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Motivation

* Optimal digital filters designed with fixed
filter tap weights have limitations when
nonstationary input signals with unknown
statistical characteristics are encountered
1n many applications .

* A more complete solution to nonstationary
environment 1s provided by a continuously
adaptive filter .

 In an attempt to build a adaptive filter , we
are seeking to find an algorithm which 1s
optimal 1n some sense ( 1n the least -square
sense ) but which 1s responsive to changes
in the optimal solution arising as each new
data point becomes available .




* We want a filter which will iterate to track
changes in the optimal solution .

« Adaptive filters have been successfully applied
in several areas including :

(a) adaptive antenna systems in which adaptive
filters are used for beam steering and provi-
ding nulls in the beam pattern to remove un-
desired interference .

(b) digital communication receivers in which
adaptive filters are used to provide equal-
1zation of intersymbol interference and for
channel 1dentification .




6 Adaptive Noise cancellation (ANC)\

1s another useful application of adaptive
filtering. ANC 1s concerned with the
enhancement of noise corrupted signals
where no a priori knowledge of signal
or noise 1s required .

(d) Adaptive filters are used to estimate the
time-delay between two measured signals,
an application useful in radar, geophysics
and biomedical signal analysis.

(e) System modelling, in which an adaptive
filter 1s used as a model to estimate the
characteristics of an unknown system.
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Figure 8.1 Structure of adaptive transversal filter.




/ Problem Formulation \

From the figure :
Estimation error :
e(n)=d(n)—d(n)

= d(n)—w (n)u(n)
where

w(n) =[wy (n),w; (n),. . . .. WM_I(VI)]T

u(n)=[u(n),u(n-1),..... un—M + 1)]T

Mean-Squared error :

J(m)=c% —wH (m)pw(m)+w' () Rw(n)

02, = variance of the desired response

p =cross-correlation vector between u(n)
and d(n)

\E = correlation matrix of the vector u(y




* Note that the variation of the mean-squared
error J(n) with time n signifies that error
process {e(n)} 1s nonstationary .

e J(n) depends on w(n) and this functional relation -
ship generates a bowl-shaped surface with a
unique minimum. This surface 1s known as the
error - performance surface of the adaptive filter.

e At the minimum point of the error - performance,
w takes on the optimum value w, which satisfies

Weiner - Hopf equation.

Rw,=p
2 H
Jmin_Gd P Yo




(teepest Descent Algorithm \

Find theJ . by the following four steps :
min

1. Choose w(0). Typically, w(0) 1s set equal to the
null vector.

2. Compare the gradient vector V(J(n)). Partials
are taken with respect to real and imaginary
values of w(n). This is done using initial guess.

3. Compute the next guess of w(z) by making a
change in the initial or present guess in a
direction opposite to that of the gradient vector

4. Go back to Step 2 and repeat the process.
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Substitute :

where
[ oJ (n)

e Updated tap-weight vectoratn+1 :
w(n+1)=w(m)+ S u[=V(J ()]

V(J(n))=—2p+2Rw(n)

™

0J (n)

N

oa,,(n)

oJ (n)
Oal (n)

V(J(n)=

8J (n)

*75b (1)

8] (n)
J ab (n)

. 8] (n)

w(n)=a(n)+ jb(n)

O

byr (1)
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Finally, the updated tap - weight vector w(n+1) :
w(n+1)=w(n)+ulp-Rw(m)] n=012.. .

where u controls the size of the incremental
correction to w(n) from one iteration cycle to
next :

Interpretation : If we express :

Sw(n+1)=pE[u(n)e” (n)]
Sw(n+1)=w(n+1)—w(n)=p[p—Rw(n)]
p=Elu(n)d” (n)] R=E[u(nyul (n)]
Sw(n+1)=p[ E[u(n)d" (n)]-Elu(n)ut? (n)w(n) |
= uE[u(n){d” (n)—u! (myw(n)})
e(n)
= UE[u(n)e (n)]
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then we may use a bank of cross-correlators to
compute the correction vector ow(n).

Steepest -descent algorithm when represented as a
signal flow graph leads to a feedback model.

