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Analog Filter Specifications
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1-6, < |H(ja)’) <1+3J, for|a)’ < w,,

|H(ja)’) <o, for w, < |a)' < oo,

a, =—20log,(1-0,)dB,
as = _201Og10 (5s )dBa

where o, and o are the peak pass band ripple and minimum stop
band attenuation in dB respectively
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Stability
Analog filters are stable when their poles are in the left
half of the s-plane, where as digital filters are stable when
their poles are confined within the unit circle.

$ Im(s) Im(z)
% S- plane
— T =
S:;le Stable

Analog Filter : Magnitude

Function: H(j@o)=H(s)|,_,,= N<H(jo)

Magnitude Square Function :

= H(s)H (=s)|

s=ja'



Analog Butterworth Filters
Define : Lowpass Butterworth Filters (N order)

1

|H(jo")|'= ;
1+ ()2
p

or

|H(jo)|'= - (;’)ZN ( normalized prototype,
®, =1)

H(w)

1.0

_ \N>50

Maximally flat
response N \ \\N »




Poles of the Lowpass Prototype (Normalized @, =1)
Butterworth Filter

Magnitude Square Function :

|H(jo)['=

1+ @™

H(s)H(—s)= =

H(s)H(—s)=

1+ (=s*)"



Poles:  Solve: 1 +(-s)N=0

a. N is odd 1 -s2N=(

2N = |
Roots :
k2rx ko
(=) ()
S, =le N =1e ¥
k=0,12,......... 2N -1
b. N is even :

1+s2N=0 N=-]

Roots :




Poles of a normalized (@, = 1) Butterworth (LPF) filter lie
uniformly spaced on a unit circle in the s-plane at the
following locations:

S, =e N + jsin N
k=12,.,N
The poles occur 1n complex conjugate pairs and lie on the left-
hand side of the s-plane.

_ ik N-1)/2N _ COS[ (2k + N—l)ﬂ} .. [(Zk-l- N—1)7Z':|

TABLE 10.1 - BUTTERWORTH PROTOTYPE COEFFICIENTS =~

a3, _ a, as a, ag E a; R PR

” . P

1 1.0000

2 l.41al 1.0000 :

3 2.0000  2.0000 1.0000

4 26131 3.4142 2.6131 1.0000

5 . 3.2361 5.2361 5.2361 3.2361 1.0000

6 3.8637 7.4641 9.1416 . 7.4641 3.8637 1.0000 e ARE

7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1.0000 7 -

8 5.1258 13.1371 21.8462 25.6884 21.8462 13.1371 5.1258 1.0000 !

Hyp,(s) = .,] =
L ] 1 + a,8s +axs™+ --- + ans <. :

Source: .'\:;l. E. Van Valkenburg, Jntroduction to Modern Network Synthesis. New York, john Wiley and'
Sons, 1960.



Example: N =3
Sop — 1, S1 = l.ej“B, S, = 1.6127[/3

s; = 1.7, 5, =1.e43 g, =153

it
r/zi sl
R 1

"H (s) = — >
W sz w2ed

101 —1
log i
Butterworth 1010 _1

Filter order N N =
2log[ )



Analog Chebyshev Filters

Define:
) K

| H(jo) = ——5m—

I+&°Cy(0/w,)

1 :
H. . (io)| = ( normalized
| LPP(] )| 1+£2C§,(a)') prototype, @, —1)
s> Up

Where :

Cn(@') is the Nt order chebyshev polynomial.
Cn(ew) =cos(Ncosle' ) 0<@ <]
Cn( @) = cosh(Ncosh'lo') o' > 1]

¢ 1s the ripple parameter 0 <g <1 sets the ripple

amplitude 1n the ripple passband 0< ¢ <1
10



The ripple amplitude in dB 1s given by :

1
Yag = —10 loglO[mj

= lOloglo(l—I—E;Z)
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Fig: Chebyshev prototype low pass response
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Also,
Car(@') =20 C(@0') - Cya(@')

Ay

Cosh_l 1010—_1

Chebyshev lof—g |
Filter order N N2> :
2cosh™!| £

!

