
Neural Network Applications
In

Signal Processing

Dr. Yogananda Isukapalli

2

Neural Network Applications in Signal Processing

• Signal Detection by Noise Reduction
• Nonlinear Time Series Prediction
• Target Classification in RADAR, SONAR etc.
• Transient Signal Detection & Classification
• Frequency Estimation & Tracking
• Nonlinear System Modeling
• Detector for Different Signal Constellations in Digital

Communication
• Speech/Speaker Recognition
• Data Compression (Speech/Image)
• Image / Object Recognition & Processing
• Principal Component Extraction & Subspace Estimation

3

Neural Network Architectures and Algorithms

• Multilayered Feedforward Networks

• Backpropogation Algorithms

• Radial Basis Function Networks

• Recurrent Neural Networks

• Real-time Recurrent Learning Algorithm

• Hopfield Networks

• Unsupervised Learning Algorithms

4

Neuron Representation and Typical Output Function

5

The Multilayer Perceptron

• Initialize weights and thresholds, set all weights and thresholds
to small random values

• Present input and desired output:

Present input Xp = x0, x1, x2, …….. xn-1

Target output Tp = t0, t1, t2, …….. tm-1

where, ‘n’ is the number of input nodes and ‘m’ is the number
of output nodes. Set w0 to be -q, the bias, and x0 to be always 1.

6

Multilayer Feed-Forward Networks

7

Multilayer Feed-Forward Networks
A mapping from one multi-dimensional vector space into
Another multi-dimensional vector space:

Consider a pair of vectors (Rk, Sk):

Rk = (r1
k,…. rm

k)T : Input to the network
k = 1, … , p

Sk = (s1
k,…. sm

k)T

For each input : Output Rk = Y(W, Rk) = Rk = (y1
k,…. ym

k)T

Y(W, .) is the output of network parameterized by its
connection matrix W

8

• If the error incurred by the network is defined as the
mean square error E, then there exists a multi-layer
feed-forward neural network W such that:

[] []÷÷
ø

ö
çç
è

æ
--= å

=

p

k

kkTkk SRWYSRWY
W

E
1

),(),(
2
1

min

Multilayer Feed-Forward Networks

9

Neural Networks: Learning Algorithms

• Hebbian Learning

• Widrow-Hoff Learning

• Perceptron Learning

• Backpropagation Learning

• Instar and Outstar (Grossberg) Learning

• Kohonen Learning

• Kosko / Klopf Learning

• Other Learning algorithms

10

Back-propagation Learning Algorithm
Assume: M Layer

N1 neuron / layer1 = 1, 2, …., M
N0 = m inputs in the first hidden layer
Nm = n inputs in the output layer

The total activation of the ith neuron in layer1, denoted by x1, is
computed as follows:

å
-

=
-

+=
1

1
0,,,1,,,

l

y

N

j
iljljilil WWx

Where
Wl ,i, j: Connection weight from neuron j in layer l-1 to

neuron in layer1
Wl ,i, j: the threshold of the neuron

11

Back-propagation Learning Algorithm

0
exp1

1
),

,, >
+

== - kif(xy
ilkxl il

= Continuous, differentiable, monotonically
(sigmoid) function of its total activation.

• When pattern K is presented to the network, for i = 1, … N0

• The Neurons in the first hidden layer will compute their output
and propagate their outputs to the layer above

• The output of the network will be given by the neurons at the
very last layer, i.e. yM,i, i = 1, 2, …. NM

k
ii

k ry =,0

12

• The goal is to find the best set of weights W such that
the following error measure is minimized:

Back-propagation Learning Algorithm

ååå
= ==

-==
p

k

n

i

K
iiM

k

W

p

k

k

W

SyEE
1 1

2
,

min

1

min

)(

The partial derivative of the error with respect to the weights of
the neurons in the output layer is:

()å

å

=

-

=

-=
¶
¶

¶
¶

¶
¶

¶
¶

=
¶
¶

p

k
jM

k

iM

iM
k

k
iiM

k

jiM

p

k jiM

iM
k

iM

iM
k

iM

K

jiM

y
dx
dy

Sy
W
E

W
x

x
y

y
E

W
E

1
,1

,

,
,

,,

1 ,,

,

,

,

,,,

.

..

