
FFT

Transform Domain
Representation of

Discrete Time Signals

Fast Fourier
Transform (FFT)

Algorithm

Yogananda Isukapalli

1

FFT

FFT - Decimation in Time Algorithm

In an attempt to reduce the number of calculations
needed for the DFT, let us try breaking up the
sequence x[n] into two smaller subsequences. In
particular, let us divide x[n] into its odd and even
indices :

åå

å

==

-=

-

=

+=

=

oddn

kn
N

evenn

kn
N

Nk

N

n

kn
N

WnxWnxkX

WnxkX

][][)(

][)(
1,......0

1

0

Let us perform a change of variables, let
n = 2m for n even and n = 2m+1 for n odd
for m = 0, 1, ………(N/2 - 1)

Both sequences are half of the length of the
original sequence. The first change of variables
will give us the indices n = 0, 2, 4 and the other
change will give us the odd indices n = 1, 3, 5….

(1)

(2)

2

FFT

Equation (1) now becomes :

åå
-

=

+

-

=

++=
1

2

0

)12(
1

2

0

)2(]12[]2[)(

N

m

mk
N

N

m

mk
N WmxWmxkX

Let us look at each sequence in equation (3)
independently

å

åå
-

=

-

=

-

=

=

==

1

0

1
2

0 2

1
2

0

)2(

][

]2[]2[)(

G

G

N

n

nk
N

N

m

mk
N

N

m

mk
N

Wng

WmxWmxkX

(3)

(4)

Which is the length NG = N/2 DFT of the
sequence g[n], which is nothing but x[2m]

3

FFT

We can do the same to the other sequence
after first factoring out the additional WN

k :

k
N

N

m

mk
N

N

m

mk
N WWmxWmx åå

-

=

-

=

+ +=+
1

2

0

2
1

2

0

)12(.]12[]12[

ú
û

ù
ê
ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+=

å

å

-

=

-

=

1

0

1
2

0 2

][

]12[

H

H

N

n

kn
N

k
N

N

m

km
N

k
N

WnhW

WmxW

Which is the length NH = N/2 DFT of the
sequence h[n], which is nothing but
x[2m+1]

(5)

4

FFT

Combining equations (4) and (5) back into
(3), we get :

}.{].[
)()()(

][][)(

]12[]2[)(

1

0

1

0

1
2

0 2

1
2

0 2

samplesevenDFTSamplesNDFT
kHWkGkX

WnhWWngkX

WmxWWmxkX

k
N

N

n

kn
N

k
N

N

n

nk
N

N

m

km
N

k
N

N

m

mk
N

H

H

G

G

=
+=

ú
û

ù
ê
ë

é
+=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
++=

åå

åå

-

=

-

=

-

=

-

=
(6a)

(6b)

(6c)

+
}].{[samplesoddDFTW k

N

Thus, we can compute the length N DFT by
computing two N/2 length DFT’s. But is there
a saving in doing so ?

In other words :
N - point Transform = N/2 point transform +

WN
k [N/2 point transform]

5

FFT

Total MADS :

G(k) requires (N/2)2 MADS

H(k) requires (N/2)2 MADS

WN
k H(k) requires N MADS

Computing X(k) :

Directly => N2

By Decomposition =>2(N/2)2 + N

Now if we do the above exercise for
N = 256

Direct => 65,536 MADS
Decomposition => 33,024 MADS

6

FFT

As a result, we have seen that the breaking up
a large DFT into two smaller DFT’s will allow
savings in computations. This process is
demonstrated by the block diagram below :

x[n]

Length
N

DFT

X(k)

Length
N/2

DFT

Length
N/2

DFT

x[2n]

x[2n+1]
WN

k

+
X(k)

7

FFT

Lets look at equation 6c more closely,
since the sequences G(k) and H(k) are also
DFT’s they have properties described
earlier. However since they are of length
N/2, we can say that :

)()
2

(kGNkG =+ and)()
2

(kHNkH =+

If we compute (6c) explicitly for N=8, like we
did in the direct computation of the DFT, and
simplify using (7) we get:

(7)

)3()3()7()7()7(

)2()2()6()6()6(

)1()1()5()5()5(

)0()0()4()4()4(

)3()3()3(

)2()2()2(

)1()1()1(

)0()0()0(

7
8

7
8

6
8

6
8

5
8

5
8

4
8

4
8

3
8

2
8

1
8

0
8

HWGHWGX

HWGHWGX

HWGHWGX

HWGHWGX

HWGX

HWGX

HWGX

HWGX

+=+=

+=+=

+=+=

+=+=

+=

+=

+=

+= (8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)

(8-7)

(8-8)

8

FFT For Example :

g[0]

h[1]

W8
1

X(1)

X(5)
W8

5

Putting everything together leads to the following
flow diagram for N = 8:

x[0]

x[2]

x[4]

x[6]

Length
N/2

DFT

G(0)

G(1)

G(2)

G(3)

X(0)

X(1)

X(2)

X(3)

WN
0

WN
1

WN
2

WN
3

x[1]

x[3]

x[5]

x[7]

Length
N/2

DFT

H(0)

H(1)

H(2)

H(3)

X(4)

X(5)

X(6)

X(7)

WN
4

WN
5

WN
6

WN
7

The value to be multiplied on each branch is the
one closest to the arrow head. No value indicates
that G(k) is taken as is (multiplied by 1)

9

FFT

g[a]

h[a]

WN
a

X(a)

X(a+N/2)
Wn

a+N/2

The general form of each structure can be
expressed as :

By using the properties of the basis functions
WN

nk, we can simplify this by factoring out Wn
a.