..........................
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Define a weight - error vector at timen as :
c(n)=w(n)—w,
where w,, , the optimum value satisties the Weiner -
Hopf equation :
B"_Vo =P

Eliminate p : w(n+1)=w(n)+u[p—Rw(n)]

Now | c(n+1)=(L-p R)c(n)

From Unitary transformation, we can represent :

R=0A0"

Q:Unitary matrix A= dlag(kl, A 9 .KM)

~~/

N /
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c(n+1)=(I-pQ A0 e(n)

N

Now (T
0 c(n+1)=(1-un)0" c(n)
Define a new set of coordinates :
v(n)=0"" c(n)

=0 [w(n)—w,]
then [ v(n+1)=(I-pA)v(n)
with : %(0)=0" [w(0)~w,]

-0 w, (w(0)=0)

™

/
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K Two representations \

c(n+1)=(L-uR)c(n)

— K < R —

O—17 e

c(n+1) c(n)
e Figenvalue representation :
v(n+1)=(L-pA)v(n)
kth natural mode :
vk(n +1)=(1 —u?»k)vk(n)

1 —ph,

\O - - Vk(n)/
vi(n+1)
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Solving the scalar difference equation :
v (m=>0-pr v, (0)  k=12,.. M

no oscillations : eigenvalues of R are positive

and real

Stability : —1<1—ukk<1 all k

implies : v_v(n)—)v_vo as n—» o

the necessary and sufficient condition for
the stability of the Steepest -descent algorithm :
2

Amax
1s the largest eigenvalue of R

O<u<

where kmax
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* Time constant equation
Ve (O)t...‘n.

v (1)

ol 1 23 45 n

Assume the unit of time to be the
duration of one iteration cycle.

l—pd, =eXp(—%k)

_ —1
k In(1—-pnr

T

i)

T defines the time required for the amplitude

of the kth natural mode vy (n) to decay to % of

its initial value v 2 (0), eisthe base of the natural

logarithm. For small n
1
\’C P~ W n<<l /
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e Transient behaviour of w(n)
Start from

v(n) =0 [w(n)—w,]
0v(n)=00" [w(n)-w,]

L

. w(n)=wy +Qv(n)

:v_v0+[glgz. .. ..QM]

+ 2 (n)
=W q,v, (n
=

where

v m=>-pi Y (0)  k=12....M

/
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— 0)(1—pd, )"
ow Wi(n)_WOi+ E]levk( )( —U k)

It can be shown :
-1 <t,< -1
In(1-pA 0% ) In(1- Mkmin)

T, = overall time constant .
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/Transient behaviour of J(n) : \
Start from :

2

M

L o 7
By substituting vy (n)=(1-pA k) vy (0)

J=J .+ amw 2 0
()= min+k§1 k( —H k) ‘vk( )‘
1121 _{ &?) =J min for any vy (0)

J(n) vs n 1scalled the learning curve
the exponential decay for Ath natural mode has
time constant :

—1

Tk,mse ~ 2In(1—pA k)

1
Qor smallp Tk,mse T 2uA N /
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44 EXAMPLE

In this example, we examine the transient behavior of the steepest-descent algorithm ap-
plied to a predictor that operates on a real-valued autoregressive (AR) process. Fig-
ure 47 shows the structure of the predictor, assumed to contain two tap weights that are
denoted by w;(n) and w(n); the dependence of these tap weights on the number of it
erations, n, emphasizes the transient condition of the predictor. The AR process u(n) s
described by the second-order difference equation

u(n) + ayu(n = 1) + ayufn = 2) = v(n), (433)

where the sample v(n) is drawn from a white-noise process of zero mean and variance

e

The AR parameters a; and a, are chosen so that the roots of the characteristic equation

1 + alz-] + azz-z - 0

u(n) _ un-1) - un - 2)

) (L, ;)

FIGURE 4.7 Two-tap predictor for real-valued input.
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are complex; that s < da,. The partcular values assigned to a, and a, are determined
by the desired eigenvalue spread y(R). For specified values of o, and o, the variance
,ofthe white-nois )i chosen to mke the proces () have variance o = |

The requirement is to evaluate the transient behavior of the tecpest-descent
algorithm for the following conditions:

* Varying eigenvalue spread x(R) and fixed stepsize parameter p,
* Varying stepysize parameter  and fved eigenvlue spread y(R)

Characterization of the AR Process

dince thepredictorof Fig .7 hastwo tap weights and the AR process u{n) i real val-

e, it ollowsth the corrlation matrx R ofthetap nputs i a two-by-wo symmet.