13

Back-propagation Learning Algorithm

)(' ,
,

,
il

k

il
k

il
k

xf
dx
dy

=

• Note that

• define dk
m,i as

)(').(,,, iM
kk

iiM
k

iM
k xfSy -=d

14

The partial derivative of the error with respect to the weights
Of the neurons in the output layer is:

()å

å

=

-

=

-=
¶
¶

¶
¶

¶
¶

¶
¶

=
¶
¶

p

k
jM

k

iM

iM
k

k
iiM

k

jiM

p

k jiM

iM
k

iM

iM
k

iM

K

jiM

y
dx
dy

Sy
W
E

W
x

x
y

y
E

W
E

1
,1

,

,
,

,,

1 ,,

,

,

,

,,,

.

..

Back-propagation Learning Algorithm

15

Back-propagation Learning Algorithm

• dk
m,i is generalized for the other layers by defining

å
+

=
++=

1

1
,,11,, .)('

lN

j
ijll

k
iM

k
iM

k Wxf dd

* * l = M-1, …,1; i = 1, …. N1

This makes it clear how the errors at one layer are propagated
backwards into the previous layer

• By combing * and * *, the partial derivative of the error with
respect to any of the weights in the hidden layer can be written
as:

å
=

-=
¶
¶ p

k
jl

k
il

k

jil

y
W
E

1
,1,

,,

d

16

The procedure is shown to converge provided that at, the
learning rates were chosen such that

These conditions are satisfied by the particular choice of

but the convergence may become very slow

Back-propagation Learning Algorithm

• To “change” the weights by a small amount in the direction
which causes the error to be reduced, the following update
procedure is introduced:

jil

t

t
t
jil

t
jil W

EWW
,,

)(
)(
,,

)1(
,, ¶

¶
-=+ a

åå
¥

=

¥

=

+¥<+¥<
1

2

0

2 and
t

t
t

t aa

0 somefor / 00 >= aaa tt

17

Back-propagation Learning Algorithm

• Increasing the rates of convergence

A. If we use a constant learning rate at such that 0.1<a<0.9, the
algorithm still approximates the steepest descent path, and
should produce a reasonably good solution

B. To reduce the effects of a very shallow error surface, a
momentum term bDw is added as follows:

)(
,,

,,

)(
)1(

,, β)β1(α t
jil

jil

t
t
jil W

W
EW D+

¶
¶

--=D +

where b is the amount of momentum that should be added.

18

In practice b should range from 0 to 0.4. Rewriting the above
equation:

å
=

-
+

¶
¶

--=D
t

k jil

kt
kt

jil W
EW

0 ,,

)(
)1(

,, β)β1(α

Back-propagation Learning Algorithm

The change to the weights becomes the exponentially weighted
Sum of the current and the past error’s partial derivative with
Respect to the weight being changed.

19

Kolmogorov’s Mapping Neural Network

Existence Theorem: (How many hidden layers are needed?)

Given any continuous function F:Id ® Rc, F(x) = y, where I is
the closed interval [0,1] (and therefore Id is the d-dimensional unit
cube), F can be implemented exactly by a three-layer neural network
having d processing elements in the input layer, (2d+1) processing
elements in the single (hidden) layer, and c processing elements in
the output layer. The input layer serves merely to ‘hold’ or freeze
the input and distribute each input to the hidden layer.

20

RADIAL BASIS FUNCTION NETWORKS

• Examples of Radial Basis Functions

2
1

22

2
1

22

2

2

2

)()(

)()(

)log()(

exp)(

-
+=

+=

=

÷÷
ø

ö
çç
è

æ
=

sf

sf

f

s
f

XX

XX

XXX

XX Gaussian

Thin plate Spline

Multi-quadratic function

Inverse multi-quadratic function

X is the euclidian norm of the difference between the input
vector and the rbf center for that node

21

RADIAL BASIS FUNCTION NETWORKS

Radial Basis Function Network A Radial Basis Neuron

22

Approximation by Radial Basis Functions

Given N different input vectors, Xi, Xi e Rn, i = 1, 2, … N, and the
corresponding N real outputs, yi, yi e R, i = 1, 2, … N, find a
function F, F:Xi, Rn ® R, satisfying the interpolation conditions

F(Xi) = yi i = 1, 2, …. , N

The solution to the above problem is a function which is linear
combination of N radial basis functions, i.e.,