This leads to the following structure :

-1

g[a]

h[a] WN
a

X(a)

X(a+N/2)

1

1

1

This is known as the 2-point butterfly, since the
lattice structure resembles a butterfly on its side.
Butterflies are the elementary computations, or
building blocks of many FFT structures.

10

FFT

Thus the earlier shown block diagram for
N=8 can be now simplified to :

x[0]

x[2]

x[4]

x[6]

Length
N/2

DFT

G(0)

G(1)

G(2)

G(3)

X(0)

X(1)

X(2)

X(3)

x[1]

x[3]

x[5]

x[7]

Length
N/2

DFT

H(0)

H(1)

H(2)

H(3)

X(4)

X(5)

X(6)

X(7)

WN
0

WN
1

WN
2

WN
3

-1

-1

-1

-1

The terms WN
a for a = 0, 1, …..N/2 -1 are

known as twiddle factors.

Figure 2

11

FFT Continue the Decomposition in Time

We can also break G(k) and H(k) into smaller
sequences for even more savings. By further
dividing (6) into its new even and odd
sequences, we get equations similar to the ones
we got when we initially divided the
sequences.

ú
ú
ú

û

ù

ê
ê
ê

ë

é
++= åå

-

=

-

=

1
2

0 2

1
2

0 2
]12[]2[)(

N

m

km
N

k
N

N

m

mk
N WmxWWmxkX

For each sequence, split into :

m = 2p and m = 2p + 1 for p = 0, 1, ..,(N/4 - 1)

Which yields:

ï
þ

ï
ý

ü

ï
î

ï
í

ì

ú
ú
ú

û

ù

ê
ê
ê

ë

é
++

+
ú
ú
ú

û

ù

ê
ê
ê

ë

é
++=

å å

åå

-

=

-

=

-

=

-

=

1
4

0

1
4

0 424

1
4

0 42

1
4

0 4

]12[]2[

]12[]2[)(

N

p

N

p

kp
N

k
N

kp
N

k
N

N

p

kp
N

k
N

N

p

pk
N

WphWWphW

WpgWWpgkX

12

FFT

ï
þ

ï
ý

ü

ï
î

ï
í

ì

ú
ú
ú

û

ù

ê
ê
ê

ë

é
+++

+
ú
ú
ú

û

ù

ê
ê
ê

ë

é
++=

å å

åå

-

=

-

=

-

=

-

=

1
4

0

1
4

0 424

1
4

0 42

1
4

0 4

]34[]14[

]24[]4[)(

N

p

N

p

kp
N

k
N

kp
N

k
N

N

p

kp
N

k
N

N

p

pk
N

WpxWWpxW

WpxWWpxkX

(9)

Looking at equation (9), we see that x[n] has
now been divided into four sequences.
Substituting for p yields the indices n = 0, 4, 8…
for the first sequence, n = 2, 6, 10, .. For the
second, n = 1, 5, 9… for the third, and n = 3, 7, ..
For the last, thus including all the indices of the
sequence x[n].

13

FFT

Block Diagram for the decomposition :

x[0]

x[4]
Length

N/4
DFT

X(0)

X(1)
WN

0

WN
1

x[2]

x[6]
Length

N/4
DFT

X(2)

X(3)
WN

2

WN
3

W0
N/2

W1
N/2

W2
N/2

W3
N/2

x[1]

x[5]
Length

N/4
DFT

X(4)

X(5)
WN

4

WN
5

x[3]

x[7]
Length

N/4
DFT

X(6)

X(7)
WN

6

WN
7

W0
N/2

W1
N/2

W2
N/2

W3
N/2

Figure 3

14

FFT
We can also modify this block
diagram (3) as we did earlier :

in Figure 2x[0]

x[4]
Length

N/4
DFT

X(0)

X(1)

x[2]

x[6]
Length

N/4
DFT

X(2)

X(3)-1

-1

W0
N/2

W1
N/2

x[1]

x[5]
Length

N/4
DFT

X(4)

X(5)
-1

-1

x[3]

x[7]
Length

N/4
DFT

X(6)

X(7)
-1

-1

W0
N

W1
N

W0
N/2

W1
N/2

-1

-1

WN
2

WN
3

Figure 4
Note that the twiddle factors in the second stage
(length N/2 DFT) can be changed as in property of
the basis functions Wn

a:
The Decomposition continues until we are left
with N/2 2 point butterflies, resulting in

log2N stages.

