
1

Infinite Impulse Response 
(IIR)

Digital Filters (I)

Mapping analog filters
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Design objectives: IIR designs

Given that:
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General design problem:

Find ak and bk’s such that filter responses
(time response, frequency response, group
delay etc,) approximate the desired responses
with some specified error criterion( ex:- MSE)

Design Techniques:
Indirect design:

Mapping analog filters

Direct design: 
Direct placement of 
pole-zeros in the z-plane via
closed form solutions.

Optimal designs:
Placement of pole-zeros via
computer-aided techniques
open form solutions
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Mapping from analog filters:

Given an analog filter:
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Use an approximate mapping function to 
obtain an equivalent digital filter.



5

Mapping functions:

Mapping differentials

Mapping Integrals

Impulse - Invariant mapping

Bilinear mapping

The matched z-transform

Step-Invariant mapping

others

Mapping differentials:
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Forward:
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Ex:-
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Z-domain function:
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is the digital filter function via mapping from
the analog filter Ha(s)
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Compare H(z) with Ha(s)

Conclusion:

T
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= Backward difference
mapping
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= Forward difference
mapping
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Mapping differentials: A summary

Given a desired analog filter Ha(s), two 
mapping functions 

T
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may then be substituted to yield a 
corresponding digital filter H(z). The
procedure is simple and straightforward 

Desirable properties of mapping functions:

(a) The j axis (s = j   ) in the s-plane should
be mapped on to the unit circle in the z-plane.
This preserves the frequency selective 
properties of analog filters.

(b) Points in the LHS of the s-plane ( Re(s) < 0)
should be mapped to inside the unit circle
(|z| < 1). Stability property will be preserved

w¢ w¢
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Evaluation of difference mapping functions:

Backward difference: 
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(5)  with sT = a + jb,  a < 0, 
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Conclusion: Mapping function does not in general
satisfy the desired properties except for extremely
small sampling times.

Forward difference operator:

T
zs 1-

= sTz +=1

s = j

s-plane

z-plane

Re(z)

z=1+sT

w¢



14

Conclusion: Some pole locations in s-plane may
be mapped to locations outside the unit circle.
Generally this mapping is not recommended.
Extremely small sampling times may provide
satisfactory results


