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Ideal Impulse Response Design

e [deal filter design equations:

Hy(@)=Y hyln]e ™

n=—00

h,[n]= i .[HD (w)e’™ dw

where H,(w) and h,(n) are the 1deal frequency
response and the ideal impulse response respectively.

« Exact approximation of the desired H,(®) requires an
infinite number of coefficients for h,(n), which are also
known as the Fourier coefficients.



* [deal Low Pass impulse response design

We have, 4, [n]= 1 IHD (w)e’™ dw (1)
2 7

For the 1deal low pass frequency response 1n Fig 1(a), the
1deal impulse response shown 1n Fig 1b, i1s obtained as
follows:

1t 1 %
hD(n):E jlxejwndwzg je’””dco

_ 2/ sm(ne,) , n720,—0<n<oo
no (2)

C

=2f., n =0 (using L'Hopital's rule)
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Fig 11. (a) Ideal frequency response of a low pass filter (b) Impulse response of the

ideal low pass filter

» The impulse responses of the 1deal high pass, band pass and
band stop filters are obtained from the low pass case of eqn (2)
and are summarized in Table 1.



Ideal impulse response, i (n)

Filter type hyn),n 0 hp(0)
Lowpass 2f. %ﬁd 2f
Highpass 21 %ﬁu—‘l I - 2f.
Bandpass ZfZ%’:E-)-z—) =2 f; %—?}"ﬁ AH=-H)
Bandstop Zﬂﬂ%ﬁ - Zfzimn—ﬁ?'-)- L =20fa=H)

f.. £, and £, are the notmalized passband or stopband edge frequencies; N is the length of filter.

Table 1'. Summary of ideal impulse responses for standard frequency selective filters



 FIR filter design requires the truncation of {h[n]} for
some n =M
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Fig 2. Low pass filter frequency response for 101 and 151 coefficient designs

 The direct truncation method exhibits Gibb’s phenomenon
implying there exists an overshoot of 8.95% at the point of

discontinuity for a large M.



Window functions

« A window function is used to obtain a finite impulse response
from an 1deal infinite impulse response.

e If 2,(n) 1s the impulse response for an 1deal filter and w[n] 1s
some window function which is zero outside the range
0<n<N-1 then a finite impulse response filter 1s obtained as

hln]={hy[n]; mn];

where A[n] 1s the finite impulse response.

Windowing concept:

Given the infinite sequence from the design equation

b [n] = i [ H,y(@)e™ dw

£ h(=25), h(=24)...h(=1), h(0), h(1)..., h(24), h(25)...}



Multiply by w(n]
win]=4{...0,0,0,1,1,1...1,1,1,0,0,0...}

|

n=-20 n=20

Define the “windowed” filter coeftficients:

hln]={hy[n]} mn];

Infinite sequence Finite length window
M

H(C()) = Z h[n]e_jnw, where M = N2_1

=M

= i hnWnle ™

I, |n|<M

Truncation is equivalent to a rectangular window: in]= 0, otherwise
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Fig 3!. An illustration of how the filter coefficients, #(n), are determined by the window method



Windowing: Convolution interpretation
Consider rectangular window design:

hn]l=h,[n—MIw[n]

_{hD[n—M] 0<n<2M

0 otherwise
hy[n-M]<> H, (e’ )e ™
win] & W(e™)

w2M +1)

sin(

)

W(e™) = DFT{w{n]} =
sin(vzv)

H(e™)=H,(e™)e ™ * W(e")



Desirable window properties

1. Small width of main lobe of the frequency response of the
window which results 1in a filter with a lower transition

width.

2. Side lobes of the frequency response should decrease 1n
energy as w— 7. This will lead to a filter with higher stop
band attenuation.

 Various window functions have been proposed:-

* Rectangular window
* Hanning window
 Hamming window

* Blackmann window
» Kaiser window
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Name of Passband Main lobe Stopband
window Transition width ripple relative to attenuation (dB) Window function
Sfunction (Hz) (normalized) (dB) side lobe (dB) {maximum) winh|n|=(N-1) /2
Rectangular 0.9/N 0.7416 i3 21 1
z 27n
Hanning 3.1/N 0.0546 31 44 0.5+ 0.5 cos [—N—]
: 2nn
Hamming 33/N 0.0194 41 53 0.54 + 0.46 cos(—N—]
2nn 4rn
Blackman 5.5/N 0.0017 57 75 042+ 05 cos( = ) + .08 cos{ - 1]
FA el Vi
i | . AN - Iyl
293/N(B=454) 00274 50 (Bl RN =LY )
1,(8)
Kaiser 432/N (B =6.76) 0.002 75 70
571/N (= 18.96) 0.000 275 o0
Table 2!

