™

Transform Domain
Representation of
Discrete Time Signals

Fast Fourier

Transform (FFT)
Algorithm

Yogananda Isukapalli

J

FT - Decimation in Time Algorithm

In an attempt to reduce the number of calculations
needed for the DFT, let us try breaking up the
sequence Xx[n] into two smaller subsequences. In
particular, let us divide x[n] 1nto 1ts odd and even

indices N-1
X(k)=>) x[nWy"
n=0

X (k)= Zx[n]Wﬁ” + Zx[n]W]’v“” (1)

n=even n=odd

Let us perform a change of variables, let

n =2m for n even and n = 2m+1 for n odd
for m=0,1, (N/2 - 1) (2)

Both sequences are half of the length of the
original sequence. The first change of variables

will give us the indices n =0, 2, 4 and the other
@ will give us the odd indices n =1, &y

2

Equation (1) now becomes :
Ny Ny
2 2
_ k(2m) k(2m+1)
X (k)= mz X[2mW ™ + mz x[2m +1]W 3)
Let us look at each sequence 1n equation (3)
independently

E_l E_l
Y(k k(2m) _ e
(k)= n;)x [2m WV, r;)x[Zm] v/
Ng-1
= > glnwy!
4

Which 1s the length N = N/2 DFT of the

sequence g[n], which 1s nothing but x[2m]
\ /3

m=0

x[2m+1]

N

> x2m+1]

We can do the same to the other sequence
after first factoring out the additional W/*:

W]\lg(2m+1) _ ZX[Zm + I]W]\l;zm .W]\l;

Which 1s the length Ny; = N/2 DFT of the
sequence h[n], which 1s nothing but

™

:Z;)x[2m+l]W]\Z
i;h[n]WAIZ} (5)

-

Combining equations (4) and (5) back into

(3), we get :
E_l (N)
2
mk k km

X (k)= Zx 2mW;) v + W %x[zmﬂ]WN/ ke

N1 ’)
X(k)_zg nk—l—W |:Zh :| (6b)
X(k)=G((k)+ WNH (k) (6¢)

DFT[N.Samples] = DFT {even.samples}
4

W[DFT{odd samples)]

Thus, we can compute the length N DFT by
computing two N/2 length DFT’s. But 1s there
a saving in doing so ?

In other words :
N - point Transform = N/2 point transform +

\ WX [N/2 point transfog
5

Total MADS :

G(k) requires (N/2)* MADS
H(k) requires (N/2)> MADS
W *H(k) requires N MADS

Computing X(k) :

Directly => N?

By Decomposition =>2(N/2)? + N
Now 1f we do the above exercise for

N =256

Direct => 65,536 MADS
Decomposition => 33,024 MADS

N

™

]

6

As a result, we have seen that the breaking up
a large DFT into two smaller DFT’s will allow
savings 1n computations. This process 1s
demonstrated by the block diagram below :

x[n] x[2n] Length
— N/2
Length [X(k) __ DFT X (k)
— N > —
DFT Length
X[Zn—i—ﬂ> N/g2 W
DFET

Lets look at equation 6¢ more closely,
DFT’s they have properties described

N/2, we can say that :

simplify using (7) we get:

X (0)=G(0)+ W, H(0)
X()=GA)+W,H(1)

X2)=GQ)+W; H(2)
X(3)=GB)+W,H(3)

X(4)=G(4)+W H(4)=G(0)+W;,H(0)
X(5)=GO)+W.H(5) =G+ W H(1)
X(6)=G(6)+ W, H(6)=GQ)+W H(2)
X(N=G(N+W/H(T)=G3)+W,H@3)

since the sequences G(k) and H(k) are also

earlier. However since they are of length

G(k + %) — G(k) and H(k + %) - H(k) (7)

If we compute (6¢) explicitly for N=8, like we
did 1n the direct computation of the DFT, and

™

(8-1)
(8-2)
(8-3)
(8-4)
(8-5)
(8-6)
(8-7)
(8-8)

g[0]

h[1]

For Example :

X(5)

5
Wi

Length
N/2
DFT

G(0) X(0)

an N\ xo

c _/7 xe

Length
N/2
DFT

GB3) X(3)

X4)
H(1) X(5)

e // \w\ X(6)

H(3) / W\ X(7)

The value to be multiplied on each branch 1s the
one closest to the arrow head. No value indicates
Wk) 1s taken as 1s (multiplied by 1)

7

X(1) \

Putting everything together leads to the following
flow diagram for N = 8:

9

g FFT

The general form of each structure can be

expressed as :
X(a)

gla]

h[a] X(a+N/2)

Wn:aJrN/Z
By using the properties of the basis functions
Wy, we can simplify this by factoring out W 2.
This leads to the following structure :

X(a)

gla]

h[a] N0 X(a+N/2)

This 1s known as the 2-point butterfly, since the
lattice structure resembles a butterfly on its side.
Butterflies are the elementary computations, or
building blocks of many FFT structures.

