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* Summary of the LMS Linear Adaptive
Transversal Filter ( FIR )

i

u(n) Transversal
= > Filter #01)

:> Adaptive weight |_€(1) @_

Control Mechanism ‘ i

d(n)

d(n)

Parameters : M =number of taps
1 = Step-size parameter

O<u< 2
total input power( Mr(0))

provided u<< %
“max

Initial Conditions : w(0)=0



(a) Givenu(n)=M —by —1tap - nput
at time n
d(n)=desired response at time n
(b) Tobecomputed : Ww(n+1) estimate of W
atn+1
&

e(n)=d(n)—w (n)u(n) n=0,12,.

(n-+1) = (n)+ prumle (n).



e Normalized LMS Algorithm

Motivation : The correction term pvtg(n)e>X< (n)
in the LM S algorithm :

W(n+1)=1(n) + pu(n)e” (n)
applied to the tap - weight vector w(n) at timen+1
is directly proportional to u(n). When u(n) 1s large,
the LMS experiences a gradient noise amplification.

Solution : W(n+1)=1vi(n)+_ M S u(m)e” (n)
u(n)|

Given the new input data ( at time n) represented
by the tap - weight vector u(») and the desired
response,d(n), the normalized LMS algorithm
updates the tap-weight vector in such a way that

w(n +1) exhibits the minimum change with respect
to w(n) at time n.



e The Development of the Normalized LMS
Algorithm :

Constrained Optimization Problem :

Problem Statement :

Given u(n)and d(n), determine w(n+1) so as to
minimize the squared Euclidean norm of the
change

ow(n+1)=wn+1)—wn)
in the tap-weight vector w(n+1) with respect
to its old value w(n), subject to the constraint

W' (n+ D) =d(n)



Start from
Sivn+1)7 =5w (n+1)w(n+1)
=[(n+ D) =) [(n + 1) =)
M-, .
= kgO Wy (n+1)— Wy (n)

By defining real and imaginary components for :
Wk(n)zak(n)-l—jbk(n) k=01, ...M-1

d(n)=d, (n)+ jd., (n)
u(n—k)zul(n—k)+ju2(n—k)

We rewrite :

Si(n+1)7

:Mz_l([a (n+1)—a, (n)]? +[b, (n+1)=b, (n)]?)
2ok k k k




and we can rewrite v_T/H (n+Du(n)=d(n)

as.

Aklg)l(ak(n+1)M1(n—k)+bk(”+1)”2(n_k):dl(n)

j;c/g)l(ak(n+l)u2(”—k)_bk(”+l)”1(” k) :dz(”)

Using the method of Lagrange multipliers, we can
formulate the constrained optimization problem :

J(n)
:[]\é_ol([ak(nﬂ)—ak(n)]z+[bk(n+1)— ()

:ﬂ,l

+A

_dl (n)—

M -1
D (ak(n+l)u1(n—k)+bk(n+1)u2(n—k))

2 — D (ak(n+1)u2(n—k)—bk(n+l)u1(n—k))

- k=0
d_ ()
M -1

k=0



where 7”1 and kz are lagrange multipliers :

To find the optimum values of a i (n+1)and
bk(n +1); wedo :

oJ (n) —0
Gak(n+1)

oJ(n) _ 0
6bk(n +1)

Giving :
2[ak(n +l)—ak(n)]—X1u1(n —k) —kzuz(n —k)]=0

2[bk(n +1)—bk(n)]—k1u2(n —k)+K2u1(n —k)]=0

We can combine them back to complex form :

2[W>’1;(n +1) =i, (n)]= Nu(n—k) k=0L,.....M

where A=A, + jA
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By multiplying by u*(n — k) and then sum from
k=0toM-1;

S W (n+1)u*(n—k)

A k=0

kﬂéouw—k)z M i () (n - k)_

s (2)2 W (n+1)u*(n)—v_?f (nu <n>}
u(n

Rewrite :

3k 2 % T sk
A= d (n)—w" (n)u (n)
u<n>2{ |

Since e(n) d(n) - () (n)
A = 5 (n)

HMWH




Finally
5\?vk(n+1)= v, (n+1)—w (n)

u(n k)e (n) k=0]l... M-1

H”(”>H

Equivalently :
o @(n+l) v?/(n+l) w(n)
u(n)e (n)

H“<”>H

Introduce u« to control over the change in tap-
weight vector :

ow(n+1)= u(n)e (n)
p <”>H
or
w(n+1)=mn)+ u(n)e (n)

H“<">H




By setting

pm)=—+
()

the normalized algorithm is viewed as an LMS
algorithm with a time-varying step-size parameter.

