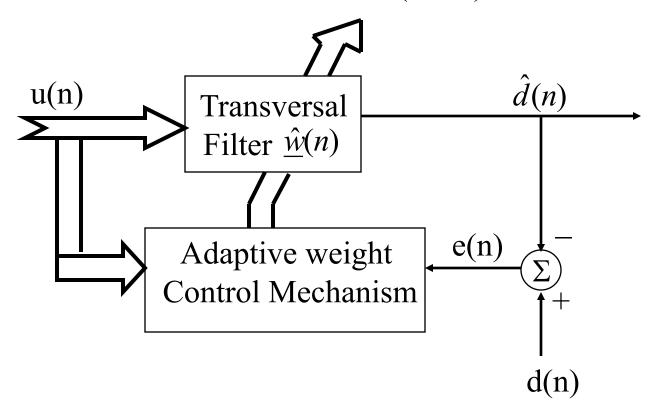
LINEAR FIR ADAPTIVE FILTERING (III)

Normalized LMS Adaptive Filters

Dr. Yogananda Isukapalli

• Summary of the LMS Linear Adaptive Transversal Filter (FIR)



Parameters :
$$M = \text{number of taps}$$

 $\mu = \text{Step-size parameter}$
 $0 < \mu < \frac{2}{\text{total input power}(Mr(0))}$

provided
$$\mu << 2/\lambda_{\text{max}}$$

Initial Conditions :
$$\hat{\mathbf{w}}(0) = 0$$

(a) Given $\underline{\mathbf{u}}(n) = M - by - 1$ tap - input at time n

d(n) = desired response at time n

(b) To be computed : $\hat{w}(n+1)$ estimate of \hat{w} at n+1

$$e(n) = d(n) - \underline{\hat{w}}^{H}(n) \underline{u}(n)$$

$$\underline{\hat{w}}(n+1) = \underline{\hat{w}}(n) + \mu \underline{u}(n)e^{*}(n)$$

$$n = 0,1,2,$$

3

Normalized LMS Algorithm

Motivation: The correction term $\mu \underline{u}(n)e^*(n)$ in the LMS algorithm:

$$\underline{\hat{w}}(n+1) = \underline{\hat{w}}(n) + \mu \underline{u}(n)e^{*}(n)$$

applied to the tap-weight vector $\underline{\hat{w}}(n)$ at time n+1 is directly proportional to $\underline{u}(n)$. When $\underline{u}(n)$ is large, the LMS experiences a gradient noise amplification.

Solution:
$$\underline{\hat{w}}(n+1) = \underline{\hat{w}}(n) + \frac{\overline{\mu}}{\|u(n)\|^2} \underline{u}(n) e^*(n)$$

Given the new input data (at time n) represented by the tap-weight vector $\underline{u}(n)$ and the desired response, d(n), the normalized LMS algorithm updates the tap-weight vector in such a way that $\underline{\hat{w}}(n+1)$ exhibits the minimum change with respect to $\underline{\hat{w}}(n)$ at time n. • The Development of the Normalized LMS Algorithm:

Constrained Optimization Problem:

Problem Statement:

Given $\underline{u}(n)$ and d(n), determine $\underline{\hat{w}}(n+1)$ so as to minimize the squared Euclidean norm of the change

$$\delta \underline{\hat{w}}(n+1) = \underline{\hat{w}}(n+1) - \underline{\hat{w}}(n)$$

in the tap-weight vector $\underline{\hat{w}}(n+1)$ with respect to its old value $\underline{\hat{w}}(n)$, subject to the constraint

$$\underline{\hat{w}}^{H}(n+1)\underline{u}(n)=d(n)$$

Start from

$$\|\delta\hat{w}(n+1)\|^2 = \delta\underline{\hat{w}}^H(n+1)\delta\underline{\hat{w}}(n+1)$$

$$= [\underline{\hat{w}}(n+1) - \underline{\hat{w}}(n)]^H[\underline{\hat{w}}(n+1) - \underline{\hat{w}}(n)]$$

$$= \sum_{k=0}^{M-1} |\hat{w}_k(n+1) - \hat{w}_k(n)|^2$$

By defining real and imaginary components for:

$$\hat{w}_k(n) = a_k(n) + jb_k(n) \qquad k = 0,1,\dots M-1$$

$$d(n) = d_1(n) + jd_2(n)$$

$$u(n-k) = u_1(n-k) + ju_2(n-k)$$

We rewrite:

$$\begin{aligned} \left| \delta \hat{w}(n+1) \right|^2 \\ &= \sum_{k=0}^{M-1} ([a_k(n+1) - a_k(n)]^2 + [b_k(n+1) - b_k(n)]^2) \end{aligned}$$

and we can rewrite
$$\underline{\hat{w}}^{H}(n+1)\underline{u}(n) = d(n)$$
 as:

$$\sum_{k=0}^{M-1} (a_k(n+1)u_1(n-k) + b_k(n+1)u_2(n-k) = d_1(n)$$

$$\sum_{k=0}^{M-1} (a_k(n+1)u_2(n-k) - b_k(n+1)u_1(n-k) = d_2(n)$$

Using the method of Lagrange multipliers, we can formulate the constrained optimization problem :

$$J(n) = \sum_{k=0}^{M-1} ([a_k(n+1) - a_k(n)]^2 + [b_k(n+1) - b_k(n)]^2)$$

$$= \lambda_1 \begin{bmatrix} d_1(n) - \\ M - 1 \\ \sum_{k=0}^{M-1} (a_k(n+1)u_1(n-k) + b_k(n+1)u_2(n-k)) \\ k = 0 \end{bmatrix}$$

$$+ \lambda_2 \begin{bmatrix} d_2(n) \\ -\sum_{k=0}^{M-1} (a_k(n+1)u_2(n-k) - b_k(n+1)u_1(n-k)) \\ k = 0 \end{bmatrix}$$

where λ_1 and λ_2 are lagrange multipliers :

To find the optimum values of $a_k(n+1)$ and $b_k(n+1)$; we do:

$$\frac{\partial J(n)}{\partial a_k(n+1)} = 0$$
$$\frac{\partial J(n)}{\partial b_k(n+1)} = 0$$

Giving:

$$2[a_k(n+1) - a_k(n)] - \lambda_1 u_1(n-k) - \lambda_2 u_2(n-k)] = 0$$

$$2[b_k(n+1) - b_k(n)] - \lambda_1 u_2(n-k) + \lambda_2 u_1(n-k)] = 0$$
We can combine them back to complex form:

$$2[w_k^*(n+1) - \hat{w}_k(n)] = \lambda^* u(n-k)$$
 $k = 0,1,...M$
where $\lambda = \lambda_1 + j\lambda_2$

By multiplying by $u^*(n-k)$ and then sum from k = 0 to M-1;

$$\lambda^* = \frac{2}{\sum_{k=0}^{M} |u(n-k)|^2} \begin{bmatrix} \sum_{k=0}^{M-1} \hat{w}_k(n+1)u^*(n-k) \\ -\sum_{k=0}^{M-1} \hat{w}_k(n)u^*(n-k) \end{bmatrix}$$
$$= \frac{2}{\|\underline{u}(n)\|^2} \left[\hat{w}^T(n+1)u^*(n) - \hat{w}^T(n)\underline{u}^*(n) \right]$$

Rewrite:

$$\lambda^* = \frac{2}{\|\underline{u}(n)\|^2} \left[d^*(n) - \underline{\hat{w}}^T(n) \underline{u}^*(n) \right]$$
Since $e(n) = d(n) - \underline{\hat{w}}^H(n) \underline{u}(n)$

$$\lambda^* = \frac{2}{\|\underline{u}(n)\|^2} e^*(n)$$

Finally

$$\delta \hat{\mathbf{w}}_{\mathbf{k}}^{(n+1)=\hat{\mathbf{w}}_{\mathbf{k}}^{(n+1)-\hat{\mathbf{w}}_{\mathbf{k}}^{(n)}}$$

$$= \frac{1}{\|\underline{u}(n)\|^2} u(n-k)e^*(n) \quad k = 0,1...M-1$$

Equivalently:

$$\delta \underline{\hat{\mathbf{w}}}(n+1) = \underline{\hat{\mathbf{w}}}(n+1) - \underline{\hat{\mathbf{w}}}(n)$$

$$= \frac{1}{\|\underline{u}(n)\|^2} \underline{u}(n) e^*(n)$$

Introduce $\overline{\mu}$ to control over the change in tapweight vector:

$$\delta \underline{\hat{\mathbf{w}}}(n+1) = \frac{\overline{\mu}}{\|\underline{u}(n)\|^2} \underline{u}(n) e^*(n)$$

