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1. Mth band filters (Nyquist filters)

Consider an M-fold interpolation filter, the output is given as Y(z) = X(zM)H(z).  
Representing H(z) in terms of polyphase components with E0(z) a constant c,  
we have

3

(1)

(2)

(3)

This means y(Mn) = cx(n). A filter with this property is known as Nyquist filter
Then the Impulse response h(n) satisfies

h(Mn) = c, n = 0
= 0, otherwise

Generalized definition

(4)

(5)h(Mn + k) = c n = nk

= 0 otherwise

(6)

y(Mn + Mnk + k) = cx(n) (7)

M – 1
–1 M –(M – 1) M

H(z) = c + z E1(z ) + … + z E (z )
M – 1

then  Y(z) =  cX(zM) + å z–lE (zM)X(zM)
l

l  = 1

–1 –k k–Mn –(M – 1)
M – 1E (zM)+ … + zH(z) = E (zM) + z E (zM) + … + cz z

0 1

–k k–Mn M –l M M
z El(z )X(z )å

l ¹ k
Y(z) = cz z X(z ) +
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Manifestation in frequency domain

If H(z) satifies (1), then

(8)

The frequency response of H(zWk) is the shifted version of H(zWkj(w-2pik/M)).

M – 1

å H(zWk) = Mc = 1 ( assuming c = 1/M)

k = 0

0

4

H(z) H(zW) H(zW2) H(zWM-1)

fig 1 For an Mth band filter H(z), the responses H(ej(w-2pik/M) add up to a constant

w
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a) Half-Band Filters

5

(9)

(10)h(2n) = c
= 0

n = 0  
otherwise

(11)

(12)

justifying the name “half-band filters”.

A half-band filter H(z) is an Mth band filter with M = 2.  

H(z) = c + z–1E (z2)
1

In terms of impulse response h(n) this means

è ø è ø
ç ÷ ç ÷From (11), we observe that the two factors Hçe

è 2 ø÷ and  Hçe
è 2 ø÷ add up to

The condition in frequency domain is
H(z) + H(-z) = 1 ( assuming c = .5)

If H(z) has real coefficients, then H(–ejw) = H(ej(p – w)) and the equation  

becomes H(ejw) + H(ej(p – w)) = 1

æ jæ P---– qöö æ jæ P---+qöö

2unity for all q . i.e. we have a symmetry with respect to the half band frequency -P---,
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Design of zero-phase FIR equiripple half-band filters

N

i) Suppose G(z) = å g(n)z–n is a Type 2 linear phase filter.
n  = 0

This means that N is odd and g(n) is real, with g(n) = g(N-n).
This also means that there is a zero at w = P

6

2
–j--w-----N---

R RWe can write G(ejw) = e G (w) where G (w) is real.
ii) Design GR(w) with passband as 0 £ w £ qp and transition  

band to be qp £ w £ p . There is no stop band.

Such filters with one equiripple passband and no stopband can be  
designed using the Parks-McClellan algorithm.

iii)Define the transfer function F(z) = [z–N + G(z2)] ⁄ 2 .  
This is Type 1 linear phase filter.
F(z) is a half-band filter.

iv) Define Ĥ(z) = zNF(z)

Ĥ(z) is a zero-phase half-band filter. Its length is 2N+1
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2. Complementary transfer functions

(13)

(14)

k

A) Strictly Complementary (SC) functions
A set of transfer functions [H0(z), H1(z), . . ., HM-1(z)] is said to be strictly
complementary if they add up to a delay, that is

M – 1
–n0å H (z) = cz c ¹ 0

k
k = 0

where c>0 is a constant.

k = 0

If we split a signal x(n) into M subband signals using the SC analysis filters Hk(z),  
then we can just add the subband signals to get back the original signal x(n)
with no distortion, except a delay.

B) Power Complementary (PC) Functions
A set of M transfer functions is said to be power-complementary if
M – 1

å H  (ejw)
2

= c for all w

7
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(15)

8

(16)

where A(z) is allpass. (17)

Note - SC functions are also AC but not PC.

M – 1

l  This property is equivalent to å H̃k(z)Hk(z) = c for all z
k = 0

where

H̃(z) = H *(z
–1)

C) Allpass Complementary (AC) Functions
A set of transfer functions is said to be allpass complementary if

M – 1

å Hk(z) = A(z)
k = 0
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where El(z) are Type1 polyphase components.