1 must satisfy : O<u<?2

then the normalized LMSis convergentin the
mean square sense.

To avoid the division by a small number when u(n)
1s small,

W+ =) +——Eu(n)e™(n)
o (o)

a>0
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SUMMARY OF THE NORMALIZED
LMS ALGORITHM

parameters : M =number of steps
1 =adaptation constant
O<u<?
a=positive constant

Initial condition : w(0)=0

Data
(a) Givenu(n) : M by linput vector at time n

d(n) : desired response at n
(b) To be computed : w(n+1)

Computation : n=01.2,........
e(n)=d(n)-i"" (wu(n)
i+ )=itn+—H (e (n)

o)
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e Method of Least Squares

Letu(l), u(2),. . . . u(N)represent meas-

urements at tl,tz,. R INE the problem then

is to fit a curve by using these points in some
optimum fashion. Let 1 (tl.) represent this curve.

The method of least squares finds the " best " fit
by minimizing the sum of difference between f (tl.)

and u(i),i =1,2,. . . .N. Unlike in Weiner filter
theory where ensemble averages are used, the
method of Least Squares uses time averages. As a
result, no asumption on statistics are assumed.
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 Linear Regression Example

— fw d

Consider now : y=f(u)
For discrete values : Yy, = f (ul.), i=1... M

For linear regression , assume :
faw)=w, + Wi

where w, and wy are coefficients to be

determined that produce the least square
solution.

Let e; :f(”i)_fa(”l') i=1... ..M
Choose w, and Wy to minimize
M
S=3 e?
i=1 "

the sum of the squares of
the deviations.
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Now

M 2
S= Zl[f(ul)_fa(ul)]
1=

M 2
=%u;mv+wwn

35 3 20y, (o + )] (-1)=0

o i=1

M
I8 =3 20y, ~(wp +wy)] (-u) =0

1 i=l

then :

Rewrite :

M M
Zyl.zMw +[. uile (1)

M M M 5
Zu.y.:(Zu.]w0+[Zu. le (2)
3 _1 l °
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The solution for W, and Wy

M YM ) (M M
('ZlinZlui J_{'ZluiI'zluiy"J
_\U= 1=

1=
0 A

M 5\ (M
where A=M| > uz |=| XU
=1 '

e Solution Using Optimization in Hilbert
space
From the data :

W Wl =0

Wt Whlly =Yy

Wt Wl =V
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In matrix notation

Ax=y
1 U, Y
w .
. "

thatis : y=x,w + X, Wy

1 U
where x,=|.|land x, =]|.

“M

Now the approximation 1s given by :

Ya=4Xa =W)X+ W)X,

Using the orthogonality priciple :
(X_Xaa)_cl):o 121,2
(X_(Xlwl—klzwzjll))zo 121,2
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" M o

(xpx)  (Xp.x) (W) (2%
(x1o25)  (x,x5) |, | | 1X,
Follows :

Mo
(x,x)=217=M

M M
M Yu 2V
=1 1 (_|i=l
M M 5|4 M
Su. SucrV2) | Y u.y.
i=1 " i=1" i=1 1!
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wand Wz will give the same solution as directly

done for w, and wy. They are equivalent

approaches to solve least - squares problems.

e Multiple linear Regression Problem

Given : {d(i)} and {u(i)}
{d(i)} 1s observed at time i 1n response
to input variables u(i),u(i—1),. . . u(@i—M +1).

d(i)= f(u(i)) and assumed to be linear.
J(i)= M-1 « I .
(i)= kéo woku(z —k)+e, (i)

where e, (i) 1s error.
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Assume the measurement error 1s white with zero

mean and variance 62.

