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Motivation

• Optimal digital filters designed with fixed
filter tap weights have limitations when
nonstationary input signals with unknown 
statistical characteristics are encountered
in many applications .                            

• A more complete solution to nonstationary
environment is provided by a continuously
adaptive filter .                                        

• In an attempt to build a adaptive filter , we 
are seeking to find an algorithm which is 
optimal in some sense ( in the least -square
sense ) but which is responsive to changes
in the optimal solution arising as each new
data point becomes available .                   
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• We want a filter which will iterate to track
changes in the optimal solution .            
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• Adaptive filters have been successfully applied
in several areas including  :                            

(a)  adaptive antenna systems in which adaptive
filters are used for beam steering and provi-
ding nulls in the beam pattern to remove un-
desired interference .                              

(b)  digital communication receivers in which 
adaptive filters are used to provide equal-
ization of intersymbol interference and for
channel identification .                        
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( c)  Adaptive Noise cancellation (ANC)
is another useful application of adaptive
filtering. ANC is concerned with the 
enhancement of noise corrupted signals 
where no a priori knowledge of signal
or noise is required .                  

(d)  Adaptive filters are used to estimate the
time-delay between two measured signals,
an application useful in radar, geophysics
and biomedical signal analysis.       

(e)  System modelling, in which an adaptive 
filter is used as a model to estimate the 
characteristics of an unknown system.
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• Problem Formulation 

From the figure  :
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Mean-Squared error :
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• Note that the variation of the mean-squared
error J(n) with time n signifies that error 
process {e(n)} is nonstationary .             
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• Time constant equation     
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