9

Relation between Nyquist(M) Filters and Power Complementary Filters

Consider a transfer function H(z) represented in the M-component polyphase form
M – 1

H(z) = å z–lE (zM)
l

l  = 0

Define the new transfer function G(z) = H̃(z)H(z) . Then the set  
[E0(z), E1(z), . . ., EM-1(z)] is power complementary if and only if
G(z) is an Mth band filter. (Extra credit - Prove this result).
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3. Quadrature Mirror Filter (QMF ) Banks

a) M-channel filter bank

fig 2. The M-channel QMF bank

H0(z)

H1(z)

G0(z)

G1(z)

M

M

M

M

M

M

x(n)

10

HM-1(z)

Analysis Bank

GM-1(z)

Synthesis Bank
x̂(n)
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Subband coding involves spliting the input signal x(n) into subsequences using a  
bank of filters H0(z), H1(z), . . . , HM-1(z) as shown in fig 2. This would produce M
times as many samples as the original. To preserve the overall number of samples,  
the outputs of the filters are decimated by a factor of M. Such filter banks are said to  
be maximally decimated. The output of the ith filter can be written as

11

(18)

(19)

(20)

(21)

yi(m) = åx(n)hi(m – n)
n

yi(m) = á x(n), hi(m – n)ñ

where  áx, yñ denotes the inner product of x and y.

After decimation, we have
yi(mM) = á x(n), hi(mM – n)ñ

Thus the analysis filter bank computes the inner products of the signal with the  
basis functions
ak(n) = hi(mM – n) i  =  0, 1, …, M – 1, m Î Z where k = mM + i.



Half-band filters, QMF banks and MRA

Reconstruction of the signal is achieved by using a synthesis filter bank, where the  
decimated outputs are upsampled, filtered by G0(z), G1(z), . . . , GM-1(z) and summed.

When the output is identically equal to the input we say that the overall system is  
perfectly reconstructing.

12

(22)

(23)

(24)

The analysis basis functions are ak(n) and the synthesis basis functions are bk(n).

The above equations can be written in matrix notation as
X = BAX, thus B = A-1. If B = A*, then A is unitary, bk(n) = ak(n) and the  
expansion in (24) is orthonormal.

i = 0, 1, …, N – 1.

i  =  0 m
where bk(n) = gi(n-mM) and k = mM + i.

The synthesis filter output is given as

zi(n) = åyi(mM)gi(n – mM)
m

summing over all the channels we get
M – 1

x(n) = å zi(n)
i = 0

M – 1

k

x(n) = å åyi(mN)gi(n – mM) = å á x(n), ak(n)ñbk(n)
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b) Two channel filter bank.

Consider the specific case of a maximally decimated two channel multirate  
filter bank, shown in fig. 3.

fig 3. A 2-channel QMF bank

H1(z)

H0(z)

G1(z)

G0(z)

x(n)

a1(n) b1(n) c1(n)

a0(n) b0(n) c0(n)

y1(n)

y0(n)

2 2

13

2 2

x̂(n)
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(25)
(26)

Tracing the signals through the lower branch gives
A0(z) = H0(z)X(z)
Y0(z) = G0(z)C0(z)

The outputs of the downsampler and upsampler are given as

(27)

(28)

(29)

C0(z) = B0(z2)

combining these equations we get
Y0(z) = 1/2G0(z)[H0(z)X(z) + H0(-z)X(-z)]

Similarly, for the upper branch we can write
Y1(z) = 1/2G1(z)[H1(z)X(z) + H1(-z)X(-z)] (30)

(31)

(32)
(33)

1-- 1--

è ø è ø

æ 2ö æ 2öB(z) = 1--A çz ÷ + A ç–z ÷
2 0 0

X̂(z) = 1/2[H0(z)G0(z) + H1(z)G1(z)]X(z) + 1/2[H0(-z)G0(z) + H1(-z)G1(z)]X(-z)
For perfect reconstruction, the factor multiplying X(z) should be equal to 1 and  

that multiplying X(-z) should be equal to 0. i.e.
H0(z)G0(z) + H1(z)G1(z) = 2,
H0(-z)G0(z) + H1(-z)G1(z) = 0

14
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In matrix notation (31) can be written as

(34)

Let the 2 X 2 matrix be Hm(z) (Alias component matrix).  
solving equations (32) and (33) we get

(35)

m (36)

(37)

è2ø 0 1
H0(z) H0(–z)

H1(z) H1(–z)
X(z)

X(–z)
X̂ (z) = æ 1--öG (z) G (z)

G0(z)

G1(z)

H0(z) H0(–z) 2
H1(z) H1(–z) 0

=

G0(z)

1G (z)

H1(–z)

0
Ñm(z) –H (–z)

= -------2------- m

15

where Ñ (z) = det H (z).