Ele,({)]=0 all i

% 2 .
Eleo(1)e ()] = l-:kk

Follows that :

o M-1
E[d(i)]= kéo WOku(l —k)

Problem : Estimate the unknown parameter of the

multiple linear regression model. Estimate W

given the two observable sets : {u(i)} and ={d (i)},
i=12,.. ... N.
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" Al
e Linear least-squares filter

Assume :
u(i) ui-1)  y@-M+2) u(i-M+1)

7-1

L y(i)
e(i) = d(i) - y(i) d()—=()

M-1 « e.
where : y(i))= > wku(i—k) e
k=0

M-1 4
then : e(i)=d(i)— ¥ w,u(i—k)
k=0

Minimize the cost function : the sum of
error squares :

where tap - weight filter weights w,,. . . .. War_q

are held constant over i1 <i< i2
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Data Windowing :Since the input data {u(7)}
i=12,. .. .N, the rectangular matrix constructed
for the Mth order transversal filter may vary
based on the method of windowing the input
data :

a. Covariance method : Set i1 = M and i2 =N

implying that no assumptions are made outside
the window [1,N]
the input data matrix :

uM) u(M+1) . u(N)
uM-1) u(M) . u(N -1)

u(l) u(2) . u(N-M+1)
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b. Autocorrelation Method :

Data prior toi =1 and the data after timei=N

are zero. Set i1 =1 and i2 =N+M-1

the input data matrix then1s :

ull u?2) . uM) uM+1) . . u(N) 0 .0
0O ul . uM-1) uM) . . u(N —1) u(N) .0
0 0 . u(l) u(2) .. uN-M+1) u(N-M) . u(N)

c. Prewindowing Method :
the input data prior toi=1are zero, but makes

no assumption after i = V. i1 =1and i2 =N

d. Post windowing method : no assumption prior

to time i =1 but the data after i = N are zero.

i1 =M andi2 =N+M-1
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Covariance Method :

Consider the cost function

EWye - - WM_I)—. ‘e(z)‘

l_

the limit assures that for each value of i, all
the M tap inputs of the transversal filter have
non - zero values.

Rewrite :

N *
Wy - - WM—l):i:Z]:\j(i)e (1)

By writing w,=a, + jbk k=0,.....

M-1

and : e(i)=d@)— > (ak —jbk)u(i—k)
k=0

then the gradient vector :

é a5
(&)=
Vk Oa abk
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'
the minimization of the cost function with

respect to tap weights, WO’ w1 ye . °WM—1

leads to :
Vk({f):O k=01, .... M —1

where  V, (£)=-2 S ui—De ()

=

N *
then : i:Z]\:4 u(i— k)emin (i)=0
k=01.. M-1
where e (i) 1s the minimum value. This

is simply the principle of orthogonality.

Implies : )} is orth 1 to the ti
mplies {emin(z)}lso ogonal to the time

series { u(i — k) }applied to tap k of a transversal
filter of length M for k =0,1. . M —1 when the

filter is operating in its least square condition. *°



e Wecan also show that

N ~ % .
i:%% d (z)emin(z) =0
the corollary to the principle of orthogonality.

e Minimum Sum of Error Squares

tart : ] = 1(i + . (1
S d(i) d(i) emm(z)
desired estimate estimation error
of desired

Evaluate the energy of the time series {d (i)}
i=[M,N], wecanshow

éa’ :geSf +&min
N 2
_ d(i
g d0)
N ~ 2
Sest = Z]:W d(i)‘
=

N 2

Ein = 2 i @)

M5 - min
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e Linear Least - Squares Filters :
Normal Equations

Start From :

. N MSlos
e(i)=d@)— > wku(z—k)
k=0

This for least - square solution can be written :

M-1 «
emin(i)zd(i)— tZ‘O W, u(i—t)

t is the dummy index :
Substitute thisin :

N *
> u(i— k)emin(l) =0

=M
By rearranging :

Mz_lwt ]zvu(i—k)u*(i—z): ]zvu(i—k)d*(i)
(=0 liZ=h i=M
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Define now :

N *
otk)= > u(i—k)u (i—-t) 0<t¢

=M
k<M -1
the time averaged autocorrelation function of the
tap inputs
N o
O(-k)= > u(i—-k)d (i) 0<k<M-1

1=
Cross - correlation between the tap inputs and the

desired response.

Then : System of M simultaneous equations

M1
> Y =0(k) k=0lL. . . .. M -1
{=

the expanded system of the normal equations for a

linear - least square filter.
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e Matrix Representation

Ow =6
where
¢(0,0) o(L,O) . dM-1,0)
o O o(LL1) . M-L1)

OO,M-1) &(1,M-1) . &M-1,M-1)

0=[00) 0C-1) . . 6C-M+D)]
- T
W =[w0 W WM_J

Then : the solution to the normal equations :

w=o70

when @'l exists .
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Note that ® 1s the time-averaged correlation

matrix of the tap inputs and 0 is the time -

averaged cross-correlation vector. In this sense,

this 1s the linear - least - square filter which is
counter part to the Weiner filter.