21
2/

00
2/ ..&.. NNNN WWWW ==

15

FFT

The final Radix-2 decomposition in
Time structure

x[0]

x[4]

X(0)

X(1)
W0

N/4 -1
x[2]

x[6]

X(2)

X(3)
W0

N/4 -1

W0
N/2 -1

W0
N/2 -1

x[1]

x[5]

X(4)

X(5)
W0

N/4 -1
x[3]

x[7]

X(6)

X(7)
W0

N/4 -1

W0
N/2 -1

W0
N/2 -1

W0
N -1

W0
N -1

W2
N -1

W3
N -1

Figure 5
¬ Stage 1 ®¬ Stage 2 ®¬ Stage 3 ®

Figure 5 shows the lattice structure for computing
a length N =8 DFT. Note that incorporated in this
structure is the lattice for also computing the
Length N = 2 & 4 DFTs. To compute N=16, we
can combine two length 8 DFT’s and add twiddle
factors of the form W16

a. Thus this could be
extended to generate higher order DFT’s of length
2v, where v is an integer.

16

FFT

The structure shown in figure 5 is called the a radix-2 Fast
Fourier Transform (FFT) because we are decomposing our
signal into groups of two, which leads to two point
butterflies.
Advantages of the Lattice Structure:
1. In place computations: Memory in hardware is an
important consideration when computing DFT of a signal.
The lattice implementation requires the least amount of
memory to compute the DFT. Since each butterfly returns the
same number of outputs as the inputs, we can load the input
values into registers, perform the necessary calculations and
return the output values to the same registers. Hence we can
view each horizontal branch in the flow diagram as a memory
location. This type of computation is commonly referred as
in-place computation.

2) Higher order Structures: In Signal processing, lattice
structure are popular because in providing an optimal Mth

order solution to a problem, it incorporates the optimal m=0,
1, .. M-1 order solutions. Hence it is easy to compute the
optimal (M+1)th order since only one additional stage need to
be computed. The same is true for our FFT flow diagram too.
All lower FFT’s are incorporated into the Nth order FFT. In
addition, to compute the length 2N FFT we simply combine

two length N FFTs by adding on one stage.

17

FFT

Decimation In Time (DIT) FFT Structure
1. Re-ordering the input data: By looking at the FFT
in figure 5 we see that we must rearrange the order of
the input samples to get the DFT samples I a sequential
order, as well as perform the computations in place. A
simple way to find how the inputs are arranged is to
realize that the inputs in are bit reversed order. If we
express 2v output indices in terms of v bits of the form
X(n0n1…nv), then the input along the same horizontal
line (same place in memory) is of the form
x(n0n1…nv). Another easy way to determine these
pairings is to recognize the initial pairs are exactly 180o

apart on the unit circle

18

FFT

2. Twiddle factor patterns: It is also easy to see the
patterns of the twiddle factors in figure 5. For each
stage, we will have a total of N/2 twiddle factors.
They will appear on the lines leading to the bottom
points of each butterfly in groups of 2v-1. There will
be N/2v of these groups. As was stated earlier, they
will vary from a = 0 t a = 2v-1-1. For example, in
stage 2 of the length 8 FFT, the twiddle factors are in
N/22=2 groups of 22-1=2 and vary from a = 0 to
a=21-1=1.

Number of Computations :
For each stage: Multiplications:
N/2 Twiddle factor multiplications +N/2
butterfly multiplications(by -1) = N
Additions : N butterfly additions
Total N MADS per stage. We have a total of
log2N stages, giving us a total of :

Nlog2N MADS.

19

FFT

Example: N = 8
Total MADS = 8log28 = 24 MADS for DIT
By direct method it would be 64 MADS
the DIT method gives us a saving of 62.5%

Computational savings increases as N
increases:
for N = 1024: N2 = 1,048,576 MADS

Nlog2N = 10,240 MADS
Saving of 99.02%
This because Nlog2N increases linearly
whereas N2 non-linearly.

20

FFT

Figure 6: Savings in complex multiplications and additions when the
FFT is used instead of the DFT

21

FFT

Inverse Fast Fourier Transform (IFFT)

1,......0
)2(1

0

1

1,......0

1

0

)2(

)(1)]([][

][)]([)(

-=

-

=

-

-=

-

=

-

å

å

==

==

Nn
nk

N
jN

k
D

Nk

N

n

nk
N

j

D

ekX
N

kXFnx

enxnxFkX

p

p

!

• Let us consider the eqns for DFT and IDFT
again

DFT

IDFT

We observe that the structure of x[n] differs
from X(k) only in the factor 1/N and the sign of
the exponent.

Thus with small modifications, we can use the
same FFT algorithm to compute the IFFT also.

22

FFT

FFT - Decimation in
Frequency (DIF) Algorithm

• Alternate approach involving separating the
initial transform into two transforms, one
containing the first half of the data and the other
containing the second half of the data.

• Order of the input data is unaltered but the
output FFT sequence is bit reversed.

• Overall, there is little to choose between DIF
and DIT algorithms

23