2H0(z)H1(–z)

Ñm(z)
Let P(z) = ------------------------------------= H0(z)G0(z) then
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(38)
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The condition for perfect reconstruction in (32) can be written as
P(z) + P(-z) = 2 (39)

(40)

To construct an FIR filter bank, we should find a valid P(z) and factor it into
its FIR factors. We could initially choose a factor of P(z) and solve for the
complementary part. Then we could refactor P(z) into H0(z) and G0(z) or
H1(-z) and G1(-z) respectively.

2H1(z)H0(–z)

Ñm(–z)
P(–z) =  ------------------------------------ = H1(z)G1(z) (since Ñm(z) = –Ñm(–z) )

To have FIR solutions for the above equation, it is necessary and sufficient  
that

Ñm(z) = 2z-2l-1. where l ÎZ
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4. Errors created in the QMF bank

a) Aliasing and Imaging. (ALD)

The analysis filters have non-zero transition bandwidth and stopband gain.
The signals xk(n) are not bandlimited, and their decimation results in aliasing (ALD).

fig 4. Two possible magnitude responses for the analysis filters.
(a) Nonoverlapping, and (b) overlapping.

0

17

0

H0(z) H1(z) H0(z) H1(z)

w w-p- -p-
2

(a)

2

(b)
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In equation (31) the term containing X(-z) takes into account aliasing due to the  
decimators and imaging due to the expanders.

18

We can cancel aliasing by choosing the filters such that the quantity
H0(-z)G0(z) + H1(-z)G1(z) = 0 or

G0(z) = H1(-z), G1(z) = -H0(-z).
(41)

(42)

Thus, given H0(z) and H1(z), it is possible to completely cancel aliasing by this  
choise of synthesis filters.

So, in a QMF bank we permit aliasing in the analysis bank and then choose  
synthesis filters so that the alias component in the upper branch is cancelled  
by that in the lower branch.

fig. 5 shows the alias cancelation mechanism in the QMF bank.
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(45)

b) Amplitude and phase distortions

With the above choice of synthesis filters, we have

X̂                      (z) = T(z)X(z) (43)
where T(z) = 1/2[H0(z)G0(z) + H1(z)G1(z)], is called the distortion transfer function
substituting the alias free condition, we get

T(z) = 1/2[H0(z)H1(-z) - H1(z)H0(-z)] (44)

T(eiw) ejj(w), we have

T(eiw) ejj(w)X(ejw)

letting T(ejw) =

X̂                    (ejw) =

Unless T(z) is allpass, we say that X̂ (ejw) suffers from amplitude distortion (AMD).

Similarly unless T(z) has linear phase, X̂ (ejw) suffers from phase distortion (PHD)

Note - If a QMF bank is free from ALD, AMD and PHD, it is said to have  
perfect reconstruction property. This is equivalent to the condition T(z) = cz-n0.

19
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(46)

(47)

(48)

(49)

similarly the synthesis filters can be represented as

(50)

jw jw
Let H1(z) = H0(-z). Then H1(e ) is a mirror image of H0(e ) with repect to

4the quadrature frequency 2----P---, and therefore the name QMF.

With these filters we have
2 2

T(z) = 1/2(H0 (z) - H0 (-z)).

Polyphase representation
2 –1 2

H0(z) =  E0(z  ) + z E1(z ) (Type1 representation)
2 –1 2

H1(z) =  E0(z  ) – z E1(z ) i.e

H0(z)

H1(z)
1 1
1 –1

0E (z2)

z–1E1(z2)

=

z–1E1(z2) E (z2)
0

1 1
1 –1

G0(z) G1(z) =

20
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2

2

2

2

E0(z2)

E1(z2)

E1(z2)

E0(z2)

x(n)

-1 -1

2

2

2

2E0(z)

E1(z)

E1(z)

E0(z)

x(n)

-1 -1

z-1

z-1

Analysis bank synthesis bank

fig 6 (a) The complete QMF bank in polyphase form (b) Rearrangement using noble identities

x̂(n)

x̂(n

21
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(51)

22

(52)

(53)

That is the filters cannot have sharp cutoff and good stopband attenuation.
We cannot, therefore, obtain useful FIR perfect reconstruction systems under  
the constraint H1(z) = H0(-z).

