Transform Domain Representation of Discrete Time Signals

The Discrete Fourier Transform

 (I)
Yogananda Isukapalli

1. Fourier Series \longrightarrow Periodic waveforms

- Any periodic waveform, $f(\mathrm{t})$, can be represented as the sum of an infinite number of sinusoidal and cosinusoidal terms, together with a constant term:
$f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega t)+\sum_{n=1}^{\infty} b_{n} \sin (n \omega t)$
where
$\omega=2 \pi / T_{p}$ is the first harmonic or fundamental angular frequency
$T_{p} \quad$ is the repetition period of the waveform
$n \omega$
discrete nth harmonics of ω

$$
\begin{aligned}
& \text { Ahtal } \\
& a_{0}=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} f(t) d t \quad \begin{array}{l}
\text { is a constant, like a DC } \\
\text { voltage level }
\end{array} \\
& a_{n}=\frac{2}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} f(t) \cos (n \omega t) d t \quad \text { and } \\
& b_{n}=\frac{2}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} f(t) \sin (n \omega t) d t
\end{aligned}
$$

Eqn (1) can also be represented as
$f(t)=\sum_{n=-\infty}^{\infty} d_{n} e^{j n \omega t}$
where $\quad d_{n}=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} f(t) e^{-j n \omega t} d t$
is complex and $\left|d_{n}\right|$ has the units of volts

2. Fourier Transform \longrightarrow Non-periodic waveforms

- Consider a non-periodic waveform, obtained by making the period T_{p} of the periodic waveform to be infinite, i.e. $T_{p} \rightarrow \infty$
- As T_{p} is increased, the spacing between the harmonic components, $1 / T_{p}=\omega / 2 \pi$, decreases to $d \omega / 2 \pi$, eventually becoming zero.

$$
\Downarrow
$$

discrete frequency variable $n \omega$ changes to the continuous variable ω
\Rightarrow Amplitude and phase spectra become continuous

Thus, $d_{n} \rightarrow d(\omega)$ as $T_{p} \rightarrow \infty$

With these changes, eqn (3) becomes

$$
\begin{equation*}
d(\omega)=\frac{d \omega}{2 \pi} \int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \tag{4}
\end{equation*}
$$

Dividing by $d \omega / 2 \pi$,

$$
\begin{equation*}
\frac{d(\omega)}{d \omega / 2 \pi}=F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \tag{5}
\end{equation*}
$$

$F(j \omega) \longrightarrow$ Fourier Transform
$|F(j \omega)| \longrightarrow$ Amplitude spectral density (continuous with units volts per hertz)
$|F(j \omega)|^{2} \longrightarrow$ Energy spectral density (continuous with units joules per hertz)

- In practice the Fourier components of data are obtained by digital computation rather than by analog processing.
- So, the analog waveforms are digitized using a sample-and-hold circuit followed by an analog-to-digital converter and under the Nyquist criterion for sampling.
- Thus the data to be transformed is discrete and probably non-periodic.
- It is not possible to apply Fourier transform because it is for continuous data.
- Analog transform for use with discrete data \longrightarrow Discrete Fourier Transform (DFT)

Given: Finite (non-periodic) Duration
Discrete - Time Signal

DFT of $\mathrm{x}[\mathrm{nT}] \longrightarrow \mathrm{X}(\mathrm{k} \Omega)$ where $\Omega=2 \pi / \mathrm{NT}$

$$
\begin{aligned}
X(k \Omega)=F_{D}[x(n T)] & =\sum_{n=0}^{N-1} x[n T] e^{-j \Omega n k T} \\
& =\sum_{n=0}^{N-1} x[n T] e^{\left.-j j \frac{2 \pi}{N}\right) n k} \quad k=0, \ldots \ldots-1
\end{aligned}
$$

『
$x[n T]=\frac{1}{N} \sum_{k=0}^{N-1} X(k \Omega) e^{j\left(\frac{2 \pi}{N}\right) n k} n=0, \ldots . . N-1$

- Note: From now on we assume
$\mathrm{X}(\mathrm{k})$ represents $\mathrm{X}(\mathrm{k} \Omega), \mathrm{x}[\mathrm{n}]$ represents $\mathrm{x}[\mathrm{nT}]$