10

™

Thus the earlier shown block diagram for
N=8 can be now simplified to :

x[0] G(0) ‘ X(0)
x[2] Length G :\ > / X
x[4] I;“F/i G(2) \\ / / X(2)
x[6] G(3) X(3)
x[1] H(0) X(4)
Bl | H(™ X(5)
gth > >
x[5] N/2 H(2)WN1// \ X(6)
> DFT W:2 :_1
x[7] H(3) N:/ . \ X(7)
W3 -1
Figure 2

The terms Wy fora=20, 1,N/2 -1 are

\known as twiddle factors. /

11

/Xm Continue the Decomposition in @

We can also break G(k) and H(k) into smaller
sequences for even more savings. By further
dividing (6) into 1ts new even and odd
sequences, we get equations similar to the ones
we got when we 1nitially divided the
sequences.

E_l E—l
2
X (k)= Zx 2m] Wm/k +Wy Zx[2m+1]Wk/m
m=0

For each sequence, split into :
m=2pandm=2p+1forp=0,1,.,(IN4-1)
Which ylelds

——1 =1
4

X(k)= Zg [2p] WP/"+Wk/ Zg[zpﬂ]W"; +

(B =l

WS Zh[]W"; +W"/ Zh[2p+1]WU

p=0

12

M

.

N

X(k)=) x4 p]WNP/:“ + W/%

N

S

4
Wk 4p 1> LWk
N<;::‘,x[p]% N

Ny
4

> A4p+ 2]W§; +
p=0 4

N

—
4

Zx[4p+3]

p=0

Looking at equation (9), we see that x[n] has
now been divided into four sequences.
Substituting for p yields the indices n =0, 4, 8...
for the first sequence, n =2, 6, 10, .. For the
second, n=1, 5,9... for the third, andn=3, 7, ..
For the last, thus including all the indices of the
sequence x[n].

™

W]\];Z " (9)

—J

/

X& Length
x[4] N/4
— | DFT
2
XL» Length
x[6] N/4
— | DFT
1
XL» Length
x[5] N/4
— | DFT
Xl Length
N/4
DFT

Figure 3

™

Block Diagram for the decomposition :

X(0)
X(1)

X(2)
X(3)

X4)
X(5)

X(6)
X(7)

/

14

~ We can also modify this block
diagram (3) as we did earlier :

[Leneth n Flgure 2 X(0)
X[4] I;\IF/i X(1)
Xi Length X(2)
x[6] I;‘IF/i X(3)
X& Length X(4)
X[5] N/4 X(5)
— | DFT Wi A
el % // \\ X(6)
Length
X[7] N/4 W‘% 1\ Wf \ X(7)
— | DT Wiy - -
F1gure4

Note that the twiddle factors in the second stage
(length N/2 DFT) can be changed as in property of
the basis functions W, 2: W, , =W, .& Wy, =W,
The Decomposition continues until we are left

with N/2 2 point butterflies, resulting in
log,N stages.
15

X The final Radix-2 decomposition in
" Time structure

x[0] > > > X(0)
x[4] >< X(1)
WON/4 -1
x[2] > X(2)
>
x[6] > R X(3)
WON4 -1 Won -1
x[1] > X(4)
x[5] >< X(5)
WON4 -1
x[3] > X(6)
>< Wi N Wy
x[7] R R R X(7)
Wou, -1 WOy, -1 Wi -1
< Stage 1 >« Stage 2 —><«— Stage 3 —>

Figure 5
Figure 5 shows the lattice structure for computing

a length N =8 DFT. Note that incorporated 1n this
structure 1s the lattice for also computing the
Length N =2 & 4 DFTs. To compute N=16, we
can combine two length 8 DFT’s and add twiddle
factors of the form W 2. Thus this could be
extended to generate higher order DFT’s of length
2V, where v 1s an integer.

16

g FFT

The structure shown in figure 5 is called the a radix-2 Fast
Fourier Transform (FFT) because we are decomposing our
signal into groups of two, which leads to two point
butterflies.

Advantages of the Lattice Structure:

1. In place computations: Memory in hardware is an
important consideration when computing DFT of a signal.
The lattice implementation requires the least amount of
memory to compute the DFT. Since each butterfly returns the
same number of outputs as the inputs, we can load the input
values into registers, perform the necessary calculations and
return the output values to the same registers. Hence we can
view each horizontal branch in the flow diagram as a memory
location. This type of computation is commonly referred as
in-place computation.