Or

$$\frac{\hat{\mathbf{w}}(n+1) = \hat{\mathbf{w}}(n) + \frac{\overline{\mu}}{\|\underline{u}(n)\|^2} \underline{u}(n)e^*(n)}{\|\underline{u}(n)\|^2}$$

By setting

$$\mu(\mathbf{n}) = \frac{\overline{\mu}}{\left\|\underline{u}(n)\right\|^2}$$

the normalized algorithm is viewed as an LMS algorithm with a time-varying step-size parameter.

$$\overline{\mu}$$
 must satisfy: $0 < \overline{\mu} < 2$

then the normalized LMS is convergent in the mean square sense.

To avoid the division by a small number when $\underline{u}(n)$ is small,

$$\frac{\hat{w}(n+1) = \hat{w}(n) + \frac{\overline{\mu}}{a + \|\underline{u}(n)\|^2} \underline{u}(n)e^*(n)}{a > 0}$$

SUMMARY OF THE NORMALIZED LMS ALGORITHM

parameters :
$$M = \text{number of steps}$$

 $\overline{\mu} = \text{adaptation constant}$
 $0 < \overline{\mu} < 2$
 $a = \text{positive constant}$

Initial condition : $\hat{w}(0) = 0$

Data

- (a) Given $\underline{u}(n)$: M by 1 input vector at time n d(n): desired response at n
- (b) To be computed : $\hat{w}(n+1)$

Computation:
$$n=0,1,2,...$$

$$e(n)=d(n)-\underline{\hat{w}}^{H}(n)\underline{u}(n)$$

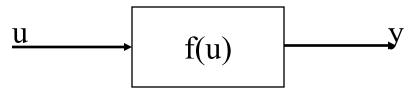
$$\underline{\hat{w}}(n+1)=\underline{\hat{w}}(n)+\frac{\overline{\mu}}{a+\|\underline{u}(n)\|^{2}}\underline{u}(n)e^{*}(n)$$

Method of Least Squares

Let u(1), u(2),. . . . u(N) represent measurements at t_1, t_2, \ldots, t_N , the problem then is to fit a curve by using these points in some optimum fashion. Let $f(t_i)$ represent this curve. The method of least squares finds the "best" fit by minimizing the sum of difference between $f(t_i)$ and u(i), $i = 1, 2, \ldots, N$. Unlike in Weiner filter theory where ensemble averages are used, the method of Least Squares uses time averages. As a result, no asumption on statistics are assumed.

13

• Linear Regression Example



Consider now : y = f(u)

For discrete values: $y_i = f(u_i)$, i = 1, ... M

For linear regression, assume:

$$f_a(u) = w_O + w_1 u$$

where w_0 and w_1 are coefficients to be determined that produce the least square solution.

Let $e_i = f(u_i) - f_a(u_i)$ i = 1, ... M

Choose w_0 and w_1 to minimize

$$S = \sum_{i=1}^{M} e_i^2$$

the sum of the squares of the deviations. Now:

$$S = \sum_{i=1}^{M} [f(u_i) - f_a(u_i)]^2$$

$$= \sum_{i=1}^{M} [y_i - (w_o + w_1 u_i)]^2$$
then :
$$\frac{\partial S}{\partial w_o} = \sum_{i=1}^{M} 2[y_i - (w_o + w_1 u_i)] (-1) = 0$$

$$\frac{\partial S}{\partial w_1} = \sum_{i=1}^{M} 2[y_i - (w_o + w_1 u_i)] (-u_i) = 0$$