()

oS
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172-48 ripple. (e = 0.3493, € = 0.1220)
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Fig: Prototype Chebyshev denominator polynomials

Poles of a normalized
(@, = 1) Chebyshev LPF
s, =sinh(a)cos(B, )+ jcosh(a)sin(f,),
where o = %sinh‘1 (%);

(2k+N -1z

,k=12,..,.N
2N

By =
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Mapping analog filters to digital domain:

« Mapping differentials:

Backward:

Forward: dy, (1)

t=nT

V") === Backward or forward difference operator

Also, V®[y[n]]=VOIVEI[n]]]

with V() = y[n]

14



Analog Filters Digital Filters

z dk Sk Mapping Functions ; dk [ T ]
H,(s) =5 | > -

k
2GS
k=0

1

|
S —
T
Backward Forward

Difference Mapping Difference Mapping

« Both the mapping functions may produce satisfactory results only
for extremely small sampling times and are generally not
recommended. 15



Impulse Invariance Mapping:

N

N
H,(s) = o H(z)-
k=1 S~ Pi ; l-e

e Evaluation — Pole Mapping:

(a) The impulse 1nvariant mapping maps poles from the s-plane’s
jo' axis to the z-plane’s unit circle.

(b) All s-plane poles with negative real parts map to z-plane poles
inside the unit circle. In other words, stable analog poles are
mapped to stable digital filter poles.

(c) All poles on the right half of the s-plane, 1.e. with positive
real parts, map to digital poles outside the unit circle.

The impulse invariant mapping, thus, preserves the stability of
the filter.

16



 Deficiency of the impulse-invariance mapping;:

If s-plane poles have the same real parts and imaginary parts
that differ by some integer multiples of 2rt/T, then there are an
infinite number of s-plane poles that map to the same location in
the z-plane. This will result 1n aliased poles in the z-plane.

» Aliasing 1n digital frequency response:
.y 1 1 2
HE"Y==H (jo+—=H (jo'+ j=)+....
(e ) =2 H, o)+ H,(jo£]—7)

Digital frequency response reproduces the analog frequency
response every 2m/T.

To avoid aliasing for lower samgling rates, the pole mapping 1s
. . . , T
restricted to the primary strip— = < ' < =

T
Thus each horizontal strip of the s-plane of width 27/T 1s mapped

onto the entire z-plane.
17



To prevent significant aliasing:
H (jo')=0 for
Band limit the analog filter.

>/ T

a)l

Im(s)

-

Im(z)

Z=1 z-plane

" Re(2)
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« Example of the impulse-invariance mapping:

Third order Butterworth low-pass filter’s transfer function:

1
H(s) = 2
(s+1)(s"+s+1)
The partial fraction expansion is :
1
H(s) = . .
(s+1)(s+0.5-30.866)(s+ 0.5+ 70.866)
Cl CZ C3
= + +
(s+1) (s+0.5-,0.866) (s+0.5+ ;0.866)
Algebra gives the coefficients as :

I 0.577¢7>* .\ 0.577¢”%
(s+1) (s+0.5-0.866) (s+0.5+ j0.866)

The three poles are :
p,=-1,p, =-0.5+;0.866,p, =-0.5—;j0.866

19



Therefore, the transfer function can be written as :
1 1 1
+ . + :
(1 ] e—TZ—l) (1 ] e(-0.5+J0.866)TZ—1) (1 ] e(—0.5—10.866)TZ—1)
Simplifying, we get
z -z" —1.154e™*" cos(57 /6 +0.8667T)
(Z ) e-T) + (1 ) e(-0.5+j0.866)TZ—1)

H(z) =

H(z) =

This can be further simplified and expressed as :

2
byz" + b,z

H(z) = 3 2
2 +a,z’ +a,z+a,

where

b, =—2e " c0s(0.866T)+e ™" +1.154¢™"" cos(57/6+0.866T)
b =e" +1.154e™" cos(57/6+0.866T)

a, =—(e" +2e " c0s(0.8667))

a,=e +2e"" cos(0.8667T)

a, =—e



Bilinear Mapping:

H(S)zé : H(Z)—Zjii
LT z+1 2 z-1
s = or §=
2 z—1 T z+1

« Evaluation — Pole Mapping:
Stable analog filters are mapped from s-plane to z-plane as stable
digital filters. Aliasing problem 1s eliminated.