ric matrix, That is,
10) (1)
R =
ol
where (see Chapter 1
1(0) = o
and

21



In ¢ach of which

R A
0= | - 2 .
b (L 4a) -a

|
The two eigenvalues of R are

[ 44,
and
b
h={1+—|d
: ( 1 + az) :
Hence, the eigenvalue spread equals (assuming that ;1S negative)
)q ]1- (4 t (0
Rj=—= :
i b 1tata

The eigenvectors associated with the eigenvalues A, and A, are, respectively,

1

J

_L[
ql—\/i
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and

J.H
q2'\/2 Kl

both of which are normalized to unit ength,

EXPERIMENT 1 Varying Eigenvalue Spread

In this experiment, the step-sze parameter wis fixed at 0.3, and the evaluations are
made for the four sets of AR parameters given in Table 4.1

TABLE 4.1 Summery of arameter Values Characterzing he Second-Order AR Modeling Problem

Eigenvalue - Minimum mean-
spread,  square error,
(e o b A b vEhh o =0

AR parameters Eigenvalues

00 0% 1 09 Wi 0,095
A0 0% 15 08 } 00m1
L9095 188 01 10 00322
L9095 1957 00198 100 0.0038

= o T =
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For a given set of parameters, we use a two-Cimensional plot o the transformed
tap-Weight error v () versus vy () to display the transient behavior of the teepest-de-
scent algorithm. In particular, the use of Eq, (421) yields

)

W)=

”1(")} (434

Tocalculat the nitial vahe v(0), we s Eq, (4.19),assuming that the niialvalue w()
ofthe ap-weight vector () s zero.This equation requires knowledge of the optimum
tap-weight vector W,. Now, when the two-tap predictor of Fig. .7 i optimized, with the
second-order AR process of Eq. (4.33) supplying the tap inputs we fmd that the opti-

mum tap-weight vector i

and the minimum mean-square error i

]min = Uﬁ
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Accordingly, the use of Eq. (4.19) yields the iniial vaue
vl(o)J
v(0) =
() [”2(0)
l

11 (435
_1 '1 _"az ‘ )

al+a2

Sl Si—

L0 =y

Ths,for specified parameters, we use Eq.(4.35) to compute the initial value V(0) and
then use Eq. (4.34) to compute ¥(1),¥(2)..... By joining the points defined by these
values of v() for varying n, we obtain a Irajectory that describes the transient behay.
tor of the steepest-descent algorithm for the particular set of parameters

Itisinformative to include in the two-dimensiopal plot of () versus v,(n) loc
representing Eq. (4.8) for fixed values of n For our example, Eq. (4.28) yields

) = i = hi{m) + o). (430

When A, = A, and nis fixed, Eq. (4.36) represents a crcle with center at the origin and
radius equal to the square root of Jn) - ]min] /A, where Ais the common value of the
two eigenvalues, When, on the other hang| A # hy, Eq (4.36) represents (for fixed 1|

an ellipse with major axis equal to the square root of [] (n) - lmin]/Az and minor axis
equal to the square root of [I (n) - fmm]/)m with A, > A,
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Case 1: Eigenvalue Spread y(R) = 122, For the parameter values given fo
Case 1in'Table 4.1, th eigenvalue spread y(R) equals 1.22:that i, the cigenvalues
and k are approximately equal, The use of these parameter values in Eqg. (434) and
(435) yields th trajectory of u(n), )| shown n Fig 48(a), with n a5 running .
rameter. The use of same parameter values in Eq.(4.36) yields the (approximately)cir.
cular loci shown for fixed values of J (n) corresponding ton = 0,1,2,3,4.,

We may also display the transient behavior of he Steepest-descent algorithm by

pltting the tap weight ) vrsus (). paticular, for our example, the use of
Eq.(425)yilds the tap-weight vecto

W(n) = (43)

Ll vn(")*”z(”))/\/fJ
() = win))/V2 |

The corresponding trajectory of [wl(n), wz(n)], With n s a running parameter,
obtained by using Eq. (437),is shown in Fig. 4.9(a). Here again, we have included
he o of ), ) or ived valuesof (1) cortesponding ton = 0,1.2,3,4.5,
Note that these loci, unlike those of Fig. 48(a), are ellipsoidal

