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FFT

FFT - Decimation in Time Algorithm

In an attempt to reduce the number of calculations 
needed for the DFT, let us try breaking up the 
sequence x[n] into two smaller subsequences. In 
particular, let us divide x[n] into its odd and even 
indices :
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Let us perform a change of variables, let 
n = 2m for n even and n = 2m+1 for n odd
for  m = 0, 1, ………(N/2 - 1) 

Both sequences are half of the length of the 
original sequence. The first change of variables 
will give us the indices n = 0, 2, 4 and the other 
change will give us the odd indices n = 1, 3, 5….  

(1)

(2)
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Equation (1) now becomes :
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Let us look at each sequence in equation (3) 
independently
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(4)

Which is the length NG = N/2 DFT of the 
sequence g[n], which is nothing but x[2m]
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We can do the same to the other sequence 
after first factoring out the additional WN

k :
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Which is the length NH = N/2 DFT of the 
sequence h[n], which is nothing but 
x[2m+1]

(5)
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Combining equations (4) and (5) back into 
(3), we get :
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Thus, we can compute the length N DFT by 
computing two N/2 length DFT’s. But is there 
a saving in doing so ?

In other words :
N - point Transform = N/2 point transform +

WN
k [N/2 point transform ]
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Total MADS :

G(k) requires  (N/2)2 MADS

H(k) requires (N/2)2 MADS

WN
k H(k) requires N MADS

Computing X(k) : 

Directly => N2

By Decomposition =>2(N/2)2 + N

Now if we do the above exercise for 
N = 256

Direct => 65,536 MADS
Decomposition => 33,024 MADS
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As a result, we have seen that the breaking up 
a large DFT into two smaller DFT’s will allow 
savings in computations. This process is 
demonstrated by the block diagram below : 

x[n]

Length
N

DFT

X(k)

Length
N/2

DFT

Length
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DFT

x[2n]
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WN
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+
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7



FFT

Lets look at equation 6c more closely, 
since the sequences G(k) and H(k) are also 
DFT’s they have properties described 
earlier. However since they are of length 
N/2, we can say that :
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If we compute (6c) explicitly for N=8, like we 
did in the direct computation of the DFT, and 
simplify using (7) we get:
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FFT For Example :
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h[1]
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Putting everything together leads to the following 
flow diagram for N = 8:
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x[2]

x[4]

x[6]

Length
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The value to be multiplied on each branch is the 
one closest to the arrow head. No value indicates 
that G(k) is taken as is (multiplied by 1)
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g[a]

h[a]

WN
a

X(a)

X(a+N/2)
Wn

a+N/2

The general form of each structure can be 
expressed as :

By using the properties of the basis functions 
WN

nk, we can simplify this by factoring out Wn
a. 

This leads to the following structure : 

-1

g[a]

h[a] WN
a

X(a)

X(a+N/2)

1

1

1

This is known as the 2-point butterfly, since the 
lattice structure resembles a butterfly on its side. 
Butterflies are the elementary computations, or 
building blocks of many FFT structures.
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Thus the earlier shown block diagram for 
N=8 can be now simplified to :

x[0]

x[2]
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The terms WN
a for a = 0, 1, …..N/2 -1 are 

known as twiddle factors.

Figure 2
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FFT Continue the Decomposition in Time

We can also break G(k) and H(k) into smaller 
sequences for even more savings. By further 
dividing (6) into its new even and odd 
sequences, we get equations similar to the ones 
we got when we initially divided the 
sequences. 
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For each sequence, split into :

m = 2p and m = 2p + 1 for p = 0, 1, ..,(N/4 - 1)

Which yields:
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(9)

Looking at equation (9), we see that x[n] has 
now been divided into four sequences. 
Substituting for p yields the indices n = 0, 4, 8… 
for the first sequence, n = 2, 6, 10, .. For the 
second, n = 1, 5, 9… for the third, and n = 3, 7, .. 
For the last, thus including all the indices of the 
sequence x[n]. 
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Block Diagram for the decomposition :

x[0]

x[4]
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Figure 3
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We can also modify this block 
diagram (3) as we did earlier :  

in Figure 2x[0]

x[4]
Length

N/4
DFT

X(0)

X(1)

x[2]

x[6]
Length
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X(2)

X(3)-1

-1

W0
N/2
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x[5]
Length
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X(5)
-1

-1
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x[7]
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-1
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N
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N
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N/2

-1

-1
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Figure 4
Note that the twiddle factors in the second stage 
(length N/2 DFT) can be changed as in property of 
the basis functions Wn

a:
The Decomposition continues until we are left 
with   N/2 2 point butterflies, resulting in 

log2N stages.