Rewrite:

$$\sum_{i=1}^{M} y_i = Mw_o + \left(\sum_{i=1}^{M} u_i\right) w_1$$

$$\sum_{i=1}^{M} u_i y_i = \left(\sum_{i=1}^{M} u_i\right) w_o + \left(\sum_{i=1}^{M} u_i^2\right) w_1$$

$$(1)$$

The solution for w_0 and w_1 :

$$w_{O} = \frac{\binom{M}{\sum\limits_{i=1}^{M} y_{i}} \binom{M}{\sum\limits_{i=1}^{M} u_{i}^{2}} - \binom{M}{\sum\limits_{i=1}^{M} u_{i}} \binom{M}{\sum\limits_{i=1}^{M} u_{i} y_{i}}}{\Delta}$$

$$w_1 = \frac{M \left(\sum_{i=1}^{M} u_i y_i\right) - \left(\sum_{i=1}^{M} u_i\right) \left(\sum_{i=1}^{M} y_i\right)}{\Delta}$$

where
$$\Delta = M \left(\sum_{i=1}^{M} u_i^2 \right) - \left(\sum_{i=1}^{M} u_i \right)^2$$

Solution Using Optimization in Hilbert space

From the data:

$$w_1 + w_2 u_1 = y_1$$

 $w_1 + w_2 u_2 = y_2$
 $w_1 + w_2 u_M = y_M$

In matrix notation

$$\underbrace{A}\underline{x} = \underline{y}$$

$$\underbrace{A} = \begin{bmatrix} 1 & u_1 \\ \vdots & \vdots \\ 1 & u_M \end{bmatrix} \qquad \underline{x} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \qquad \underline{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix}$$
that is:
$$\underline{y} = \underline{x}_1 w_1 + \underline{x}_2 w_2$$
where
$$\underline{x}_1 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \text{ and } \underline{x}_2 = \begin{bmatrix} u_1 \\ \vdots \\ u_M \end{bmatrix}$$

Now the approximation is given by:

$$\underline{y}_a = \underline{A}\underline{x}_a = \hat{w}_1\underline{x}_1 + \hat{w}_2\underline{x}_2$$

Using the orthogonality priciple:

$$(\underline{y} - \underline{y}_a, \underline{x}_l) = 0 \qquad l = 1,2$$

$$(\underline{y} - (\underline{x}_1 \hat{w}_1 + \underline{x}_2 \hat{w}_2, \underline{x}_l)) = 0 \qquad l = 1,2$$

Or

$$\begin{pmatrix} (\underline{x}_1, \underline{x}_1) & (\underline{x}_2, \underline{x}_1) \\ (\underline{x}_1, \underline{x}_2) & (\underline{x}_2, \underline{x}_2) \end{pmatrix} \begin{pmatrix} \hat{w}_1 \\ \hat{w}_2 \end{pmatrix} = \begin{pmatrix} \underline{y}, \underline{x}_1 \\ \underline{y}, \underline{x}_2 \end{pmatrix}$$

Follows:

$$(\underline{x}_1, \underline{x}_1) = \sum_{i=1}^{M} 1^2 = M$$

$$(\underline{x}_2, \underline{x}_2) = \sum_{i=1}^{M} u_i^2$$

$$(\underline{x}_1, \underline{x}_2) = (\underline{x}_2, \underline{x}_1) = \sum_{i=1}^{M} u_i$$

$$(\underline{y}, \underline{x}_1) = \sum_{i=1}^{M} y_i$$

$$(\underline{y}, \underline{x}_2) = \sum_{i=1}^{M} u_i y_i$$

Normal Equations

$$\begin{pmatrix} M & \sum_{i=1}^{M} u_i \\ M & \sum_{i=1}^{M} u_i \\ \sum_{i=1}^{M} u_i & \sum_{i=1}^{M} u_i^2 \end{pmatrix} \begin{pmatrix} \hat{w}_1 \\ \hat{w}_2 \end{pmatrix} = \begin{pmatrix} M \\ \sum_{i=1}^{M} y_i \\ M \\ \sum_{i=1}^{M} u_i y_i \end{pmatrix}$$

 \hat{w} and \hat{w}_2 will give the same solution as directly done for w_0 and w_1 . They are equivalent approaches to solve least-squares problems.

• Multiple linear Regression Problem

Given : $\{d(i)\}$ and $\{u(i)\}$ $\{d(i)\}$ is observed at time i in response to input variables $u(i), u(i-1), \dots u(i-M+1)$.

d(i) = f(u(i)) and assumed to be linear.

$$d(i) = \sum_{k=0}^{M-1} w_{ok}^* u(i-k) + e_o(i)$$

where $e_{o}(i)$ is error.