e Minimum Sum of Error Squares

We can rewrite earlier results in matrix form :

~H . .
&est:v_v Qw
—wilo=0w
and
e o
gmin_ct’d Q w
HCD_IQ
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Properties of @

N
Rewrite : @ = Su()ull (i)

i=M
where u(i)=u()) u(i-1) . . u(i-M+1]
a. @ 1s Hermitian

o

~~/

=0

b. @ is nonnegative definite :

T 0x>0
for any M by 1 vector x

c. Eigenvalues of @ are real and nonnegative

d. @ is the product of two rectangular Toeplitz

matrices that are the Hermitian transpose of

each other

H

©=4" 4

where AH =u(M), wM+1) . . Q(N)]31



uM) uM+1) . . u(N)
uM-1) uM) . . u(N —1)
AH =
u(l) u(2) .. u(N-M+1)

e Normal Equations In Terms Of Data Matrices

Define : d =[d(M), d(M+1) . . d(N)]
Follows :
0=4"4
A7 giv=atq
w=4 gy 147 a
Also & . =dTa—at? 44 414" a
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e Projection Operator Interpretation
Suppose we estimate 0_7 fromwas :

Aw

(4

~~

N

d

H H

A4

I
1NN

d

Then A(AH fil)_1 AH 1s defined as a projection

H

operator and /— A(4 41)_1 AH 1s known as

the orthogonal complement projector. Let

P=4(4" 271 4" and the following inter -
pretation 1s useful :
poLd J
d d

. e .
[—P Jnin —min
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e Uniqueness of Least - Square Estimate :

The least - squares estimate w 1s unique
when the data matrix 4 has linearly inde -

pendent columns. Implies that 4 has at least

as many rows and columns: (N-M +1)> M.
Also means 4 w=d used in the minimization

1s overdetermined, meaning more equations than
unknowns. Thus the least - squares estimate has
the unique value :

provided 4 has linearly independent columns,

and M x M matrix AH A 1s non -singular.
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Properties of Least-Squares solutions :

e wisunbiased, provided that {e, (i)} has
Zero mean
E[w]=w,

e When {e, (i)} is white with zero - mean and

2

. A _1
variance <, cov|w|= o2 1

e When {e, (i)} 1s white and zero mean, wis the
best linear unbiased estimate.

e When {e, (i)} is white , Gaussian and has a zero

mean, w achieves the Cramer - Rao lower bound
for unbiased estimates.
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e Application of Least - Squares Method To
AR Spectrum Estimation

Given the time series {u(i)} 1<i< N, the Forward-
Backward Linear Prediction Algorithm (FBLP) 1s
used to compute the tap - weight vector w of a
forward predictor or the tap - weight vector a of
the prediction error filter. The vector 4 represents
as estimate of AR model used to fit the time series
tu(@)}. amin represents as estimate of the white

noise variance ('52 in the AR model. The estimate
of the AR spectrum is given by

S

SAR (W)= min

1+Zae]Wk
=1 K

z]% for best performance

2
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Application: MVDR Spectrum
Estimation

- Independent sensors placed at different points
in space, “listen” to the received signal and try
to distinguish between the spatial properties
of signal and noise.

* Beamformer places nulls 1n the directions of

the sources of interference in order to increase
the output SINR.

* The goal 1s to minimize the variance (average
power) of the beamformer output while a
distortionless response 1s maintained along
the direction of a target signal of interest.
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*Output of linear transversal filter in response
to tap inputs:

(i) =2 au(i-1)

« The requirement 1s to minimize the output
energy:

gout

- Instead of a desired response we now have a
constraint;

Z ae’ =1
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« To solve the constrained minimization

problem , a constrained cost function 1s
defined:

(z)\ +/1(Zae —1)

V
output energy linear constarints

c=2

+1
\_

Where, A 1s a complex Lagrange multiplier.

* The minimization involves equating the
gradient to zero:

$a.4(t,k) = —;/I*e”‘”’”, k=0,1,....M.

Where, 1s ¢ autocorrelation function of tap
inputs.
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* Solving for A subjecting to the constraint and
Substituting 1t 1n the equation for optimum
tap weights, gives the MVDR formula as
follows:

O s(w)
s" (w,)D 's(w,)

Q=

« The minimum value of output energy:

1
Sun(0) = s"(0)D's(w)

- The above equation 1s referred as the MVDR
Spectrum estimate, at any @ the power due
to other frequencies 1s minimized. Hence the
Spectrum exhibits relatively sharp peaks.
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