2) Higher order Structures: In Signal processing, lattice
structure are popular because in providing an optimal Mt
order solution to a problem, it incorporates the optimal m=0,
1, .. M-1 order solutions. Hence it is easy to compute the
optimal (M+1)™ order since only one additional stage need to
be computed. The same is true for our FFT flow diagram too.
All lower FFT’s are incorporated into the N* order FFT. In
addition, to compute the length 2N FFT we simply combine
two length N FFTs by adding on one stage.

17

g FFT

Decimation In Time (DIT) FFT Structure

1. Re-ordering the input data: By looking at the FFT
in figure 5 we see that we must rearrange the order of
the input samples to get the DFT samples I a sequential
order, as well as perform the computations in place. A
simple way to find how the inputs are arranged is to
realize that the inputs in are bit reversed order. If we
express 2V output indices in terms of v bits of the form
X(nyn,...n,), then the input along the same horizontal
line (same place in memory) is of the form
X(nyn,...n,). Another easy way to determine these
pairings 1s to recognize the initial pairs are exactly 180°

apart on the unit circle

X(nonlnz) —>x(n2n1n0)

x(0) >X(0) X (000) — x(000) 4
x(4) >X(1) X (001) - x(100) 3
x(2) X (2) X (010) — x(010)
x(6) - X(3) X (011) - x(110)
x(1) >X(4) X(100) — x(001)
x(5) - X(5) X (101) - x(101)
x(3) »X(6) X(110) — x(011)
x(7) =X (1) X (111) -» x (11D

g FFT

2. Twiddle factor patterns: It is also easy to see the
patterns of the twiddle factors in figure 5. For each
stage, we will have a total of N/2 twiddle factors.
They will appear on the lines leading to the bottom
points of each butterfly in groups of 2¥-!. There will
be N/2V of these groups. As was stated earlier, they
will vary from a=0ta=2"!-1. For example, in
stage 2 of the length 8 FFT, the twiddle factors are in
N/22=2 groups of 22-'=2 and vary from a =0 to
a=2'-1=1.

Number of Computations :

For each stage: Multiplications:

N/2 Twiddle factor multiplications +N/2
butterfly multiplications(by -1) = N
Additions : N butterfly additions

Total N MADS per stage. We have a total of

log,N stages, giving us a total of :
Nlog,N MADS

19

Example: N =8
Total MADS = 8log,8 =24 MADS for DIT

By direct method 1t would be 64 MADS
the DIT method gives us a saving of 62.5%

Computational savings increases as N

Increases:

for N =1024: N2= 1,048,576 MADS
Nlog,N = 10,240 MADS

Saving of 99.02%

This because Nlog,N increases linearly

whereas N2 non-linearly.

N]

Ez FFT

FFT
Ratio of DFT
Number of Number of Number of Number of multiplications Ratio of DFT
complex complex complex complex to FFT additions to
N multiplications additions multiplications additions multiplications FFT additions
2 4 2 1 2 4 I
4 16 12 4 8 4 1.5
8 64 56 12 24 53 23
16 256 240 32 64 8.0 3.5
32 1024 992 80 160 12.8 6.2
64 4 096 4032 192 384 21.3 10.5
128 16 384 16 256 448 896 36.6 18.1
256 65 536 65 280 1024 2 048 64.0 319
512 262 144 261 632 2304 4 608 113.8 56.8
1024 1 048 576 1 047 552 5120 10 240 204.8 102.3
2048 4 194 304 4192 256 11264 22 528 3724 186.1
4096 16 777 216 16 773 120 24 576 49 152 682.7 3413
8192 67 108 864 67 100 672 53248 106 496 1260.3 630.0

Figure 6: Savings in complex multiplications and additions when the
FFT is used instead of the DFT

21

Inverse Fast Fourier Transform (IFFT)

 Let us consider the eqns for DFT and IDFT
again

M
X(k)=Fplx(n)]= > x[nle V DFT
n=0 k=0,...... N-1
0
L 1 & JC ynk
x[n]=Fy [X(k)]=—) X(k)e N 0.~ [DFT
N k=0

We observe that the structure of x[n] differs

from X(k) only in the factor 1/N and the sign of
the exponent.

Thus with small modifications, we can use the
same FFT algorithm to compute the IFFT also.

N]

/ FFT - Decimation in \

Frequency (DIF) Algorithm

 Alternate approach involving separating the
initial transform into two transforms, one
containing the first half of the data and the other
containing the second half of the data.

 Order of the mput data 1s unaltered but the
output FFT sequence 1s bit reversed.

» Overall, there 1s little to choose between DIF
and DIT algorithms

N]

