing
analogies to the classic work of Carson in the context of analog FM radios (i.e., Carson’s Rule). This then allowed
us to translate online reflex/non-reflex videos to an instant RF bandwidth dataset, and characterize 2D optimum
reflex/non-reflex decision regions accordingly. We extensively tested the pipeline with 203 reflex and 322 non-
reflex events, over four areas (including several through-wall ones), and with 15 participants, achieving a correct
reflex detection rate of 90.15% and a false alarm rate of 2.49%. We further showed reflex detection results with
multiple people, and tested several different aspects of the work. Finally, we conducted experiments to show the
potential of our approach for providing cost-effective and quantifiable metrics in sports domain.
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A APPROXIMATED FORM FOR THE PHASE DIFFERENCE AND RECEIVED POWER SIGNALS
Both received power and phase difference signals of the baseband equivalent signal of Eq. 1 will have the form
presented in Eq. 2, albeit with different coefficients for 𝐴𝑚 and Δ`𝑚 , as recently shown in [42]. Here we briefly
summarize the proof. Consider Eq. 1, it is easy to confirm that we have the following squared magnitude signal
(after DC removal):

|𝑐 (𝑡) |2 = 𝑐 (𝑡)𝑐∗ (𝑡) = 𝐴𝑚𝑐𝑜𝑠 (
2𝜋
_
𝜓

∫
𝑣 (𝑡)𝑑𝑡 + Δ`𝑚) (4)

where 𝐴𝑚 = 2𝛼𝑠𝛼𝑚 and Δ`𝑚 = `𝑚 − `𝑠 is the initial phase difference between the reflected path and the direct
path.

Next, consider the phase difference of the signal of Eq. 1. For ease of computation, and without loss of generality,
lets consider the phase of the scaled signal 𝑒− 𝑗`𝑠𝑐 (𝑡)/𝛼𝑠 . It can be easily confirmed that the phase of this scaled
signal can be approximated as,

∠𝑐 (𝑡) ≈ 𝛼𝑚

𝛼𝑠
𝑠𝑖𝑛( 2𝜋

_
𝜓𝑑 (𝑡) + Δ`𝑚) (5)

when the direct path is stronger than the reflect path i.e. 𝛼𝑚
𝛼𝑠

≪ 1. Then, the phase difference between receivers 𝑖
and 𝑗 (e.g., different antennas of a WiFi card) can be written as

𝑠𝑝 (𝑡) = 𝐴𝑝𝑐𝑜𝑠 (
2𝜋
_
𝜓

∫
𝑣 (𝑡)𝑑𝑡 + Δ`𝑝 ) (6)

where 𝐴𝑝 = 2(𝛼𝑚/𝛼𝑠 )𝑠𝑖𝑛(1/2(Δ`𝑚,𝑖 − Δ`𝑚,𝑗 )) and Δ`𝑝 = 1/2(Δ`𝑚,𝑖 + Δ`𝑚,𝑗 ).
Equations 4 and 6 show that received signal power and phase difference share the same signal form, albeit

with different coefficients. As such, the proposed approach of this paper is valid for both signals. During our
experiments, we found the phase difference signal to be more robust to hardware noise and as such, we used
phase difference in our experiments.
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