Relation between DFT and Fourier transform

- The DFT equation can be seen analogous to the Fourier transform equation (5) by putting $\mathrm{x}(\mathrm{nT})=\mathrm{f}(\mathrm{t}), \mathrm{k} \Omega=\omega$, and $\mathrm{nT}=\mathrm{t}$.
- Making these substitutions in eqn (5), and putting $\mathrm{dt}=\mathrm{T}$ and replacing the integral with a summation gives

$$
\begin{equation*}
\sum_{n=0}^{N-1} x(n T) e^{-j k \Omega n T} T=F(j \omega) \text { for } 0 \leq t \leq(N-1) T \tag{6}
\end{equation*}
$$

- Now comparing eqn (6) with the DFT eqn gives $F(j \omega)=T X(k)$ i.e.

The Fourier transform components may be obtained by multiplying the DFT components by the sampling interval.

Example:
$\mathrm{x}[\mathrm{n}]=\{1,1,0,0\} \quad \mathrm{n}=0,1,2,3$
$X(k)=\sum_{n=0}^{3} x[n] e^{-j\left(\frac{2 \pi}{4}\right) n k}$

$$
k=0,1,2,3
$$

$X(0)=1+1=2$,
$X(1)=1+e^{-j \pi / 2}=1-j$
$\mathrm{X}(2)=1+\mathrm{e}^{-\mathrm{j} \pi}=0, \quad \mathrm{X}(3)=1+\mathrm{e}^{\mathrm{j} \pi / 2}=1+\mathrm{j}$
Note $X(4)=X(0), X(5)=X(1), X(6)=X(2)$,
and so on: $\mathrm{X}(\mathrm{k}+4)=\mathrm{X}(\mathrm{k}) \mathrm{k}=0,1,2,3$
$\{1,1,0,0\}<=>\{2,1-\mathrm{j}, 0,1+\mathrm{j}\}$

Example: Consider an analog signal $\mathrm{x}(\mathrm{t})$ sampled with $\mathrm{T}=0.01$ and the sampled values are :
$\begin{array}{lllllll}\mathrm{n} & 0 & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllllll}x[n] ~ & 5.0 & -1.5 & 6.5 & -3.0 & 6.5 & -1.5\end{array}$

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) n k} \\
& X(0)=\sum_{n=0}^{5} x[n]=12 \\
& X(1)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) n}=0 \\
& X(2)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) 2 n}=-3 \\
& X(3)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) 3 n}=-24 \\
& X(4)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) 4 n}=-3 \\
& X(5)=\sum_{n=0}^{5} x[n] e^{-j\left(\frac{2 \pi}{6}\right) 5 n}=0
\end{aligned}
$$

Now taking the IDFT:

$$
x[n]=\frac{1}{6} \sum_{k=0}^{5} X(k) e^{j\left(\frac{2 \pi}{6}\right) n k}
$$

$$
n=0,1,2,3,4,5
$$

First Write :

$$
x[n]=\frac{1}{6}\left[12-3 e^{j\left(\frac{2 \pi}{6}\right) 2 n}+24 e^{j\left(\frac{2 \pi}{6}\right) 3 n}-3 e^{j\left(\frac{2 \pi}{6}\right) 4 n}\right.
$$

Since: $\quad e^{j\left(\frac{2 \pi}{6}\right) 4 n}=e^{-j\left(\frac{2 \pi}{6}\right) 2 n} \quad$ Then:

$$
\begin{aligned}
& x[n]=2-0.5\left\{e^{j\left(\frac{2 \pi}{6}\right) 2 n}+e^{-j\left(\frac{2 \pi}{6}\right) 2 n}\right\}+4 e^{j\left(\frac{2 \pi}{6}\right) 3 n} \\
& =2-\cos \left(\frac{2 \pi n}{3}\right)+4 \cos (\pi n) \\
& x[0]=2-\cos (0)+4 \cos (0)=5 \\
& x[1]=2-\cos \left(\frac{2 \pi}{3}\right)+4 \cos (\pi)=-1.5 \\
& x[2]=2-\cos \left(\frac{4 \pi}{3}\right)+4 \cos (2 \pi)=6.5 \\
& x[3]=2-\cos \left(\frac{6 \pi}{3}\right)+4 \cos (3 \pi)=-3 \\
& x[4]=2-\cos \left(\frac{8 \pi}{3}\right)+4 \cos (4 \pi)=6.5 \\
& x[5]=2-\cos \left(\frac{10 \pi}{3}\right)+4 \cos (5 \pi)=-1.5
\end{aligned}
$$

