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• The z-transform  for discrete time signals is the 
counterpart of the Laplace transform for the 
continuos-time signals. 

• The z-transform is a generalization of the 
Fourier transform, the principal motivation for 
introducing the generalization is that the Fourier 
transform does not converge for all sequences, 
which limits the class of signals that could be 
transformed using the Fourier transform. 

• The other advantage of the z-transform is that it 
allows us to bring in the power of complex 
variable theory to bear on the problems of 
discrete time signals and systems.

Introduction
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Discrete-time signals and 
systems

• Given an analog signal x(t), it could be 
represented as discrete time signal by a 
sequence of weighted & delayed impulses.

… -2T  -T   0    T   2T  ….. 

{x[t]}t=nT n= …-2, -1, 0, 1, 2, ..

Note: We represent the discrete time signal as  
x[nT] = x[n] where T is the sampling period and 
is omitted in the representation.

• A discrete-time system is essentially a 
mathematical algorithm that takes an input 
sequence, x[n], and produces an output sequence, 
y[n].

• Linear time-invariant (LTI) systems form an   
important class of  discrete systems used in DSP. 
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Discrete-time signals and 
systems contd…

• The input-output relationship of an LTI 
system is given by the convolution sum 
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where h(k) is the impulse response of the system.

• The values of h(k) completely define the 
discrete-time system in the time domain.

• An LTI system is stable if its impulse response 
satisfies the condition 
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and causal if

h(k) = 0, k<0 (3)



Definition
of

Z-Transform

• For any given sequence x[n], its z-transform 
is defined as :
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• If we let z = rejw then the expression reduces to :
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which can be interpreted as the Fourier transform, 
for r=1 (i.e.,|z|=1), the z-transform of x[n] reduces 
to the Fourier transform provided it exists. 

• Example : x[n] = an n�0
= 0      n< 0  Find the z-transform

Answer:                       {an}, n � 0
z
z a-
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where z is a complex variable.
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Region of Convergence

Whenever an infinite series converges, the z-
transform X(z) has a finite value in some region 
A of the complex plane. This region is termed 
as the Region of  Convergence (ROC). 

A

Complex z -Plane
Re(z)

For z=rejw & 
r=1 thus making 
|z|=1, this 
contour in the z-
plane is a circle 
of unity radius 
and is termed as 
the unit circleUnit Circle

|z|=1

Im(z)

Re(z)

Im(z)

w

6



Region of Convergence
contd...

Thus for any given sequence, the set of values 
of z for which the z-transform converges is 
called the region of convergence, which we 
abbreviate as ROC. 

Convergence of the Fourier transform requires 
the sequence to be absolutely summable but in 
the case of the z-transform applying the above 
condition we get :                      for absolute 
convergence.

It is clear from the above equation that 
because of the multiplication of the sequence 
by the real exponential r-n, it is possible for the 
z-transform to converge even if the Fourier 
transform does not. Thus for the Fourier 
transform to converge it must include the unit 
circle in its ROC.
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Types of Sequences

Right-handed sequences : x[n]¹0  n³0
=0  n<0

Example x[n]=Aanej�n n³0,   =0    n<0

A z

z a ej
ROC z a.

.
. . :| | | |

-
>

qAnswer: X(z)=

Left-handed sequences : x[n] =0  n³0
¹ 0  n<0

Example x[n]=-anu[-n-1]

z
z a

ROC z a
-

<. . :| | | |Answer: X(z)=

a

ROC

aROC
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Types of Sequences
contd..

Mixed sequences : x[n]¹0  n³0
¹ 0  n<0

Example x[n]=anu[n] - bnu[-n-1]

z
z a

z
z b

ROC z a z b
-

+
-

> <. . :| | | |&| | | |Answer: X(z)=

If |b| < |a|     ROC : empty set
If |b| > |a|     ROC : exists

ROC: a Çb

|a|<|z|<|b|
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Z-transforms of some 
common sequences
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Examples

1. x[n] = b|n| for all ‘n’
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|b|<|z|<|1/b|

The ROC is (1 – bz) > 0 and (z – b) >0, i.e. 

| b | < | z | < 1 / | b | 
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5.0:2  ROC and   15.01
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Properties of ROC

1. The ROC is a ring or disc in the z-plane 
centered at the origin i.e.,0 �rR<|z|<rL �¥

2. The Fourier Transform of x[n] converges 
absolutely if and only if the ROC of the z-
transform includes the unit circle

3. ROC cannot contain any poles

4. If x[n] is a finite duration sequence, then the 
ROC is the entire z-plane except possibly z=0 
or z=¥

5. If x[n] is a right sided sequence, the ROC 
extends outward from the outermost finite 
pole in X(z) to z=¥

6. If x[n] is a left sided sequence, the ROC 
extends inward from the innermost finite pole 
in X(z) to z= 0
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4. Differentiation of X(z) :      
ROC =Rx1(except for the possible addition or

deletion of z=0 or z=¥)

Properties of the 
Z-Transform

Let : x1[n]    z    X1(z), ROC = Rx1

x2[n]    z    X2(z), ROC = Rx2

1. Linearity: ax1[n]+bx2[n]    z aX1(z)+bX2(z)  
ROC contains Rx1�Rx2

2. Time Shifting: x[n-k]    z z-kX(z)
ROC =Rx1(except for the possible addition or
deletion of z=0 or z=¥)

3. Multiplication by an exponential Sequence:      
z0

n x[n]    z X(z/z0)      ROC =|z0|Rx1

nx n z
dX z
dz

[ ]
( )

