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* Why the LMS Adaptive Filter ?

 Steepest descent algorithm has been used to
obtain an iterative solution to fixed normal
equations.

* We need to design a filter which 1s
responsive to changes in the input signal
environment, that 1S we need an interactive
structure that 1s dependent on the iput data.

e It 1s possible to construct a steepest-descent
algorithm by replacing the fixed auto and
cross-correlation matrices by their time
dependent equivalents.

w(n +1) = w(n) +u[p(n) — R(n)w(n)]




@)te two main problems with this appr&

A. It 1s very computationally intensive and
expensive since we have to compute R and p at
each point (n).

B. It may not be possible to compute R(n) and
p(n) if only a single realization of the process 1s
available.

LMS algorithm 1s based on estimating the
gradient of the mean-squared error by the
gradient of the instantaneous value of the

squared error.
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FIGURE 5.1 (a)Block diagram of adaptive transversal filter. (b) Detailed structure of the

transversal filter component. (c) Detailed structure of the adaptive weight-control

mechanism.




Kotes on Previous Figure: \

Fig 5.1a Adaptive transversal filter consists of
a transversal filter around which the LMS
algorithm 1is built, note also a mechanism for
performing the adaptive control process on the
tap weights of the transversal filter.

Fig 5.1b The tap mput vector 1s:
u(n) : M-1 1s the number of delay elements.

w(n) : Mx1 tap weigth vectors

Fig 5.1c Note the correction oW, (1) applied to
the tap weight W,(n) at time n+1. p is called
the adaptation constant or step-size parameter.
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/The Least-Mean-Square (LMS) algorithm\

From the steepest-descent algorithm,
reproduce:

V(J(n))==2p+2Rwn)............. (1)

wn+1)=w(n)+ %p[—VJ(n)] ..... (2)

Detine:

R(mn)=u(n)u” (n).......... (3)
p(n)=u(n)d (n)........... (4)
By using (3) and (4) in (1):
V(J(n)) ==2u(n)d" (n)+2u(n)u” (n)W (n)...(5)

The instantaneous estimate of the gradient
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Gting equation (5) 1n quation (2): \

w(n +1) = w(n) +pu(n)ld (n) —u" (n)w(n)]...(6)

LMS Algorithm: Three Basic Steps

1. Filter Output:
y(n)=w" (nun)......... (7a)

2. Estimation of errors:

e(n)=d(n)— yn)....(7b)

3. Tap weight adaptation:
w(n+1) = w(n)+uu(n)e (n)...(7¢)

Correction Term
The algorithm gets mitiated with:
w(0) =0




FIGURE 5.2 Signal-flow graph representation of the LMS algorithm.

Notes on the LMS algorithms from the above
figure: W(n)

1.) Algorithm 1s multivariable since has a
dimension greater then 1.

2.) Nonlinear since outer feedback loop depends
on ﬂ@iﬁﬁi)nput vector.

3.) becomes a random vector fro n > 0.




Gbility Analysis of the LMS algorithm:\

As a rule of thumb, we have to choose U so
that the following two forms of convergence
are satisfied:

Convergence 1n the mean:
EWw(n)] >Wsas n —oo

Convergence 1n the mean square:
J(n) = J(o0) as n —>©

where J(0) > J ..

and J(0) 1s finite

J. ., corresponds to the weiner solution.
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@amental assumption for analysis of the\

LMS algorithm.

1. The tap iput vectors u(1), u(2) ...u(n)
constitute a sequence of statistically
independent vectors.

2. At time n, the tap-input vector u(n) 1s
statistically independent of all previous
samples of the desired response d(1),

d(2),.....d(n-1).

3. At time n, the desired response d(n) 1s
dependent on the u(n), but statistically
indepenedent of all previous samples of the
desired response.

4. u(n) and d(n) consist of mutually gaussian-
distributed random variables for all n.
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@ the assumption of mutually gaussian\

distributed random variables in (4), (1) and (2)
are equivalent to conditions of
uncorrelatedness:

Elu(n)u” (k)]=0....k=0,1,...n—1
Elu(n)d (k)]=0....k=0,1,...n—1

the assumption of independence theory [(1) -
(3) ] 1s more general when (4) 1s not assumed.

Average tap weight analysis

Define: e(n)=w(n)—w(0)
the weight error vector

wherew(n) the estimate produced by the LMS

ﬁorithm W, the optimum weiner solutioy




Q‘t from: \

w(n +1) = W(n) +pu(n)[d” (n) —u" (n)w(n)]

Rewrite:
W(n +1)— w, = W(n) —wy +pu(n)[d (n) —u" (n)w(n)]
N J \ J
' Y
e(n+1) e(n)

e(n+1) = e(n) +pu(m)[d” (n) —u" (n)w(n)]

- J
Y

e’ (n)—&" (myu(n)
o(n +1) =[1 - pae(m)u” (m)Je(n) + pa(n)e, ()
e(n) =d(m)— " (n)u(n)
()~ un) ¢ (o)

= ¢,(n)—&" (n)u(n)

€y: the estimation error produced 1n the
optimum weiner solution.

