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• Why the LMS Adaptive Filter ?

• Steepest descent algorithm has been used to 
obtain an iterative solution to fixed normal 
equations.

• We need to design a filter which is 
responsive to changes in the input signal 
environment, that is we need an interactive 
structure that is dependent on the input data.

• It is possible to construct a steepest-descent 
algorithm by replacing the fixed auto and 
cross-correlation matrices by their time 
dependent equivalents.
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We note two main problems with this approach:

A. It is very computationally intensive and 
expensive since we have to compute R and p at 
each point (n).

B. It may not be possible to compute R(n) and 
p(n) if only a single realization of the process is 
available.

LMS algorithm is based on estimating the 
gradient of the mean-squared error by the 
gradient of the instantaneous value of the 
squared error.
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Notes on Previous Figure:

Fig 5.1a Adaptive transversal filter consists of 
a transversal filter around which the LMS 
algorithm is built, note also a mechanism for 
performing the adaptive control process on the 
tap weights of the transversal filter.

Fig  5.1b The tap input vector is:

u(n) : M-1 is the number of delay elements.

w(n) : Mx1 tap weigth vectors

Fig 5.1c Note the correction           applied to 
the tap weight           at time n+1. µ is called 
the adaptation constant or step-size parameter.
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The Least-Mean-Square (LMS) algorithm

From the steepest-descent algorithm, 
reproduce:
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Define:

By using (3) and (4) in (1):
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The instantaneous estimate of the gradient 
vector.



Putting equation (5) in quation (2):
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LMS Algorithm: Three Basic Steps

1. Filter Output:

2. Estimation of errors:

3. Tap weight adaptation:

The algorithm gets initiated with:
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Notes on the LMS algorithms from the above 
figure:

1.) Algorithm is multivariable since          has a 
dimension greater then 1.

2.) Nonlinear since outer feedback loop depends 
on tap input vector.

3.)         becomes a random vector fro n > 0.
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Stability Analysis of the LMS algorithm:

As a rule of thumb, we have to choose µ so 
that the following two forms of convergence 
are satisfied:

Convergence in the mean:

E[        ] ®W0as n ®¥

Convergence in the mean square:

J(n) ® J(¥) as n ®¥

where J(¥) > Jmin

and J(¥) is finite

Jmin corresponds to the weiner solution.
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Fundamental assumption for analysis of the 
LMS algorithm.

1. The tap input vectors u(1), u(2) …u(n)  
constitute a sequence of statistically 
independent vectors.

2. At time n, the tap-input vector u(n) is 
statistically independent of all previous 
samples of the desired response d(1), 
d(2),…..d(n-1).

3. At time n, the desired response d(n) is 
dependent on the u(n), but statistically 
indepenedent of all previous samples of the 
desired response.

4. u(n) and d(n) consist of mutually gaussian-
distributed random variables for all n.



With the assumption of mutually gaussian 
distributed random variables in (4), (1) and (2) 
are equivalent to conditions of 
uncorrelatedness:

the assumption of independence theory [(1) -
(3) ] is more general when (4) is not assumed.

Average tap weight analysis

Define:

the weight error vector

where        the estimate produced by the LMS 
algorithm       the optimum weiner solution.
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Start from:
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Rewrite:
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e0: the estimation error produced in the 
optimum weiner solution.
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Now by taking the mathematical expectation:

Since e(n) and u(n) are independent, the first 
term:
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From the orthogonality principle:
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Compare equation (A) with that we obtained in 
the case of steepest-decent algorithm where:
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We therefore conclude from (A) that:

the mean of e(n) converges to zero as n ®¥,

provided:

max

20
l

<µ< (B)

Conclusion: if µ is set as in B

as n ®¥

that is: the LMS algorithm is convergent in the 
mean. 
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Mean-Squared-error Analysis:

Start From:

Now:
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Where Jmin is the minimum mean-squared error 
produced by the optimum weiner filter.



The second term can be manipulated to:
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Where     : correlation matrix

: the weight-error correlation matrix

Conclusion: since                            is positive 
definite for all n. LMS allways produces a 
mean-squared error J(n) that is in excess of the 
minimum-mean-squared-error Jmin
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Rewrite equation (C):
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= the excess mean squared error.

By transforming to eigen-coordinate system:

and defining:

We can write:
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In diagonal coordinate system:

where xi(n), I=1,2,……M, diagonal elements 
of X(n).

Equation (E) can be re-written as:

Where x(n) satisfies

where     is the MxM matrix with:
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The matrix B is real, positive and symmetric.

By solving the first order vector differennce 
equation (F) gives:

å lµ+=
-

=

1

0
min

2

~~~ )0()(
n

i

in BJxBnx

11

0
)()( ~~~~~
-

-

=
--=å BIBIB nn

i

i

(G)

Then equation (G) becomes:
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Since      is symmetric, we can apply an 
orthogonal similarity transformation.

CGBGT =~~~
G: orthogonal matrix

~~~ IGGT =

CGCGB Tnn == ~~~~
C : Diagonal matrix with Ci, i = 1,2, …..M 

gi :  eigen vectors of B associated with 
eigenvalues ci
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We can then manipulate the equation for x(n)
to:
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0 < ci < 1      for all i
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Now the excess mean-squared error:
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After some more algebra:

We may write an expression for:
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Putting equations (J) in (I), the time evolution of 
the mean squared error for the LMS algorithm:
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Conclusions from equation (K)

a.)  The first term is (K)
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Represents the transient component of J(n) 
where ri are constants and ci are the 
eigenvalues of B and they are real positive 
numbers since B is a real symmetric positive 
definite matrix.

b.)   J(n) ®J(¥) if, and only if, µ: satisfies two 
conditions:
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The LMS algorithm is convergent in the mean 
square.
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c.  The mean squared error produced by the 
LMS algorithm has the final value:
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We can define the convergence time constant 
for the LMS algorithm:

Note that we have conflicting requirements in 
that if µ is reduced to reduce M then (t)mse av is 
increased. Conversely if µ is increased to reduce 
(t)mse av then M is increased. The choice of µ
becomes an important compromise.

For real data, it should be noted the real LMS 
algorithm in the mean square is give by:
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