21
2/

00
2/ ..&.. NNNN WWWW ==
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The final Radix-2 decomposition in 
Time structure 

x[0]

x[4]

X(0)

X(1)
W0

N/4 -1
x[2]

x[6]

X(2)

X(3)
W0

N/4 -1

W0
N/2 -1

W0
N/2 -1  

x[1]

x[5]

X(4)

X(5)
W0

N/4 -1
x[3]

x[7]

X(6)

X(7)
W0

N/4 -1

W0
N/2 -1

W0
N/2 -1  

W0
N -1

W0
N -1  

W2
N -1

W3
N -1  

Figure 5
¬ Stage 1 ®¬ Stage 2 ®¬ Stage 3 ®

Figure 5 shows the lattice structure for computing 
a length N =8 DFT. Note that incorporated in this 
structure is the lattice for also computing the 
Length N = 2 &  4 DFTs. To compute N=16, we 
can combine two length 8 DFT’s and add twiddle 
factors of the form W16

a. Thus this could be 
extended to generate higher order DFT’s of length 
2v, where v is an integer.  
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The structure shown in figure 5 is called the a radix-2 Fast 
Fourier Transform (FFT) because we are decomposing our 
signal into groups of two, which leads to two point 
butterflies.
Advantages of the Lattice Structure:
1. In place computations: Memory in hardware is an 
important consideration when computing DFT of a signal. 
The lattice implementation requires the least amount of 
memory to compute the DFT. Since each butterfly returns the 
same number of outputs as the inputs, we can load the input 
values into registers, perform the necessary calculations and 
return the output values to the same registers. Hence we can 
view each horizontal branch in the flow diagram as a memory 
location. This type of computation is commonly referred as 
in-place computation.

2) Higher order Structures: In Signal processing, lattice 
structure are popular because in providing an optimal Mth

order solution to a problem, it incorporates the optimal m=0, 
1, .. M-1 order solutions. Hence it is easy to compute the 
optimal (M+1)th order since only one additional stage need to 
be computed. The same is true for our FFT flow diagram too. 
All lower FFT’s are incorporated into the Nth order FFT. In  
addition, to compute the length 2N FFT we simply combine      

two length N FFTs by adding on one stage.
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Decimation In Time (DIT) FFT Structure
1. Re-ordering the input data: By looking at the FFT 
in figure 5 we see that we must rearrange the order of 
the input samples to get the DFT samples I a sequential 
order, as well as perform the computations in place. A 
simple way to find how the inputs are arranged is to 
realize that the inputs in are bit reversed order. If we 
express 2v output indices in terms of v bits of the form 
X(n0n1…nv), then the input along the same horizontal 
line (same place in memory)  is of the form 
x(n0n1…nv). Another easy way to determine these 
pairings is to recognize the initial pairs are exactly 180o

apart on the unit circle
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2. Twiddle factor patterns: It is also easy to see the 
patterns of the twiddle factors in figure 5. For each 
stage, we will have a total of N/2 twiddle factors. 
They will appear on the lines leading to the bottom 
points of each butterfly in groups of 2v-1. There will 
be N/2v of these groups. As was stated earlier, they 
will vary from a = 0 t a = 2v-1-1. For example, in 
stage 2 of the length 8 FFT, the twiddle factors are in 
N/22=2 groups of 22-1=2 and vary from a = 0 to   
a=21-1=1.  

Number of Computations :
For each stage: Multiplications: 
N/2 Twiddle factor multiplications +N/2 
butterfly multiplications(by -1) = N 
Additions : N butterfly additions
Total N MADS per stage. We have a total of 
log2N stages, giving us a total of :

Nlog2N MADS.
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Example: N = 8
Total MADS = 8log28 = 24 MADS for DIT
By direct method it would be 64 MADS
the DIT method gives us a saving of 62.5%

Computational savings increases as N 
increases:
for N = 1024: N2 = 1,048,576 MADS

Nlog2N = 10,240 MADS
Saving of 99.02%
This because Nlog2N increases linearly 
whereas N2 non-linearly.
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Figure 6: Savings in complex multiplications and additions when the 
FFT is used instead of the DFT
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Inverse Fast Fourier Transform (IFFT)
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• Let us consider the eqns for DFT and IDFT 
again

DFT

IDFT

We observe that the structure of x[n] differs 
from X(k) only in the factor 1/N and the sign of 
the exponent.

Thus with small modifications, we can use the 
same FFT algorithm to compute the IFFT also.
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FFT - Decimation in 
Frequency (DIF) Algorithm

• Alternate approach involving separating the 
initial transform into two transforms, one 
containing the first half of the data and the other 
containing the second half of the data.

• Order of the input data is unaltered but the 
output FFT sequence is bit reversed. 

• Overall, there is little to choose between DIF 
and DIT algorithms
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