Sw




gv by taking the mathematical expectatio]

Ele(n+1)] = E|[1 — pu(m)u” (m)]e(n) |+ n|Eu(n)e; (n)]

Since ¢(n) and u(n) are independent, the first

term:

From the orthogonality principle:

Elu(n)e, (n)]=0

\E[a(wl)]:[l—uB]E[e(n)] ...... (A>/




Co/mmre equation (A) with that we obtained]

the case of steepest-decent algorithm where:

c(n+1)=[I-pR]e(n)
We therefore conclude from (A) that:
the mean of €(n) converges to zero as n —»oo,

provided:

2
O<u<— B
p<o (B)

max

Conclusion: 1f p 1s set as in B

E[ﬁ;(n)] N WO as n —oo

that 1s: the LMS algorithm 1s convergent in the
mean.
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@n-Squared-error Analysis: \

Start From:
e(n)=d(n)- " (n)u(n)

Where J ;, 1s the minimum mean-squared error
produced by the optimum weiner filter.
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ﬁhe second term can be manipulated to:\

E[e" (mu(n)e(n)u” (n)

=tr{E [ (n)ﬂ(n)ﬁ(n)ﬁ(”)]}
=tr{RK(n)}

J(n)=J,, ~o[RK(n)]  (©)
Where E: correlation matrix

]N( : the weight-error correlation matrix

Conclusion: since ¥ {E K (m)}; s positive
definite for all n. LMS allways produces a
mean-squared error J(n) that 1s in excess of the
minimum-mean-squared-error J ..
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ﬂwrite equation (C): \

J(n)=J . -triRKm)} (©)

= the excess mean squared error.

By transforming to eigen-coordinate system:

0"Ro=A

and defining:

0" K(n)0=x(n)
We can write:

n R K(m)]=tA X (n)]
J (m)=tTAX()] (D)
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@agonal coordinate system: \

M
J, (n)= ;Xixi (n) (B

where x;(n), I=1,2,...... M, diagonal elements
of X(n).

Equation (E) can be re-written as:
J,(m)=1"x(n)

Where x(n) satisfies

x(n+)=Bx(n)+p’J A (F)

where Bis the MxM matrix with:

b — {(1—@)%;&& ........... =]
7N (Thy ¥ SO i# ]




6 matrix B is real, positive and symmetr}

By solving the first order vector differennce
equation (F) gives:

n-1 .
x(n)=B"x(0)+p’J Y B A (O
i=0

n-1 .
>B =(1-B)'(L-B)"
i=0 —

Then equation (G) becomes:

x(n)=B"[x(0) - W/, (1 B) Al +p*J (1~ B) 'L
transient Component Steady state
Component
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@ce f@ 1s symmetric, we can apply an\

orthogonal similarity transformation.
T
G BG=C

G: orthogonal matrix

G' G=1
B'=GC'G =C

C : Diagonal matrix with C;,1=1,2, ....M

g. . eigen vectors of B associated with
eigenvalues c;

o /




@m then manipulate the equation for Q

to:

x(n)=Xc'g g/ [x(0) - x(0)] + () (1)

Where for stability:

0<c,<1 foralli

X(0) =’ (L~ B)"

min

And:

7 Y

M T
GG =26 8,8,

Now the excess mean-squared error:

J (n)=L x(n)
Z L g8, [x(0)=x(0)]+J,,(0) (1)

Where JGX(OO) Ax(00)
— 27\, X (20)




Qer some more algebra: \

We may write an expression for:

M.
22 El plk (J)
Jex (OO) — Jmin M }\’i
1 _ Z H i
MZ—MM
Now Since:

Jo(m)=J(n)=J,,
=triRK(n)}

Putting equations (J) in (I), the time evolution of
the mean squared error for the LMS algorithm:
J(n) = er" el — (K
-y F
i=1 2 H}\,

]

i

Where: 1 =1"g g/[x(0) - x(=0)]

x,(0) = E[q g(0)e" 0)g. ]...i=12,..M
\ &(0) = w(0) — w(0) /
q: eigen vector of R




ﬁonclusions from equation (K) \

a.) The first term 1s (K)

M
re;
i=1
Represents the transient component of J(n)
where r; are constants and c; are the
eigenvalues of B and they are real positive
numbers since B 1s a real symmetric positive
definite matrix.

b.) J(n) —>J(x) if, and only 1if, u: satisfies two
conditions:

)
O<u<_2_
S

max

Mo A,
Z H
i FO\'

A I=1,2,....M, eigenvalues of R .

The LMS algorithm 1s convergent in the mean
square.

<1




Ge mean squared error produced by tth

LMS algorithm has the final value:

1_ % l’l}\‘z
i=12—”}\4i

d. The misadjustment 1s defined as:

(1) If p 1s small compared to 2/A

max

M = Eﬂihi
2i=1

(1) By defining: o
Ao=—>N\,
\ av M zgl i /




@:an define the convergence time consm

for the LMS algorithm:

Note that we have conflicting requirements 1n
that 1f p 1s reduced to reduce M then (7). 4y 1S
increased. Conversely if u 1s increased to reduce
(T).mse ov then M is increased. The choice of n
becomes an important compromise.

For real data, it should be noted the real LMS
algorithm in the mean square 1s give by:

\ % HA, <1 /
i=1 2 H7\’z