With the analysis filters related as H1(z) = H0(-z)
and the synthesis filters chosen to cancel aliasing

G0(z) = H1(-z), G1(z) = -H0(-z)
the distortion function T(z) given in (46) can be written as

T(z) = 2z-1E0(z2)E1(z2).

When H0(z) is a FIR filter, then the amplitude distortion can be eliminated if  
and only if the FIR functions E0(z) and E1(z) is a delay . i.e.

–n0
E0(z) = c0z

–n1
E1(z) = c1z . This means

–2n0
H (z) = cz0 1

–(2n1 + 1), –2n0–cz–(2n1 + 1)
+ cz H (z) = cz (54)
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(55)

(56)

which implies that:

Eliminating phase distortion with FIR filters

From linear phase constraint we have h0(n) = -+h0(N – n) Since H0(z) has  

to be lowpass, the only possibility is h0(n) = h0(N-n). With this choice

–jw -N--
H(ejw) = e 2 R(w) where R(w) is real for all w.

The expression for distortion function is thus,

0 0è2ø è øT(ejw) = æ 1--öæ H (z) 2 – (–1)N H (z–1)
2ö

2
–-j--N----w--

0
2

0
2

è ø
æ H (ejw) – (–1)N H (ej(p – w)) öT(ejw) = e

23
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5. Power symmetric QMF banks

Power symmetric property

(57)

so that

(58)

where h(z) =

(59)

From (49) we have

Ẽ (z)E(z) = 2 R†R = 0.5I

0E (z2)

z–1E1(z2)

where E(z) = 1 1
1 –1

R =

h̃ (z)h(z) = 1 .

H0(z)

H1(z)
In terms of w this can be written

jw 2 jw 2
as H0(e ) + H1(e ) = 1 . (power complementary condition)

so H1(z) is related to H0(z) in two ways
1) H1(z) = H0(-z), (60) 2) power complementary condition above .

Combining these two, H̃0(z)H0(z) + H̃0(–z)H0(–z) = 1 (power symmetry condition) (61)

24
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FIR PR system with power symmetric filters

25

(62)

(63)

(64)

Then the synthesis filters are given as

(65)

(66)

(67)

Let the synthesis filters be chosen so as to cancel aliasing then we have
X̂ (z) = 1--[H (z)H (–z) – H (z)H (–z)]X(z)

2 0 1 1 0

For perfect reconstruction, we require this to be a delay. Assume that
H0(z) is power symmetric. If the filter H1(z) is chosen as

–N ˜
H1(z) = –z H0(–z) then equation (62) reduces to

X̃ (z) = 0.5z–NX(z) for odd N.  
This satisfies the PR system condition.

–N ˜
G0(z) = z H0(z)

–N ˜
G1(z) = z H1(z)

In time domain these can be written as
N

h1(n) = (–1) h0*(N – n)

g0(n) =  h0*(N – n) g1(n) = h1*(N –n)
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g(n)z–n of order 2N using Parks-McClellan algorithm.

26

Design of FIR PR system with power symmetric filters
i) From above discussion we see that only the filter H0(z) is to designed.  

The power symmetric property means that the zero-phase filter

H(z) = Ĥ0(z)H0(z) is a half-band filter.

H(ejw) is nonnegative.
ii) First design a zero-phase FIR half band filter

N

åG(z) =
n = –N

The half-band property can be achieved by constraining the bandedges
to be such that wp + ws = p , and the peak ripples in the passband
and stopband to be identical.

iii) Define H(z) = G(z) + d , where d is the peak stopband ripple of G(ejw)

This ensures that H(ejw) ³ 0 .
iv) Compute the spectral factor H0(z) of the filter H(z). This can be done by  

computing the zeros of H(z) and assigning the appropriate subset to H0(z).
v) Once H0(z) has been computed, the remaining three filters can be obtained  

by using (66) and (67).
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6. Perfect Reconstruction (PR) systems

The delay chain perfect reconstruction system

H0(z) = 1, H1(z) = z-1, G0(z) = z-1, G1(z) = 1.