Case : Eigenvalue Spread y(R) = 3, The useof the parameter values for Case
of Table 4.1 in Eqs. (434) and (435) yields the trajectory o [y, wyn)] shown i
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FIGURE 4.8 Loci of vy(n) versus vy(n) for the steepest-descent algorithm with step-size
parameter u = 0.3 and varying eigenvalue spread: (a) x(R) = 122; (b) x(R) = 3;
(¢) x(R) = 10;(d) x(R) = 100
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FIGURE 48 (continued)
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FIGURE 49 Loci of w,(m) versus w(n) for the steepest-descent algorithm with step-size
parameter = (.3 and varying eigenvalue spread: (a) y(R) = 122; (b) x(R) = 3;
(c) x(R) = 10;(d) x(R) = 100
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FIGURE 4.9 (continued)
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Fig 4 8(b), with nas running parameter, and the use of th same parameter vlues n
Eq. (436) yields the elipsoidal loci shown for the fixed values of J(n) for
n=0,1,2,3, 4,5 Notethat,for this st of parameter vaues, the infial value v,0) i
approximately zero, 50 the iniial value ()l practically on the vy-aus.

The corespondingtajectory of 1), (), with s running parameter,
shown in Fig. 49(b).

Case 3 Eigenvalue Spread y(R) = 10, Forthis case the applicaton ofEs (434
and (43 yilds the tractoy f ), )] shown i Fig 48(), with n s rmning
parameter, and the applicaion ofEq, (4.3) yiedsthe elipsoidal octincuded nthe fig
ure for fixed values of J(n) for n = 0, 1,2, 3,4, 5. The corresponding trajectory of
0 ) Wit s running parameter, s shown in Fig 49(c),

Case 4 Bigenvalue Spread y(R) = 100, For this case, the applicationofthe pre-
ceding equations yield the results shown in Fig, 48(d)forthe trajectory of ), )
and the ellipsoidal loc for fixed values of J(n). The corresponding trajectory of
[w](n),wz(n)] s shown in Fig. 4(d).

In Fig, 4,10, we have plotted the mean-square error Jn) versus n for the four
eigenvalue spreads 12,3, 10, and 100, W sce that, as the eigenvalue spread increas-
es (and the input process becomes more correlated), the minimum mean-§quare error
J. decreases. This observation makes intuiive sense: The preditor should do a belter
job tracking astrongly correlated input process than a weakly correlated one.
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FIGURE 4,10 Learning curves of steepest-descent algorithm with step-size parameter
= 0.3 and varying eigenvalue spread.
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EXPERIMENT 2 Varying Step-Size Parameter

In this experiment, the eigenvalue spread is fixed at y(R) = 10, and the step-size pa-
rameter 1S varied. In particular, we examine the transient behavior of the steepest-de-
soent algorithm for = 0.3 and 1.0, The corresponding results in terms of the
transformed tap-weight errors vy(n) and vy() are shownin parts () and (b) of Fig4.11,
respectively. The results included in part (a) of this figure are the same as those in
Fig, 48(c). Note that, in accordance with Eq (4.22), the criical value of the step-size
parameter equals iy, = 2/A, = L1, which is slightly in excess of the actual value
i = Lused in Fig 4.11(b).

The results for = 0.3 and 1.0 in terms of the tap weights w, () and wy(n) are
shown in parts (a) and (b) of Fig,4.12, respectively. Here again, the results included in
part () of the figure are the same as those in Fig, 49(c).

Observations

Onthe basi o the resuls presented for Experiments 1 and 2, we may make the following
observations.

1, The trjectory o ) t(n) ], with the number o terations n a running para-
meter, is normal {0 the locus of (v, vy(n)]forfixed J (). This sttement ks
applis to the trajctory of (), wy(m) | forfxed J ()

L When the eigenvalues \; and ), are equal, the trajectory o u () y )] ortha
of [ y(n) (), with n a running parameter, s a staight line, Thissituatin i

Uustrated in Fig 4.8(a) or 4(a), for which the igenvalues A, and , are appror-
Imately equal,
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3, When the conditons are right for the iniial value v(0) of the transformed tap-
Weight error vector v(n) to lie on the v-axis or vy-axis, the trajectory of
u(n), ()| with n as running parameter, is a straight line. This situation is il
lustrated in Fig. 48(b), where v,(0) is approximately zero. Correspondingly,the

rajctory of (), uyn) | with m as running paramete, s also straight line, as
Ulustrated in Fig, 49(b) !