Assume the measurement error is white with zero mean and variance σ^2 .

$$E[e_{o}(i)] = 0 \quad all \ i$$

$$E[e_{o}(i)e_{o}^{*}(k)] = \begin{vmatrix} \sigma^{2} & i = k \\ 0 & i \neq k \end{vmatrix}$$

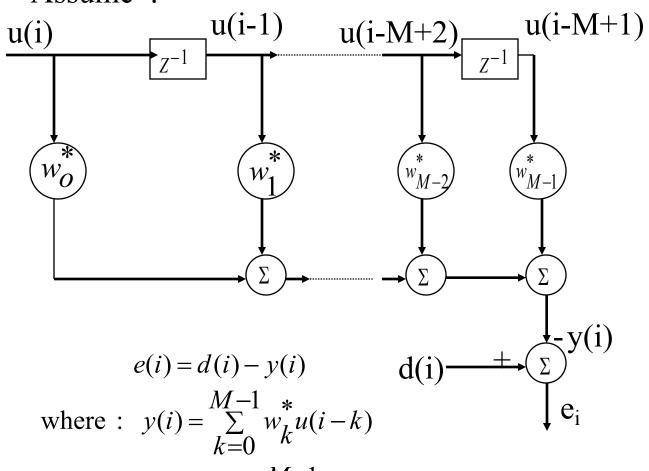
Follows that:

$$E[d(i)] = \sum_{k=0}^{M-1} w_{ok}^* u(i-k)$$

Problem: Estimate the unknown parameter of the multiple linear regression model. Estimate w_{ok} , given the two observable sets: $\{u(i)\}$ and $=\{d(i)\}$, $i=1,2,\ldots N$.

• Linear least-squares filter

Assume:



then :
$$e(i) = d(i) - \sum_{k=0}^{M-1} w_k^* u(i-k)$$

Minimize the cost function: the sum of error squares:

$$\xi(w_0, \dots, w_{M-1}) = \sum_{i=i_1}^{i_2} |e(i)|^2$$

where tap - weight filter weights w_0, \dots, w_{M-1} are held constant over $i_1 \le i \le i_2$

Data Windowing: Since the input data $\{u(i)\}$ $i=1,2,\ldots N$, the rectangular matrix constructed for the Mth order transversal filter may vary based on the method of windowing the input data:

a. Covariance method: Set $i_1 = M$ and $i_2 = N$ implying that no assumptions are made outside the window [1, N] the input data matrix:

$$\begin{pmatrix} u(M) & u(M+1) & . & u(N) \\ u(M-1) & u(M) & . & u(N-1) \\ . & . & . & . \\ u(1) & u(2) & . & u(N-M+1) \end{pmatrix}$$

b. Autocorrelation Method:

Data prior to i = 1 and the data after time i = N are zero. Set $i_1 = 1$ and $i_2 = N + M - 1$ the input data matrix then is :

- c. Prewindowing Method: the input data prior to i = 1 are zero, but makes no assumption after i = N. $i_1 = 1$ and $i_2 = N$
- d. Post windowing method: no assumption prior to time i = 1 but the data after i = N are zero. $i_1 = M$ and $i_2 = N + M 1$

Covariance Method:

Consider the cost function

$$\xi(w_0, \dots, w_{M-1}) = \sum_{i=M}^{N} |e(i)|^2$$

the limit assures that for each value of i, all the M tap inputs of the transversal filter have non-zero values.

Rewrite:

$$\xi(w_0, \dots, w_{M-1}) = \sum_{i=M}^{N} e(i)e^*(i)$$
By writing $w_k = a_k + jb_k$ $k = 0, \dots, M-1$, and:
$$e(i) = d(i) - \sum_{k=0}^{M-1} (a_k - jb_k)u(i-k)$$

then the gradient vector:

$$\nabla_{\mathbf{k}}(\xi) = \frac{\partial \xi}{\partial a_k} + j \frac{\partial \xi}{\partial b_k}$$

the minimization of the cost function with respect to tap weights, w_0, w_1, \dots, w_{M-1}

leads to:

$$\nabla_{\mathbf{k}}(\xi) = 0$$
 $k = 0,1,\dots M-1$

where $\nabla_{\mathbf{k}}(\xi) = -2 \sum_{i=M}^{N} u(i-1)e^{*}(i)$

then :
$$\sum_{i=M}^{N} u(i-k)e^*_{\min}(i) = 0$$

$$k = 0,1...M-1$$
 where e . (i) is the minimum value. This

where $e_{\min}(i)$ is the minimum value. This is simply the principle of orthogonality.