« -
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7.  Convolution of Sequences :
x1[n]�x2[n] z X1(z).X2(z), ROC=Rx1 Ç Rx2 

6.  Time Reversal : x[-n]    z X(1/z),ROC=1/Rx1

5. Conjugation of a complex Sequence:      
x*[n]    z X*(z*),      ROC =|z0|Rx1

Properties of the 
Z-Transform contd…

8. Relationship with the Laplace transform: 

Let z = esT, where s is the complex variable 
given by s = d + jw, then z = e(d+jw)T = edTejwT 

Thus ss
dT FfTzez wpwpw /2/2 and ===Ð=

where      (rad s-1) is the sampling frequency.

As w varies from -µ to µ the s-plane is 
mapped to the z-plane as shown in the 
following

sw

figure.
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Properties of the 
Z-Transform contd…

Figure: Mapping of frequencies from the s-plane to the z-
plane (wT is also referred to as q)
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Example

Solution for Differential Equations:

y n ak
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Thus here the transfer function H(z) is 
specified by the above equation.
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Inverse Z - Transform

• The inverse z-transform (IZT) allows us to 
recover the discrete-time sequence x(n), given 
its z-transform.

• In practice, X(z) is often expressed as a ratio of 
two polynomials in z-1 or equivalently in z:
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10

2
2

1
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In this form, the inverse z-transform, x(n), may 
be obtained using one of several methods 
including the following three:

1. Power series expansion method

2. Partial fraction expansion method

3. Residue method
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1. Power series method

• Given the z-transform, X(z), of a causal 
sequence as in eqn (6), it can be expanded into 
an infinite series in z-1 or z by long division or 
synthetic division:
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• The numerator and denominator are first 
expressed in either descending powers of z or 
ascending powers of z-1 and the quotient is then 
obtained by long division. 

• The coefficients of z-n are the values of x(n).
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Power series method 
examples

1.

Sol)
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Either way, the z-transform is now expanded 
into the familiar power series, that is 

.....5756.26439.331)( 321 ++++= --- zzzzX

Power series method 
examples contd…

The inverse z-transform can now be written 
directly:

;...5756.2)3(;6439.3)2(;3)1(;1)0( ==== xxxx

• The values of x(n) are also obtained recursively:
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Power series method 
examples contd…

2. We now redo the previous example using the recursive 
approach.
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3561.01
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Comparing the coefficients of X(z) with those of the 
general transform in eqn (6),

,2;3561.0,1,1,1,2,1 210210 ===-===== MNaaabbb

From eqn (7), we have
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2.  Partial fraction 
expansion method

M
M

N
N

zazazaa
zbzbzbb

zX
---

---

++++

++++
=

...

...
)(

2
2

1
10

2
2

1
10

If the poles of X(z) are first order and N=M, 
then X(z) can be expanded as:
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• Consider eqn (6) again

where    B0 = bN / aN

pk are the poles of X(z) (assumed distinct)

Ck are the partial fraction coefficients, 
also known as residues of X(z). 
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Partial fraction 
expansion method…

• If N<M,   B0=0

• If N>M, X(z) must be first reduced, to make 
N£M, by long division and the remainder can 
be expressed as in eqn (8).

• The coefficient Ck associated with the pole pk 
can be obtained as:
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• The inverse z-transform of each partial fraction 
is then obtained from z-transform tables.
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Partial fraction 
expansion method…

• Multiple-order poles: If X(z) contains an mth-
order pole, the partial fraction expansion must 
include terms of the form: 
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The coefficients, Di, may be obtained from the 
relation 
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Partial fraction expansion 
method examples

1. X(z) contains simple, first order poles:
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Partial fraction method 
examples….

[ ] 0  ,)5.0()75.0(
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2.   X(z) contains a second order pole:
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Partial fraction method 
examples….
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Partial fraction method 
examples….

Similarly, for D2 we use eqn (11), with i=2, m=2. 
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Combining the results, X(z) becomes
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3.  Residue method

• The inverse z-transform is obtained by 
evaluating the contour integral
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where C is the path of integration enclosing 
all the poles of z.

• Eqn (12) is evaluated using Cauchy’s residue 
theorem:
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= sum of the residues of zn-1X(z) at 
all the poles inside C
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Residue method…

• The residue of zn-1X(z) at the pole pk is given by:
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where F(z)= zn-1X(z),

m is the order of the pole at pk, 

Res[F(z),pk] is the residue of F(z)
at z= pk.

• For a simple (distinct) pole, eqn (13) reduces to
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Residue method examples

1. )5.0)(75.0(
)(

+-
=
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Find x(n). Assume C is the circle |z|=1.

Soln) This problem is the same as example 1 
under z-transform examples:

If we let F(z)= zn-1X(z) then
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F(z) has poles 
at z = 0.75 and   
z = -0.5.

Fig: A sketch of the contour of integration with the 
position of poles
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Residue method 
examples…

x(n) = Res[F(z),0.75] + Res[F(z),-0.5] 
Since the poles are first order, eqn (14) will be 
used. Thus,
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which is identical to the result obtained by 
the partial fraction expansion method.
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Residue method 
examples…

2.
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