4. Except for two special cases—(1) equal eigenvalues and (2) the right choice of
inial conditons—the trajectory of v ) ()|, with s unning parameter,fol-
lows  curved path,asllustrated in Fig, 48(c). Correspondingly,the trajctory of
wn), wz(n)ﬁ With n as running parameter, also follows a curved path, as llus
trated in Fig. 4.9(c). When the eigenvalue spread is very high (i, the input data
are very highly correlated), two things happen:

* The error-performance surface assumes the shape of a deep valley

+ The trajectoris of ), ) and [, wyn)] develop distnct bends
Both ofthese points are well llustrated in Figs, 48(d) and 49(d), respectively
for the case of y(R) = 100,

3. The steepest-descent algorithm converges fastest when the eigenvalues ), and )
are equal or the starting point of the algorithm is chosen properly, for which cases
the trajectory formed by joining the points (0, v(1),(2),..,isa traight lne,the
shortest possible path.

38



-1
n=) /
K n=1
= k=03
Aey
_3 5 Az
-4t
| | |
-6 -4 5 : 4
y(n)
(a)

39



] | I
4»—
3.
2..
l.
~ ‘.
S0 |
| k}
-1
n=2/
n=1 p=10
2} n=0 (= 11)
%:m
% 2
..4»-
| | | 1
-6 -4 -2 0 2 4 b
vy(n)

(b)
FIGURE 4.1 Loci of v,(n) versus vy(n)

for the steepest-descent algorithm with eigenvalue
spread x(R) = 10 and varying Step-size parameters: a) overdamped, u = 03
(b) underdamped, . = 1,
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FIGURE 4.12 Loci of w(n) versus w(n) for the steepest-descent algorithm with eigenvalue

spread x(R) = 10 and varying step-size parameters: (a) overdamped, u = 0.3;
(b) underdamped, u = 1.
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8. For ved tep-siz paramete s the igenvalue spread y(R) increase (16, the
cortlation xR of the tapinputs becomes more il ondiioned) the elipsoidal
o of ) vz(n)] for fixed vaues of (), for n = 0,1,2,.,become increas
ngly nerrower i, the minor axis becomes smaller) and more crowded,

T, When the step-size parameter i smal the transient behavior of the teepes-
descentalgorithmis overdomped inthat the trajctoryformed by Joining the poins
W) ¥(L) (2}.... follows  contmuous path. When, o the other hand, p ap-
proachesthe maximum allowabl vaue i, = 2/ the transent behavior of
e stcepest-descent algorithm i ndendamped,in that thi trajectory exhibit os
elltions Thesetwo iferent forms of transient ehavior are lustrated i parts (a
and b) o Fig. 41 intemsof ) anc ). Thecortesponcing resls n e
0y n)and ) are presented i prt ) and (o) f i .12

The concusion to b drawn from these observations i tha the tansint behay-
orof the steepest-descent lgorithm s hihly sensiive o varitions i boththe step-size
parameter u and the eigenvalue spread of the correlation matrix of the lap Inpus
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45 THE STEEPEST-DESCENT ALGORITHM
AS A DETERMINISTIC SEARCH METHOD

The error-performance surface of an adaptive transversal filter operating in a wide-sense
stationary stochastic environment is a bowl-shaped (i, quadratic) surface with a distinct
minimum point, The steepest-descent algorithm provides a local search method for seek-
Ing the minimum point of the error-performance surface, starting from an arbitrary initial
point. For its operation, the steepest-descent algorithm depends on three quantities:

¢ Thestarting point,which s specified by the niilvaue w(0) of the tap-weight vector.

¢ The gradient vector, which, at a particular point on the error-performance sur-
face (1.¢.,a particular value of the tap-weight vector), i uniquely determined by

the cross-correlation vector p and the correlation matrix R that characterize the
environment.

* 'The step-size parameter , which controls the size of the incremental change ap-
plied to the tap-weight vector of the transversal filter from one iteration of the al-

gorithm to the next; or stability of the algorithm,  must satisfy the condition of
Eq.(422).

Once these three quantities are specified, the steepest-descent algorithm follows
adistinct path i the multidimensional weight space, starting from the initia point w(0)
and ultimately terminating on the optimum solution w,. In other words,the steepest-
descent algorithm is a deterministic search method in weight space. This statement i
confirmed by the experimental results presented in Section 4.4.In theory, the algorithm
requires an “infinite” number of iterations to move from the starting point w(0) to the
optimum point W,. However, in practice, we need to execute just a “finite” number of
lterations of the algorithm for the transversal filter to attain a tap-weight vector close
enough to the optimur solution w,—closeness is clearly a subjective matter that can be
determined only by a designer’s objective.