x(n): x(0) x(1) x(2) x(3) x(4) x(5) x(6) . . .
v0(n): x(0) x(2) x(4) x(6) . . .
v1(n): x(-1) x(1) x(3) x(5) . . .
y0(n): x(0) 0 x(2) 0 x(4) 0 x(6) . . .
y1(n): x(-1) 0 x(1) 0 x(3) 0 x(5) . . .
x^(n): x(-1) x(0) x(1) x(2) x(3) x(4) x(5) . . .

fig7. (a) The delay chain perfect reconstruction QMF bank and
(b) its operation in the time domain

x(n) v0(n)

v1(n)

y0(n)

y1(n)
z-1 z-1

2

2

2

2

x̂(n)

27
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•

(69)

• Condition for FIR perfect reconstruction systems

(70)

•

• Example1 - Consider the two channel system shown in fig 8
(a) Find whether the system satisfies PR condition and also

• Refering to fig. 17 from handout on polyphase representation( filter banks(II))

we have  xˆ(n) = x(n) if  R(z)E(z) = I (68)

Generalizing the above condition, we have

0–m –(Mm0 + M – 1)
R(z)E(z) = cz I with T(z) = cz

det E(z) = az–K , a ¹ 0 , K = integer.

R(z) should also satisfy similar condition.

1 1
1 –1

(b) find the analysis and synthesis filters when c = 2 and T =

28
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= T.

So the above figure can be redrawn as shown in fig 9

2

2

2

2

x(n)

z-1

Analysis bank synthesis bank
fig 8. Example of perfect reconstruction filter.

z-1
T cT-1

x̂(n)

a) By comparing with fig 7 we have
E(z) = T and R(z) = cT-1 and E(z)R(z) = c.

Therefore the system is PR system with output given as

xˆ(n) = cx(n – 1)

1 1
1 –1

b) With T = 1 1
1 –1

, we have cT-1 = T =

29
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Analysis bank Synthesis bank
fig 10. redrawing fig 9 in conventional form

2

2

2

2

x(n)

-1 -1Analysis bank Synthesis bank

z-1

x̂(n)

z-1

fig 9. For specific choice of T, fig 8 redrawn
so the filters are

H ( –1 –1 –1 –1
0  z) =  1 + z , H1(z) =  1 – z , G0(z) =  1 + z , G1(z) = – 1 + z

and the system can be redrawn as in fig 10

2

2

2

2

1+z-1

1-z-1

1+z-1

-1+z-1

x(n)

x̂(n)
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7. Tree Structured Filter Banks

2

2

2

2

2

2

2

2

2

2

2(1)H0 (z)

1H (1)(z)

(2)H0 (z)

(2)H1 (z)

(2)H0 (z)

(2)H1  (z) 2

(2)G0 (z)

(2)G1 (z)

(2)G0 (z)

(2)G1 (z)

0G (1)(z)

1G (1)(z)

x(n)

31

Level 1 Level 2 Level 2 Level 2

fig11. A two level maximally decimated tree structured filter bank

x̂(n)
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• In a tree structured fiiter bank, the input signal is split into two subbands,  
and after decimation, each subband is again split into two and decimated.  
The subbands are then recombined, two at a time, by use of two channel  
synthesis bank. This system is said to be maximally decimated binary tree  
structured filter bank.

• Prove that the system shown in fig 11 can be redrawn as in fig 2 with M = 4.
Also express the resulting filters Hm(z) and Gm(z) for m = 0,1,2,3 in terms of the

filters Hi(k)(z) and Gi(k)(z). (Extra credit)

32
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8. Multiresolution Analysis Algorithm.

fig12(a) A 3-level binary tree structured QMF bank, and (b) the equivalent four channel system.

G(z)

H(z)

2

2

H(z)

G(z) 2

2

H(z)

G(z)

2

2

x(n)
y0(n)

y1(n)

y2(n)

y3(n)

H3(z)

H2(z)

H1(z)

H0(z)

8

8

4

2
x(n)
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fig 13. (a) The synthesis bank corresponding to fig 12 (b) the equivalent four channel system
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Half-band filters, QMF banks and MRA

l Assume that Gs(z) and Hs(z) are chosen such that the two channel QMF bank  with 
filters G(z), H(z), Gs(z) and Hs(z) has perfect reconstruction, with unit gain

fig 14. Typical appreancances of magnitude responses of filters in the 3-level tree.

and no delay. We then have xˆ(n) = x(n) . The signals vk(n) are called  
multiresolution components. This structure can be used in image  
compression and video compression.

Fig. 14 shows the frequency response of the analysis and synthesis fitlers
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