Implies : $\{e_{\min}(i)\}$ is orthogonal to the time series $\{u(i-k)\}$ applied to tap k of a transversal filter of length M for k=0,1. M-1 when the filter is operating in its least square condition. ²⁵

We can also show that

$$\sum_{i=M}^{N} \hat{d}(i)e_{\min}^{*}(i) = 0$$

the corollary to the principle of orthogonality.

• Minimum Sum of Error Squares

Start :
$$d(i) = \hat{d}(i) + e_{\min}(i)$$

 $desired$ $estimate$ $estimation error$
 $of desired$

Evaluate the energy of the time series $\{d(i)\}\$ i = [M, N], we can show

$$\xi_{d} = \xi_{est} + \xi_{min}$$

$$\xi_{d} = \sum_{i=M}^{N} |d(i)|^{2}$$

$$\xi_{est} = \sum_{i=M}^{N} |\hat{d}(i)|^{2}$$

$$\xi_{est} = \sum_{i=M}^{N} |e_{min}(i)|^{2}$$

$$\xi_{min} = \sum_{i=M}^{N} |e_{min}(i)|^{2}$$

• Linear Least - Squares Filters: Normal Equations

Start From:

$$e(i) = d(i) - \sum_{k=0}^{M-1} w_k^* u(i-k)$$

This for least - square solution can be written:

$$e_{\min}(i) = d(i) - \sum_{t=0}^{M-1} w_t^* u(i-t)$$

t is the dummy index:

Substitute this in:

$$\sum_{i=M}^{N} u(i-k)e_{\min}^{*}(i) = 0$$

By rearranging:

$$\sum_{t=0}^{M-1} \hat{w}_t \sum_{i=M}^{N} u(i-k)u^*(i-t) = \sum_{i=M}^{N} u(i-k)d^*(i)$$

$$k = 0, \dots, M-1$$

Define now:

$$\frac{\phi(t,k) = \sum_{i=M}^{N} u(i-k)u^*(i-t)}{k \le M-1}$$

the time averaged autocorrelation function of the tap inputs

$$\theta(-\mathbf{k}) = \sum_{i=M}^{N} u(i-k)d^*(i) \qquad 0 \le k \le M-1$$

Cross - correlation between the tap inputs and the desired response.

Then: System of M simultaneous equations

$$\sum_{t=0}^{M-1} \hat{w}_t \phi(t, k) = \theta(-k) \quad k = 0, 1, \dots M-1$$

the expanded system of the normal equations for a linear - least square filter.

Matrix Representation

$$\Phi \hat{\underline{\mathbf{w}}} = \underline{\boldsymbol{\theta}}$$

where

$$\Phi = \begin{pmatrix} \phi(0,0) & \phi(1,0) & . & \phi(M-1,0) \\ \phi(0,1) & \phi(1,1) & . & \phi(M-1,1) \\ . & . & . & . \\ \phi(0,M-1) & \phi(1,M-1) & . & \phi(M-1,M-1) \end{pmatrix}$$

$$\underline{\boldsymbol{\theta}} = \begin{bmatrix} \boldsymbol{\theta}(0) & \boldsymbol{\theta}(-1) & . & . & \boldsymbol{\theta}(-M+1) \end{bmatrix}^{T}$$

$$\underline{\hat{\mathbf{w}}} = \begin{bmatrix} \hat{w}_{o} & \hat{w}_{1} & . & . & \hat{w}_{M-1} \end{bmatrix}^{T}$$

Then: the solution to the normal equations:

$$\hat{\mathbf{w}} = \Phi^{-1} \underline{\theta}$$

 $\underline{\hat{\mathbf{w}}} = \underline{\boldsymbol{\Phi}}^{-1} \underline{\boldsymbol{\theta}}$ when $\underline{\boldsymbol{\Phi}}^{-1} \underline{\mathbf{exists}}$.