» Analog and Digital frequencies relationship for prewarping:

@' — Analog frequency

@' = ktan(wT /2)

@ — Digital frequency

21



Summary of Bilinear Transformation method!

Eor standard,. frequency-selecuve IIR filters. the steps for using the BZT may be

suimmarized as folloyws:

(L) Ulse the digital filter specifications to find a suitable normalirzed, prototype.,
analog lowpass lilter, #(s).

2) Determine and prewarp the bandedge or critical freguencies of the desired
filter. For lowpass or highpass filters there is just one bandedge or cutott
fregquency (.. say ). For bandpass and bandstop filters, swe have the lower and
uppar passband edge frequencices, a3, and .., each of which needs 1o be
prewarped (the stopband edge frequencies may also be specified):

Fes By
(,,_)"_ — ta[](—"—’---—} (8.204:
=

a, ¥ @ T
a3, = tan(——f—‘-—}, @/, = tan (L] {8.20h1
’ 2 2

€3y Denormalize the analog prototype filter by replacing s in the transfer function.
Ff(5s). using onc of the following transformations, depending on the type of
filter required:

ANSE— = lowpass to lowpass (8.21a
o3
@]
siE= £ lowpass to highpass (R 21k
<
s + wf
St T DG low pass to bandpass {8.2ic)
W
W
o= _—)d lowpass to bandstop {8.21d:
st L0y
where

5 = 2]}, YW = o

12

r
—

1) Apply the BZT to obtain the desired digital filter transfer function, #(z). by
replacing 5 in the frequency-scaled (i.e. denormalized) transfer tunction, H(sh
as fotlows:



Example 1:

Low pass filter: Obtain the transfer function H(z) of the digital low pass filter to
approximate the following transfer function:

1
H(s)=—F
() S2+\/§S+1

Use Bilinear Transformation method and assume a 3 dB cut off frequency of
150Hz and a sampling frequency of 1.28kHz.

Soln. The critical frequency, o,=2zx150rad/s, and F,=1/T = 1.28kHz, giving a

p

prewarped critical frequency of @/, = tan(w,T/2) = 0.3857

The frequency-scaled analog filter is given by

1
Hisy= H(SY.ovior = . _
] \ | 356, (,?,-f(():\:]" g \25_/(01,‘ % I

ti_}}f 0.1488

2wl + ol 8P+ 0.5455s +0.1488

Applying the BZT gives

) 008782 + 0.17562 + 0.0878
iy =4 m““?f’. T 21210048z + 0.3561

_ 0.0878(1 - 277 + 27%)
T 1 - 1.0048z " + 0356127 23




Use of BZT and Classical Analog Filters

Analog Filters Review

 Low pass Butterworth filter of order N

Frequency H(jo') = 1 , (8.24)
response 1+ (22N
()]

P

Poles of a normalized («, = 1) Butterworth LPF

: B 2k+N-O)z | .. | Rk+N-rx
g :e]ﬂ(2k+N 1)/2N = COS ( :|+ sin
£ { ON / 2N (8.25)
k=12,..,N

)4

[1010 1}
log
Filter order N '\ § 100 1 (8.26)

ZIOg[ a)f )
a)l’

24



Analog Filters Review contd

2. Low pass Chebyshev Type 1 Filter of order N

Frequency N2 K
H -
response A (@)l 1+&°Cy (o' @) (8.27)
Poles of a normalized ( @, = 1) Chebyshev LPF

s, =sinh(a)cos(B, )+ jcosh(a)sin(f,),

where o =—sinh™ (l);
N g

5 _Qk+N-Dz |, (8.29)
k 2N ) — L9&gooog
cosh™ 10" -1
Filter order N L0
N> (8.28)

1
2 cosh{a)f]
a)p

25



Analog Filters Review contd

3. Low pass Elliptic Filter of order N

Frequenc .y
e H(o) = —
response 1+&°Gy (@)

Fig: Sketches of frequency response of some classical analog filters
(a) Butterworth response (b) Chebyshev type I © Chebyshev type 11
(d) Elliptic

(8.30)

26



Analog Frequency Transformations

1. Desired Low pass—> Low pass prototype

The low pass to low pass transformation 1is:
S
From 8.21 (a)

S =
!