å
=

-F=
N

i
ii XXCxF

1
||)(||)(

23

Neural Network Architecture Using Radial Basis
Functions

Parallel network like structure

Points in the data space are chosen as basis functions for
interpolation

The outputs are the weighted and summed quantities of the
outputs of the RBF centers, i.e.,

nc: the number of RBF centers
Oj: the output of the jth output nodeå

=

=
N

i
iijj WO

1
f

24

• Implementing RBF Networks

1. Gaussian Kernel is typically chosen
2. the spread s (Gaussian Kernel) is chosen by K nearest

neighbor rule
3. Fix the RBF centers by choosing the subset of the data

vectors that represent the entire data set, The vectors are
generally obtained by a K-means clustering algorithm

4. Compare the weights to the output layer by
W = AjD

where A represents the output of the first layer units for all
the available training patters; D represents the desired output
patterns and Aj is the Moore-penrose pseudo-inverse of A

5. Generalize the strict interpolation method to a successive
approximation radial basis network function network
(Xiangdong He and Lapedes)

25

Radial Basis Function Networks
Basis functions are the centers of the RBF neurons. All the available
training patterns are prospective candidates. The centers can be fixed
by k-means clustering or by the orthogonal least squares method. The
function Pi is a radial function, i.e., it is a function of the distance of
a particular vector x from the RBF center c. The weights are obtained
by a least squares fit over all the training patterns.

26

Two Layered RBF Networks

All training patterns are used as centers. The given patterns are
divided into N groups with L centers each. The w’s and λ’s are
obtained by least squares fit over all the patterns.

A Two layered Radial Basis Function Network

27

Radial Basis Function Networks

A Two layered Radial Basis Function Network

28

Recurrent Neural Networks

• A fully connected recurrent is one which all the outputs of
each unit is connected to the input of all the units, including
itself and excluding the external input nodes

• The recurrent network architecture allows the network to
retain the information from the infinite past.

29

Recurrent Neural Networks

30

Recurrent Neural Networks

• Real-Time Recurrent Learning (RTRL) Algorithm
(Williams and Zipser)

Assume: m: Input Nodes
n: Output Nodes
q: designated target units for which desired

outputs are known
n-q: The remaining nodes for which the desired

outputs are set to zero
Wij: The weight connecting the ith and jth units

Let: Z = [x,y]
X: the input vector of size 1 x m
Y: the output unit of size 1 x n
Z: the augmented vector of size 1 x (m+n)

31

Recurrent Neural Networks

then

å
+

=

=
nm

l
lklk ZWtS

1
)(

)((exp)1
1

)1(tSk k
tY -+

=+

)1()1()1(+-+=+ tdtyte kkk

dk: the desired output for the kth output unit

32

Recurrent Neural Networks

))1(1)(1()(' +-+= tytySf kkkk

The weights are updated by gradient descent method

Now: The minimum mean squared error is the optimization
criterion as follows:

2)(
2
1å -=

j
jj ydE

åå
==

+=
¶
¶

+=
¶
¶ q

k

k
ijk

q

k
k

ij
k

ij

tptety
W

te
W
E

11
)()1()().1(

33

Recurrent Neural Networks

)()()1(

)1().1()(

)()()(')1(

.)1(

1

1

tWtwtW

tptetW

tZtpWSftp

W
S

S
Etp

ijijij

n

k

k
ijkij

n

l
jik

l
ijklk

k
ij

ij

k

k

k
ij

D+=+

++=D

ú
û

ù
ê
ë

é
+=+

¶
¶

¶
¶

=+

å

å

=

=

a

d

34

Recurrent Neural Networks

Comments on RTRL:

• Computationally intensive and higher storage requirements

• Computational complexity is O(n4)

• Storage requirements O(n3)

• Parallel implementation will reduce the computational time
(Williams and Zipser, 1989)

35

The Little/Hopfield Neural Network Model

36

Hopfield Network

The outputs of the network are modified in such a way that the
Lyapunov function E is minimized.

ååå
== =

-=
n

i
ii

n

i

n

j
jiij vIvvWE

11 12
1

Wij are the weights, Ii’s are the inputs

()å +=+ ikkii ItvWftv)()1(

Thus, if we can identify the above
structure of E in an optimization
problem, then the weights and inputs
can be computed. The network is
trained till the output vi’s converge.

A typical Hopfield Neural Network