Note that Φ is the time-averaged correlation matrix of the tap inputs and Φ is the time-averaged cross-correlation vector. In this sense, this is the linear-least-square filter which is counter part to the Weiner filter.

• Minimum Sum of Error Squares

We can rewrite earlier results in matrix form:

$$\xi_{\text{est}} = \underline{\hat{w}}^{H} \underline{\Phi} \underline{\hat{w}}$$
$$= \underline{\hat{w}}^{H} \underline{\theta} = \underline{\theta}^{H} \underline{\hat{w}}$$

and

$$\xi_{\min} = \xi_d - \underline{\theta}^H \hat{w}$$
$$= \xi_d - \underline{\theta}^H \Phi^{-1} \underline{\theta}$$

Properties of Φ

Rewrite:
$$\Phi = \sum_{i=M}^{N} \underline{u}(i)u^{H}(i)$$

where $\underline{u}(i) = [u(i) \quad u(i-1) \quad . \quad u(i-M+1)^{T}$

a. Φ is Hermitian

$$\Phi^H = \Phi$$

b. Φ is nonnegative definite:

$$\underline{x}^H \oplus \underline{x} \ge 0$$
 for any M by 1 vector \underline{x}

- c. Eigenvalues of Φ are real and nonnegative
- d. ♠ is the product of two rectangular Toeplitz matrices that are the Hermitian transpose of each other

$$\Phi = \underline{\mathcal{A}}^H \underline{\mathcal{A}}$$
 where $\underline{\mathcal{A}}^H = [\underline{u}(M), \quad \underline{u}(M+1) \quad . \quad . \quad \underline{u}(N)]_{\mathbf{31}}$

Normal Equations In Terms Of Data Matrices

Define:
$$\underline{d}^{H} = [d(M), d(M+1) . . d(N)]$$

Follows:

$$\frac{\theta = \mathcal{A}^{H} \underline{d}}{A^{H} \mathcal{A} \hat{w} = \mathcal{A}^{H} \underline{d}}$$

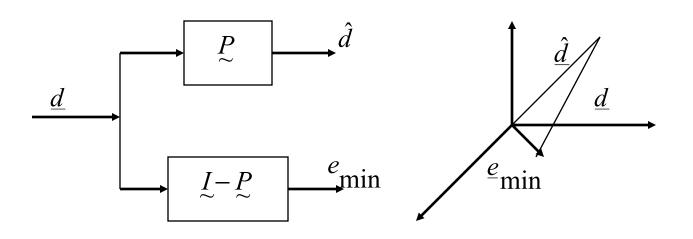
$$\hat{w} = (\mathcal{A}^{H} \mathcal{A})^{-1} \mathcal{A}^{H} \underline{d}$$

Also
$$\xi_{\min} = \underline{d}^H \underline{d} - \underline{d}^H \underline{\mathcal{A}} (\underline{\mathcal{A}}^H \underline{\mathcal{A}})^{-1} \underline{\mathcal{A}}^H \underline{d}$$

• Projection Operator Interpretation Suppose we estimate $\underline{\hat{d}}$ from $\underline{\hat{w}}$ as:

$$\frac{\hat{d} = A\hat{w}}{= A(A^{H} A)^{-1} A^{H} \underline{d}}$$

Then $\underline{\mathcal{A}}(\underline{\mathcal{A}}^H \underline{\mathcal{A}})^{-1}\underline{\mathcal{A}}^H$ is defined as a projection operator and $\underline{\mathcal{I}} - \underline{\mathcal{A}}(\underline{\mathcal{A}}^H \underline{\mathcal{A}})^{-1}\underline{\mathcal{A}}^H$ is known as the orthogonal complement projector. Let $\underline{\mathcal{P}} = \underline{\mathcal{A}}(\underline{\mathcal{A}}^H \underline{\mathcal{A}})^{-1}\underline{\mathcal{A}}^H$ and the following interpretation is useful:



• Uniqueness of Least - Square Estimate:

The least - squares estimate $\underline{\hat{w}}$ is unique when the data matrix $\underline{\mathcal{A}}$ has linearly independent columns. Implies that $\underline{\mathcal{A}}$ has at least as many rows and columns: $(N-M+1) \ge M$. Also means $\underline{\mathcal{A}} \ \underline{\hat{w}} = \underline{d}$ used in the minimization is overdetermined, meaning more equations than unknowns. Thus the least-squares estimate has the unique value:

$$\hat{\underline{w}} = (\mathcal{A}^H \mathcal{A})^{-1} \mathcal{A}^H \underline{d}$$

provided \underline{A} has linearly independent columns, and M x M matrix $\underline{A}^H \underline{A}$ is non-singular.