@y

Denote frequencies for

> r
LPF * “w» and Prototype T~ <
0 )]
jo? :j—lf’ lLe. o’ = lf’ (8.31)
a)p a)p
1=
|H(f)|) ) \a

27



2. Desired High pass—s Low pass prototype

The low pass to high pass transformation 1s:

S =
S

Denote frequencies for
HPF

g

and Prototype

From 8.21 (b)

(8.32)

Protutype LP

J

28



The BZT methodology using classical analog filters

In cases where the prototype lowpass filter does not exist, the stages of the BZT
method are:

(1)

(2)

(3)

(4)

Prewarp the bandedge or critical frequencies of the digital filter as described
previously.

Find a suitable lowpass prototype analog filter, based on the digital filter
specifications and one of the classical filier characteristics. This involves using
one of the frequency transformation equations (depending on the type of
digital filter — LP, HP, BP or BS) in reverse to determine the specifications of
the prototype LP filter. From this the order of the prototype filter and hence its
transfer function, H(s), are found.

Denormalize the prototype analog P filter, }/(s}, by [requency transformation
and scaling to obtain a new transfer function, H'(s), as described previously.
Apply the BZT to obtain the desired digital filter transfer function, H(z), by
replacing s 1n the frequency scaled transfer function, H'(s). as described
previously.

29



Design Example

Lowpass filter A lowpass digilal filter meeting the following specifications is
required:

passband 0-500 Hz.
stopband 2-4 kHz
passband ripple 3dB

stopband attenuation 20d8B
sampling frequency 8 kHz

Determine the following:

(1) pass- and stopband edge frequencies for 4 suitable analog prototype lowpass filter;
(2) order, N, of the prototype lowpass (ilter;

(3) coefficients, and hence the transfer function, of the discrete-lime filter using
the bilinear z-transform.

Assume a Butterworth characteristic for the filter.

Solution (1) From the specifications, the prewarped frequencies are

o’ =tan(w):0.198912
’ 2 % 8000
) (anzooo)
®; =tan| ———— =}
. 2 x 8000
o
wf = 2 = 1/0.198 912 = 5.0273
P

Thus. the prewarped pass- and stopband edge frequencies for the prototype LP
filter are: 0, 1, 5.0273.

(2) Next, we use Equation 8.25 and the values of the parameters above to
determine the order of the filter.
Now

104 _ = 1029 ~ 1 =99, 105" — 1 =10¥" —1=0995262%

log —?9—) =1.997697
0.9952623

For the prototype LPF

;
wp=1; @)=5.0273%; ]()g(a)—;] =7 log (5.0273) = 1.402 66.
[0}

P
s LRV o 450 Hariie

" 140266



(3) The poles of the prototype filter are (from Equation 8.26)

9 _ - 7 N2
(2+2 ])1[]+js,m[(2+2 l)ﬁ]:_£+jv

5, = CO8 ——
A [ 4 4 2 2
xZ N2
foa R = i
B2 2 2

The s-plane transfer function, H(s), is

H(s) = l Sp—
(s - s[,‘])(s - .:[,.2) sS4+ A25 41

The frequency scaled s-plane transfer function is

1
H's)= Hs)|, = —————
S (]
@, o,
___ o
4 N250] + o)
Applying the BZT:

;’

H(z) = H'(s)

-1 = T
L - o 7 - 1
& (—1) +20 (— )+ o
z+1 z+1

_ 0+ 1)
(z-D+ \-'"Zwl',(z - D+ )+ o+ 1)*

After simplification and dividing top and bottom by 2, we have

: 1422 427
S5, R P “ <
Hp= 1+ 2@, + 0 . 207 -z (-2 + )z
VBT e, P TUE g W VRl 8 Wy lz
14 N20; + @) |+ V2w, + o)

Using the values of the parameters

1+ 2w, + 0]} = 1.320 87; @ - 1=-0960 43
1 -2, + ) = 0.758 285 8; w;’ = 0.039 565 9

and substituting in the equation above and simplifying, we have

— 0.02995(1 + 227 + 27
T 12145422 ' + 05740827
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