DFT

$\{5.0,-1.5,6.5,-3.0,6.5,-1.5\} \Leftrightarrow \Leftrightarrow 12,0,-3,24,-3,0\}$

- DFT: N-point transform is unique

$$
\begin{align*}
& X(k)=\sum_{n=0}^{N-1} x[n] e^{-j\left(\frac{2 \pi}{N}\right) n k} \tag{7}\\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\left(\frac{2 \pi}{N}\right) n k}{ }_{n=0, \ldots \ldots . . \ldots . . N-1}^{N-1} \\
& \text { let. } W_{n}=e^{-j\left(\frac{2 \pi}{N}\right)} \tag{8}\\
& W_{n}^{-1}=e^{j\left(\frac{2 \pi}{N}\right)} \ldots \text { Then } \\
& X(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}{ }_{n=0, \ldots \ldots N-1} \tag{9}
\end{align*}
$$

Suppose we multiply (9) by $\mathrm{W}_{\mathrm{N}}-\mathrm{kp}$
where $\mathrm{p}=0, \ldots . . \mathrm{N}-1$ and sum from $\mathrm{k}=0$ to $\mathrm{N}-1$

$$
\begin{gathered}
\sum_{k=0}^{N-1} X(k) W_{N}^{-k p}=\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x[n] W_{N}^{k(n-p)} \\
\sum_{k=0}^{N-1} x[n]\left[\sum_{n=0}^{N-1} W_{N}^{k(n-p)}\right]_{p=0,1, \ldots, N-1}^{N-N} \\
=\sum_{n=0}^{N-1} W_{N}^{k(n-p)}=\sum_{n=0}^{N-1} e^{j k(p-n)^{2 \pi}} N
\end{gathered}
$$

Orthogonal Property :
a.) $\mathrm{p}=\mathrm{n}$ gives

$$
\sum_{k=0}^{N-1} 1=N
$$

b.) $\mathrm{p} \neq \mathrm{n}$ rew ${ }^{k=0}{ }^{\text {reite }}$

$$
\begin{aligned}
& \sum_{k=0}^{N-1} \alpha^{k} \\
& \alpha=e^{j(p-n) \frac{2 \pi}{N}}
\end{aligned}
$$

$\alpha \neq 1, \mathrm{p}-\mathrm{n}$ is between $-(\mathrm{N}-1)$ and $+(\mathrm{N}+1)$
Follows : $\sum_{k=0}^{N-1} \alpha^{k}=\frac{1-\alpha^{N}}{1-\alpha} \ldots . . \alpha \neq 1$

$$
\alpha^{N}=e^{j(p-n) \frac{2 \Pi N}{N}}=1
$$

Implies: $\sum_{k=0}^{N-1} \alpha^{k}=0$

- Proved the orthogonality property of distinct set of complex discrete exponentials :

$$
\sum_{k=0}^{N-1} W_{N}^{k(n-p)}=\left.\right|_{0 . . \text { otherwise }} ^{N . . p=n}
$$

- We have now proved:

$$
\begin{aligned}
& \sum_{k=0}^{N-1} X(k) W_{N}^{-k p}=\sum_{k=0}^{N-1} x[n] N \delta(n-p) \\
& =N x(p)
\end{aligned}
$$

$$
X(p)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k p} \underset{p=0,1, \ldots \ldots N-1}{ }
$$

or
$x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{-j\left(\frac{2 \pi}{N}\right)(k n)}$

- Conclusion: Given $\{\mathrm{x}[\mathrm{n}]\}_{\mathrm{n}=0,1, \ldots \ldots . . . \mathrm{N}-1}$ we obtain a unique set of values :
$\{\mathrm{X}(\mathrm{k})\}_{\mathrm{k}=0,1, \ldots . \mathrm{N}-1}$ as a result :
$\{\mathrm{x}[\mathrm{n}]\} \Leftrightarrow\{\mathrm{X}(\mathrm{k})\}$
for $\mathrm{n}=0,1 \ldots \mathrm{~N}-1 \& \mathrm{k}=0,1 \ldots \mathrm{~N}-1$