Properties of Least-Squares solutions:

• \hat{w} is unbiased, provided that $\{e_O(i)\}$ has zero mean

$$E[\hat{w}] = \underline{w}_{O}$$

- When $\{e_O(i)\}$ is white with zero-mean and variance σ^2 , $\text{cov}[\hat{w}] = \sigma^2 \mathcal{L}^{-1}$
- When $\{e_O(i)\}$ is white and zero mean, $\underline{\hat{w}}$ is the best linear unbiased estimate.
- When $\{e_O(i)\}$ is white, Gaussian and has a zero mean, \hat{w} achieves the Cramer Rao lower bound for unbiased estimates.

 Application of Least - Squares Method To AR Spectrum Estimation

Given the time series $\{u(i)\}\ 1 \le i \le N$, the Forward-Backward Linear Prediction Algorithm (FBLP) is used to compute the tap-weight vector \hat{w} of a forward predictor or the tap-weight vector \hat{a} of the prediction error filter. The vector \hat{a} represents as estimate of AR model used to fit the time series $\{u(i)\}$. ξ_{\min} represents as estimate of the white

noise variance σ^2 in the AR model. The estimate of the AR spectrum is given by

$$\hat{S}_{AR}(w) = \frac{\xi_{\min}}{\left|1 + \sum_{k=1}^{M} \hat{a}_{k}^{*} e^{-jwk}\right|^{2}}$$

$$M \approx \frac{N}{3} \text{ for best performance}$$

Application: MVDR Spectrum Estimation

- Independent sensors placed at different points in space, "listen" to the received signal and try to distinguish between the spatial properties of signal and noise.
- Beamformer places nulls in the directions of the sources of interference in order to increase the output SINR.
- The goal is to minimize the variance (average power) of the beamformer output while a distortionless response is maintained along the direction of a target signal of interest.

Output of linear transversal filter in response to tap inputs:

$$y(i) = \sum_{t=0}^{M} a_{t}^{*} u(i-t)$$

• The requirement is to minimize the output energy:

$$\xi_{out} = \sum_{i=M+1}^{N} |y(i)|^2$$

• Instead of a desired response we now have a constraint:

$$\sum_{k=0}^{M} a_k^* e^{-jk\omega_0} = 1$$

 To solve the constrained minimization problem, a constrained cost function is defined:

$$\xi = \sum_{i=M+1}^{N} |y(i)|^2 + \lambda \left(\sum_{k=0}^{M} a_k^* e^{-jk\omega_0} - 1\right)$$
output energy linear constarints

Where, λ is a complex Lagrange multiplier.

• The minimization involves equating the gradient to zero:

$$\sum_{k=0}^{M} \hat{a}_{t} \phi(t,k) = -\frac{1}{2} \lambda^{*} e^{-jk\omega_{0}}, \quad k = 0,1,...,M.$$

Where, is ϕ autocorrelation function of tap inputs.

• Solving for λ subjecting to the constraint and Substituting it in the equation for optimum tap weights, gives the **MVDR** formula as follows:

$$\hat{\mathbf{a}} = \frac{\Phi^{-1}\mathbf{s}(\omega_0)}{\mathbf{s}^{H}(\omega_0)\Phi^{-1}\mathbf{s}(\omega_0)}$$

• The minimum value of output energy:

$$\mathbf{S}_{MVDR}(\omega_{\scriptscriptstyle 0}) = \frac{1}{\mathbf{s}^{\scriptscriptstyle H}(\omega)\Phi^{\scriptscriptstyle -1}\mathbf{s}(\omega)}.$$

• The above equation is referred as the MVDR Spectrum estimate, at any ω the power due to other frequencies is minimized. Hence the Spectrum exhibits relatively sharp peaks.