
1

Finite Impulse Response (FIR)

Digital Filters (III)

Impulse Response Coefficients calculation with 
the Window method

Yogananda Isukapalli
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• Ideal filter design equations:
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• Exact approximation of the desired         requires an
infinite number of coefficients for         , which are also
known as the Fourier coefficients.

Ideal Impulse Response Design

where            and           are the ideal frequency 
response and the ideal impulse response respectively.  
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• Ideal Low Pass impulse response design
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For the ideal low pass frequency response in Fig 1(a), the 
ideal impulse response shown in Fig 1b, is obtained as 
follows:
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Fig 11.  (a) Ideal frequency response of a low pass filter  (b) Impulse response of the

ideal low pass filter

• The impulse responses of the ideal high pass, band pass and 
band stop filters are obtained from the low pass case of eqn (2) 
and are summarized in Table 1.
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Table 11.  Summary of ideal impulse responses for standard frequency selective filters
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• FIR filter design requires the truncation of {h[n]} for 
some n = ±M

Fig 2. Low pass filter frequency  response for 101 and 151 coefficient  designs

• The direct truncation method exhibits Gibb’s phenomenon 
implying there exists an overshoot of 8.95% at the point of 
discontinuity for a large M.

Overshoot
of 0.09 for
both cases
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Windowing concept:

Given the infinite sequence from the design equation
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Window functions

• A window function is used to obtain a  finite impulse response 
from an ideal infinite impulse response. 

• If          is the impulse response for an ideal filter and w[n] is
some window function which is zero outside the range 

then a finite impulse response filter is obtained as 
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Multiply by w[n]

...}0,0,0,1,1,1...1,1,1,0,0,0{...][ =nw

n=-20 n=20

Define the “windowed” filter coefficients:

Infinite sequence Finite length window
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Fig 31.  An illustration of how the filter coefficients, h(n), are determined by the window method
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Consider rectangular window design:
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Windowing: Convolution interpretation
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Desirable window properties

2.   Side lobes of the frequency response should decrease in 
energy as          . This will lead to a filter with higher stop 
band attenuation. 

1. Small width of main lobe of the frequency response of the 
window which results in a filter with a lower transition 
width.

p®w

• Various window functions have been proposed:-

• Rectangular window
• Hanning window
• Hamming window
• Blackmann window
• Kaiser window
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Table 21.  Summary of important features of common window functions
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• We observe that the window functions other than the Kaiser 
window, have fixed characteristics, such as transition width and stop 
band attenuation. 

Fig 41.  Comparison of the time and frequency domain characteristics of common window functions
(a) rectangular;  (b) Hamming;  (c) Blackman
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Example:

Solution:
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• We note that the indices of the filter coefficients run from    
-26 to 26. We make the filter causal by adding 26 to each 
index so that the indices start at zero.

• The filter coefficients, with indices adjusted, are listed in 
Table 3.

Table 31
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Kaiser Window – Adjustable Window Function

The most widely used adjustable window function is the
Kaiser window function. Kaiser found that a near-optimal 
window function could be formed by using the zeroth-
order modified Bessel function of the first kind.
The Kaiser window is given by:
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where I0(.) represents the zeroth-order modified Bessel 
function of the first kind given by: 
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Design Using Kaiser Window Function
contd....

• The Kaiser window has two parameters:
1) Length (N = 2M+1) 
2) Shape Parameter b

• By varying these two parameters the window length and 
shape can be adjusted to trade sidelobe amplitude for 
mainlobe width.

• The parameter b controls the minimum attenuation as i.e., 
ripple ds in the stop band of the windowed filter response.
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Design Using Kaiser Window Function
contd....

Estimation of b and the filter length N=2M+1 for a given
as and transition bandwidth Df is determined empirically.

0.1102(as -8.7), for as > 50
b =   0.5842(as -21)0.4+0.07886(as -21)  for 21 £ as £ 50

0 for as < 21
for as > 21

N = 
for as £ 21

1
36.14
95.7

+
D

-
f

sa

19222.0
+

Df

Note: The kaiser window does not provide independent control 
over the passband ripple dp. However in practice, dp is equal to ds.
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Design Using Kaiser Window Function contd...

<-- Samples -->
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b=0
b=3
b=6, 
M=29

By varying the two parameters M and b , the window shape 
could be adjusted to trade sidelobe amplitude for the 
mainlobe width. The figure below shows continuous 
envelopes of kaiser window of length M=29 and b=0, 3, 6
Notice the shape as b varies from 0 to higher values.
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Design Using Kaiser Window Function contd...

Taking the fourier transform of the obtained windows we see 
from the figures below we notice the tradeoff between the 
width of the mainlobe and the amplitude of the sidelobes. If 
the window is tapered more, the sidelobes of the fourier 
transform become smaller, but the main lobe becomes wider. 

b = 0
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Design Using KaiserWindow Function  Example

• Specification of a Lowpass Filter:
wp= 0.3p,   passband edge frequency
ws=0.4 p, stopband edge frequency
as =50dB attenuation 

• We have wc = (wp + ws)/2 = 0.35p
• We know as = -20log10(ds )dB. Thus ds=0.00316
• We know how to calculate b for a given as.Thus b = 4.5335. 
• The transition bandwidth Df is given by Df = (ws - wp)/2p =0.05  
• Next we determine N using the empirical formula given in the 
earlier slide. We get N = 59.565 we choose the next higher odd 
value i.e., 61. Thus M = 30.

Soln)
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Design Using Kaiser Window Function Example

For the calculated window parameters the kaiser window 
is :

Its Fourier transform is given by:
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Design Using KaiserWindow Function Example

We obtain the impulse-response coefficients of the 
required FIR filter by windowing the ideal filter 
function.
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For M=30 and wc=0.35p we get the coefficients to be :
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Design Using KaiserWindow Function  Example

The Magnitude Response of the obtained Filter is :
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Advantages and disadvantages of the window method

• The window method is simple to apply and simple to 
understand.

• The major disadvantage is lack of flexibility, for example 
equal peak pass band and stop band ripples, which is generally 
undesirable.

• Because of the effect of convolution of the spectrum of the 
window function and the desired response, the pass band and 
stop band edge frequencies cannot be precisely specified.
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