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1. Fourier Series            Periodic waveforms

• Any periodic waveform,  f(t), can be 
represented as the sum of an infinite number of 
sinusoidal and cosinusoidal terms, together 
with a constant term:
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Eqn (1) can also be represented as

å
¥

-¥=

=
n

tjn
nedtf  )( w (2)

where ò
-

-=
2/

2/

 )(1
p

p

T

T

tjn

p
n dtetf

T
d w

is complex and         has the units of volts nd

(3)

3



4

1.02, 
0.56, 
2.09,
0.69,
-0.95

F

2.   Fourier Transform Non-periodic 
waveforms

• Consider a non-periodic waveform, obtained 
by making the period        of the periodic 
waveform to be infinite, i.e.

• As      is increased, the spacing between the 
harmonic components,                          
decreases to                eventually becoming 
zero. 
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continuous
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With these changes, eqn (3) becomes
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)( wjF Amplitude spectral density 
(continuous with units volts per 
hertz)

2)( wjF Energy spectral density 
(continuous with units joules 
per hertz)
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3.   Discrete Fourier Transform

• In practice the Fourier components of data 
are obtained by digital computation rather 
than by analog processing.

• So, the analog waveforms are digitized using 
a sample-and-hold circuit followed by an 
analog-to-digital converter and under the 
Nyquist criterion for sampling.

• Thus the data to be transformed is discrete 
and probably non-periodic.

• It is not possible to apply Fourier transform 
because it is for continuous data.

• Analog transform for use with discrete data 

Discrete Fourier Transform (DFT)
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Given: Finite (non-periodic) Duration 
Discrete - Time Signal

x[nT]

0         1        2         3        4        5        6  

x[nT] = 0     n<0,  n>N-1

¹ 0     for 0£n£N-1

1,......0
)2(1

0

1,......0

1

0

)2(

1

0

)(1][

   

][                                  

][)]([)(

-=

-

=

-=

-

=

-

-

=

W-

å

å

å

W=

=

==W

Nn
nk

N
jN

k

Nk

N

n

nk
N

j

N

n

nkTj
D

ekX
N

nTx

enTx

enTxnTxFkX

p

p

!

1.02, 
0.56, 
2.09,
0.69,
-0.95

F

DFT of x[nT]        X(kW) where W=2p/NT

DFT

IDFT
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• The DFT equation can be seen analogous to 
the Fourier transform equation (5) by putting 
x(nT) = f(t), kW = , and nT = t.

• Making these substitutions in eqn (5), and 
putting dt=T and replacing the integral with a 
summation gives 
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• Now comparing eqn (6) with the DFT eqn 
gives                         i.e.)()( kTXjF =w

The Fourier transform components may be 
obtained by multiplying the DFT components by 
the sampling interval.

• Note: From now on we assume 
X(k) represents X(kW), x[n] represents x[nT]

Relation between DFT and Fourier transform
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Example:

x[n]={1,1,0,0}        n=0,1,2,3

3,2,1,0
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X(0)=1+1=2,         X(1)=1+e-jp/2=1-j

X(2)=1+ e-jp =0,    X(3)=1+ejp/2=1+j

Note X(4)=X(0), X(5)=X(1), X(6)=X(2), 
and so on: X(k+4)=X(k)  k=0,1,2,3

{1,1,0,0} <=>{2,1-j,0,1+j}

Example: Consider an analog signal x(t) 
sampled with T=0.01 and the sampled 
values are :
n           0      1      2      3      4      5

x[n]   5.0  -1.5   6.5  -3.0  6.5  -1.5  
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Now taking the IDFT:
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{5.0,  -1.5,  6.5,  -3.0,  6.5,  -1.5}    Û {12,  0,  -3,  24,  -3,  0}
IDFT

DFT

• DFT: N-point transform is unique
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Suppose we multiply (9) by WN
-kp

where p=0,…..N-1 and sum from k=0 to N-1 
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Orthogonal Property :
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a¹1,  p-n is between -(N-1) and +(N+1)

Follows :

Implies :

• Proved the orthogonality property of 
distinct set of complex discrete 
exponentials :

• We have now proved: 

0

1

1.....
1
1

1

0

2)(

1

0

=

==

¹
-
-

=

å

å

-

=

P
-

-

=

N

k

k

N
NnpjN

NN

k

k

e

a

a

a
a
aa

npN

otherwise

N

k

pnk
NW

=
-

=

- =å ..

..0

1

0

)(

)(

)(][)(
1

0

1

0

pNx

pnNnxWkX
N

k

N

k

kp
N

=

-=åå
-

=

-

=

- d

14



15

1.02, 
0.56, 
2.09,
0.69,
-0.95

F

å

å

-

=

-

-=

-

=

-

=

=

1

0

))(2(

1,.....1,0

1

0

)(1][

)(1)(

N

k

kn
N

j

Np

N

k

kp
N

ekX
N

nx

or

WkX
N

pX

p

• Conclusion: Given {x[n]}n=0, 1, ……..N-1 
we obtain a unique set of values : 

{X(k)}k=0, 1, ….N-1 as a result :

{x[n]}  Û {X(k)}    

for n=0,1…N-1 & k=0,1…N-1 
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