4,6 VIRTUE AND LIMITATION OF THE STEEPEST-DESCENT ALGORITHM

The important virtue of the steepest-descent algorithm isthe simplicity of s impl.
mentaton, which i readilyseen from Eq, (4.10), Howeer,as pointed outn Section 4
We may require alarge number o trations for the algorithm to converge to  point
fetntly close tothe optimum solution ,. This performance limitation i due to the fat
that the steepest-descent algorthm is based on asraight-ine (1. frs-order ) appror.
imation of the error-performance surface around the current point,

Newton's Method

To overcome the aforesaid imitation o the steepest-descent algorithm, we may use
Uadratic (1. Second-order) approimation of the error-performance surface aroung
e current point denoted by w(n). Then, invoking the second-order Taylor seie
expansion of the cost unction /() around w(n ), we have

1

e

—

o ) - ) ) ¢ B - ), 49
Where the superscript H denotes Hermitian transposition, the vector

) al(w) v

i) =— . [43)
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1s the gradient evaluated at w(n), and the matrix

#1(w)
H(n) T (4.40)
0w wew(n)
1 the Hessian of the cost function evaluated at w(n). The straight-line approximation of
J(w) around the current point w(n) is clearly  simplification of Eq. (4.38). Different
ating that equation with respect to w and setting the result to zero, we find that the next
lerate (i.¢., the updated point on the error-performance surface) is given by

W(n +1) 5 w(n) - H'g(n), (441)

where H™'(n) i the inverse of the Hessian H{n), This iterative equation i the pure
Newton method of optimization theory. (See Problem 15 for a modified form of Newton's
algorithm.)

For the quadratic cost function of Eq. (4.8), the gradient vector is defined by
Eq. (49). Moreover, differentiating the lastline of Eq. (49) with respect to w(n), we get

Hr) = R (44)

Thats,except for a scaling factor, the Hessian of the quadratic cost function of Eq. (48)

1s exactly equal o the correlation matrix R of the tap-input vector u(n). Hence, substi
tuting Eqs. (4.9) and (442) into Eq. (441), we obtain

Wnt1)=wn) - %R"(-Zp + 2Rw(n)

-y, (44
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Equation (443) shows that Newton's method atains he optimum solution w, from an
arbitrary point w(n) on the error surface in g single iteration, However, thi mprove-
ment in performance requires the inversion ofthe correlation matrix R, the foregoing
of which isthe very thing that motivates the use of the Stecpest-descent algorithm,
The conclusion tobe drawn from this discussion s hat If computational simplic-
1ty of paramount importance, then the method of Steepest descent is the preferred it
crative method for computing the Lap-weight vector of an adaptive transversal filter
Operating na wide-sense tationary environmept, If,on the other hand, the rate of cop-

Vergence s the issue of interest, then Newton's method ot 4 modified version of t i the
preferred approach.

47 SUMMARY

The method of teepest descent provides a simple procedure for computing the tap-
Weight vector of a Wiener filter given knowledge of two ensemble-average quantites

v The correlation matrix of the tap-nput vector
* The cross-correlation vector between the tap-input vector and the desire Tesponse.

A criticalfeature of the method of Seepest descent s the presence of feedback, which
1S another way of saying that the underlying algorithm is recursive in nature, As such,

We have o pay particular attention to the issue of stabilty, which is governed by two
parameters inthe feedback loop of the algorithm:
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* The step-size parameter
¢ The correlation matrix R of the lapinput yector,

Specfially, the necessary and sufficient condition for stabilty of the algorithm i
embodied in the condition

0<u<i,

)‘max :
Where Ay i the largest eigenvalue of the comrelation matrix R

Moreover, depending on the vale assigned to the step-size parameter b, the

ransient response of the teepest-descent algorithm may exhibit one of three forms
of behavior,

¢ Underdamped response, in which case the rajectory ollowed by the tap-weight vec-

tor toward the optimum Wiener solution exhibs oscillatons; this response aries
When the step-size parameter s large.

v Overdamped response, which 1sanonoscillatory behavior that arises When i small,

* Critically damped response, which is the fne dividing line between the under-
damped and overdamped conditions

Unfortunately, in general, these conditions o not lend themselves to an exact mathe-
matical anayss;they are usallyevaluated by experimentation.
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