. Summary of important features of common window functions
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Fig 4. Comparison of the time and frequency domain characteristics of common window functions
(a) rectangular; (b) Hamming; (c) Blackman

* We observe that the window functions other than the Kaiser
window, have fixed characteristics, such as transition width and stop

band attenuation. "



Example:

Solution:

Obtain the coefficients of an FIR lowpass filter to meet the specifications given below
using the window method.

passband edge frequency 1.5 kHz
transition width 0.5 kHz
stopband attenuation =50 dB
sampling frequency 8 kHz

j
From Tuble Pk, we select hp(n) for lowpass filter which is given by
sin(nw.)
na,
ho(n) =2/, n=20

ho(n)y = 2£, nx0

Table é indicates that the Hamming, Blackman or Kaiser window will satisfy the
stopband attenuation requirements. We will use the Hamming window for simplicity.

Now Af=0.5/8=0.0625. From N=33/Af=33/0.0625= 52.8, let N =53. The filter
coefficients are obtained from

hn{nyw(n) 26 =n =< 26
where
5.0 = 2 /. sin(nw.) .
naw,
h[)(") =2f. n=0_0

wi{n) = 0.54 + 0.46 cos Qmn/53) -26=n=126
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Because of the smearing effect of the window on the filter response, the cutoff
frequency of the resulting filter will be different from that given in the specifications,
To account for this, we will use an £, that is centred on the transition band:

fl=f+Af/2=(1.5+025kHz=1.75 kHz — 1.75/8 =0.218 75

Noting that #{n) is symmetrical, we need only compute values for A(0), A(1), .. ..
h(26) and then use the symmetry property to obtain the other coefficients.

n=10:
n=1
n=2:

ho(0) = 2f. =2 x 0.218 75 = 0.4375
wi(0) = 0.54 + 0.46 cos (0) = 1
A(0) = hp(0Yu(0) = 0.4375

(.
(1) = 22021873 sin (2 x 0.218 75)
2r x 0.21875

in{360° . 5
_ sin{360° x 0.218 75) — 0312 19
T

w(l)=0.54 + 0.46cos (2x/53)

— 0.54 + 0.46 cos {360°/53) = 0.996 77
(1) = h(—1) = Ay(Hw(1) =0.311 18

21875
ho2) = —2 X 021875 4 2 x 27 % 0218 75)
2x2xx 021875

_ sin(157.5°) = 0.060 13
27
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w(2)=0.54 + 0.46 cos (2 X 2/53)
= (.54 + .46 cos (720°/53) =0.987 13
h(2) = h(=2) = hy(2)w(2) = 0.060 12

2x 021875
26 x 2 X 021875

==0011 3]

n=260 hy(26) =

sin{26 X 27 x (.21875)

w(26) = .54 + 0.46 cos (2 X 26/53)
= (.54 + 0.46 cos (9360°/53) = 0.080 81
h(26) = B(=26) = ho(26)w(26) = —0.000 914

* We note that the indices of the filter coefficients run from
-26 to 26. We make the filter causal by adding 26 to each
index so that the indices start at zero.

* The filter coefficients, with indices adjusted, are listed in
Table 3.

CE -0.1399895¢-04 - (52
h1)= 2.1673690e-0¢ - 151
h 2)= 1.3270280¢-03 - Hig0]
IKE 3219835504 )
h{ 4= -4,9238177e-03 = ]
i 5= -1468363%-03 - 47
h{ 6= 236273186-03 - hj4e
i 7= 34846558603 - {45
b 8= 1.9925830e-03 - 44
h 9= -§28723%e-03 =143
h{10)= 4532024709 =142
)= 92660460803 40
1(12)= 4 3430586603 - 1140
UK 11271288602 -]
bii4)= 1 140245302 -3y
Hs}= 1.0630714e-02 - H{a7]
hi6)- 2096435202 = 1(38]
h{17)= 52543016603 - {3
)= ~321560860-02 - {34
hii9)= -7.54874e-03 =hi3)
120]= 4 354615%-02 -1
b= 3.2599190e-02 )
2= -5,3413653e-02 SE
hes)= 5662029802 129
14 = 6.0122145-02 - hi2g]
hies)= 31118560801 - fie7)
hjeg]= 4.4750000¢-01 =hjog
Table 3!
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Kaiser Window — Adjustable Window Function

The most widely used adjustable window function 1s the
Kaiser window function. Kaiser found that a near-optimal
window function could be formed by using the zeroth-
order modified Bessel function of the first kind.

The Kaiser window 1s given by:

LABVI-CnIN-D’}  _(N—1)/2<n<(N—1)/2
w[n] =1, Iy (P)

otherwise

where /,(.) ref)resents the zeroth-order modified Bessel
function of the first kind given by:

I (x)=1+ ZL_: [ (x ; !2)k J where typically, L< 25.

17



Design Using Kaiser Window Function
contd....

The Kaiser window has two parameters:
1) Length (N = 2M+1)
2) Shape Parameter [

By varying these two parameters the window length and
shape can be adjusted to trade sidelobe amplitude for
mainlobe width.

The parameter £ controls the minimum attenuation o 1.€.,
ripple o, in the stop band of the windowed filter response.

18



Design Using Kaiser Window Function
contd....

Estimation of £ and the filter length N=2M+1 for a given
o, and transition bandwidth Af 1s determined empirically.

(0.1102(a, -8.7), for o, > 50
£=10.5842(ct, -21)04+0.07886(c, -21) for 21 < o, < 50
0 for o, <21

@,-795 for Ol >~ 21
14.36Af

N =

0.9222
v 1 forag <21

Note: The kaiser window does not provide independent control
over the passband ripple o,. However in practice, o, is equal to d,.

19



Design Using Kaiser Window Function contd...

By varying the two parameters M and S, the window shape
could be adjusted to trade sidelobe amplitude for the
mainlobe width. The figure below shows continuous
envelopes of kaiser window of length M=29 and /=0, 3, 6
Notice the shape as S varies from 0 to higher values.

| — =0
R i A (//ﬁi%g
- =
Ay, VAN

17 X

I ~

10 15 20 25 30
<-- Samples -->

o
[¢)]
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Design Using Kaiser Window Function contd...

Taking the fourier transform of the obtained windows we see
from the figures below we notice the tradeoff between the
width of the mainlobe and the amplitude of the sidelobes. If
the window 1s tapered more, the sidelobes of the fourier
transform become smaller, but the main lobe becomes wider.
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g 20\ % 20 '\\ % .
Q
2 0 N\ AN /N 5 0 g o
Q
AR AA L3 74 YaVaVa VoV AU (NSNS Iy
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] 1 | U | T g-20 | ' v Y V V V V Y V V V g =0 Y f\j’\vf\Yf\/\f\A,\AA
%-40 € -40 L B R - B § = " YYYYYYY
= 60 g.ao §-100
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized frequency (Nyquist == 1) Normalized frequency (Nyquist == 1) Normalized frequency (Nyquist == 1)
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g v NN N AN T o e DN \\ N\ 2 o \
g° AR N\ AYAYATAN N fe A
3 <-100 N[N I N
% -10 - \ g & -200 \
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Design Using Kaiser Window Function Example

 Specification of a Lowpass Filter:
w,= (.37, passband edge frequency
w,=0.4 &, stopband edge frequency
a, =50dB attenuation

Soln)

* We have w, = (w, t w)/2 =0.357x

* We know o, = -20log,((0, )dB. Thus 0,=0.00316

» We know how to calculate £ for a given «,. Thus = 4.5335.

* The transition bandwidth Af1s given by Af = (w, - w,)/272=0.05
* Next we determine N using the empirical formula given 1n the
earlier slide. We get N = 59.565 we choose the next higher odd
value 1.e., 61. Thus M = 30.
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Design Using Kaiser Window Function Example

For the calculated window parameters the kaiser window
15 N

7 \
W N

17/

Its Fourier transform 1s given by:

o
z
S 0
Q.
w
< WYW YYYYYY
S - + ' +
R ' I
c
j=2}
s 100
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g
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-400
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Design Using Kaiser Window Function Example

We obtain the impulse-response coefficients of the
required FIR filter by windowing the 1deal filter

function.
h[n]=

2f.sinw.n

wn] nz0,—-M<n<M

nw

c

=2f. n=0
For M=30 and w.=0.35 7 we get the coefficients to be :
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Design Using Kaiser Window Function Example

The Magnitude Response of the obtained Filter 1s :

20

0

-20
-40 \

jii Uit

-100

<-- Gain -->

-120

0 0.2 0.4 0.6 0.8 1
<-- Normalized Frequency -->



Advantages and disadvantages of the window method

e The window method 1s simple to apply and simple to
understand.

» The major disadvantage is lack of flexibility, for example
equal peak pass band and stop band ripples, which 1s generally
undesirable.

* Because of the effect of convolution of the spectrum of the
window function and the desired response, the pass band and
stop band edge frequencies cannot be precisely specified.
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