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Introduction

* The z-transform for discrete time signals 1s the
counterpart of the Laplace transform for the
continuos-time signals.

* The z-transform 1s a generalization of the
Fourier transform, the principal motivation for
introducing the generalization 1s that the Fourier
transform does not converge for all sequences,
which limits the class of signals that could be
transformed using the Fourier transform.

* The other advantage of the z-transform 1s that it
allows us to bring in the power of complex
variable theory to bear on the problems of
discrete time signals and systems.




systems

C% Discrete-time signals%

« Given an analog signal x(t), it could be
represented as discrete time signal by a
sequence of weighted & delayed impulses.

2T -T 0 T

Note: We represent the discrete time signal as
x[nT] = x[n] where T 1s the sampling period and
1s omitted 1n the representation.

* A discrete-time system 1s essentially a
mathematical algorithm that takes an input
sequence, x[n], and produces an output sequence,

y[n].

 Linear time-invariant (LTI) systems form an
important class of discrete systems used in DSP,
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/ Discrete-time SignalS%

k=—o0

O

N

systems contd...

 The mput-output relationship of an LTI
system 1s given by the convolution sum

y(m) = h(k)x(n—k) (1)
where h(k) 1s the impulse response of the system.

 The values of h(k) completely define the
discrete-time system in the time domain.

« An LTI system 1s stable if its impulse response
satisfies the condition

> |a| < o (2)
k=—oc0o
and causal if
h(k) =0, k<0
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Definition

of

Z-Transform

 For any given sequence X[n], its z-transform
1s defined as :

X(z)= ) xnlz"" (4)

n=—00

where z 1s a complex variable.

« If we let z = re/V then the expression reduces to :

X(re™) =" xnlr~"e " (5)
which can be int’gfgreted as the Fourier transform,
for r=1 (1.e.,|z|=1), the z-transform of x[n] reduces
to the Fourier transform provided it exists.

 Example : x[n] =a® b0
=0 n<O0 Find the z-transform

Z
Answer: . y > {a"}, n0




C% Region of Convergel)

Whenever an infinite series converges, the z-
transform X(z) has a finite value in some region
A of the complex plane. This region 1s termed
as the Region of Convergence (ROC).

For z=re'V &
r=1 thus making
Re(z) . .
Complex z -Plane |Z|_1 9 thlS
contour 1n the z-

plane is a circle
Im(z) of unity radius
and 1s termed as

K NUM Circle the unit circle
% Re(2)

NI
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Region of Convergence
contd...

Thus for any given sequence, the set of values
of z for which the z-transform converges 1s
called the region of convergence, which we

abbreviate as ROC.

Convergence of the Fourier transform requires
the sequence to be absolutely summable but 1n
the case of the z-transtorm applying the above
condition we get : Y xinr "< for absolute
convergence. =

It 1s clear from the above equation that
because of the multiplication of the sequence
by the real exponential ™, 1t 1s possible for the
z-transform to converge even if the Fourier
transform does not. Thus for the Fourier
transform to converge it must include the unit
circle in 1ts ROC.




/ Types of Sequences\

Right-handed sequences : x[n]#0 n=0
=0 n<0
Example x[n]=Aa"e®™ n>0, =0 n<0

A.z
Answer: X(z)= 0 ..ROC:|z|>|a|

Z—a.e f&?

Example x[n]=-a"u[-n-1]

2 ROC:|7<a]
7Z—a

Answer: X(z)=




/ Types of Sequences\

contd..

Mixed sequences : x[n]#0 n=>0
# (0 n<0
Example x[n]=a"u[n] - b*u[-n-1]

Z Z

Answer: X(z)= =+ --ROC|z>|al &|z<|b

If b| <la] ROC :empty set
If [b|>]a] ROC : exists




Z-transforms of some
common sequences

Entry Discrete-time Region of
number sequence x(n), n = 0 z-transform X(z) convergence of X(z)
1 kd(n) k Everywhere
k
2 k 2 lz] > 1
z—1
kz
3 kn —_— ‘Zl >1
(z-D°
> kz(z + 1
4 kn? = Izl >1
(zi— 1)
k
5 ke 2 z_a |z]| > e*
z—¢€
kze *
6 kne " -—7—_—07 Izl ==
o)
1=
7 1-e™ = S |z} =
22—zl +e%) +e“
z —Ccos
8 cos(an) 11( 0s @) lz] > 1
72 —2zcosa +1
: zsinx
9 sin (an) = lz|>1
z? —2zcoso + 1
e “sinx
10 e * sin(an) 5 fa S — izl ==
22— 2e%zcosx + €
ze *(ze* —cosCx o
11 e ™ cos(an) ~ (_ )_2 |z]| >e
72— 2ze %coso + e
2 — zcosho
12 cosh (an) i S |z| > cosha
7> —2zcosha + 1
zsinh & ;
13 sinh (an) 7 o |z| > sinha
722 —2zcosha + 1
kz
14 ka” |z]| >«
zZ— 0
kaz
15 kna” ———7—2 |z| > @
(z-a)
czZ C*-
16 2|c|lpltcos(nsLp + Lo) +

Loand o are constants; ¢ s a complex number.
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/ Examples \

1. x[n]=bk  forall ‘n’
X(2)= ib_”z_" +ib”2_”
n=—0o n=0
:ibnz" +§:bn2_"
n=1 n=0
:2(132)" —1+§;(bz—1)"

1 1

_z(1-b%)
~ (1-bz)(z-b)

Ib|<|z|<|1/b]

The ROC 1s (1 —bz) >0 and (z — b) >0, 1.¢.

(z<1/b /
11




2.(2)(@

Examples contd...

Given xl[n] =(0.3)" | n]
Determine the ROC.

The Z-transform of xl[n] 1s given by

Nn=00 _n
X 1[z] = D xl[n]z
n=—00
Nn=00 _
= 3y 0.3)"yne"
n=—00
Considering that y[n]= ? ;’; (?

n=00 _
X[z]= ¥ 0.3)" 7"

n=0
This power series converges to
X[z]=_ 1

SR
The ROC1s given by SRI: z > 0.3

12




e

b (i)

1

N

Similarly, X 2[n]

Now ROCof X i

ROC of X[z

.. ROCof Y [z]1s givenby R. N R, = 9%2:\2\ > 0.5

z

Examples contd... \

(i) For xz[n] =(—0.5" u|n]

L andROC R.:z/>0.5
1+0.5z71 2

To Determine the ROC of the sequence
y[nl=x [n]+x, ]

z]1s given by SRI: z>0.3

1s given by 9%2: z/>0.5

1 2

)




/ Properties of ROC \

1. The ROC 1s a ring or disc 1n the z-plane

centered at the origin 1.e.,0 Brg<|z|<r| Blo
2. The Fourier Transform of x[n] converges

absolutely 1f and only 1f the ROC of the z-
transform includes the unit circle

3. ROC cannot contain any poles

4. If x[n] 1s a finite duration sequence, then the
ROC 1s the entire z-plane except possibly z=0
Or Z=

5. If x[n] 1s a right sided sequence, the ROC
extends outward from the outermost finite
pole 1n X(z) to z=w

6. If x[n] is a left sided sequence, the ROC

extends inward from the innermost finite pole
in X(z) to z=0

14




/ Properties of the \

Z-Transform

Let : x;[n] «& X (z), ROC =R,
X,[n] «“X,(z), ROC=R,,

1. Linearity: ax,[n]+bx,[n] <% aX,(z)+bX,(z)
ROC contains R, B R,,

2. Time Shifting: x[n-k] .2, z¥X(z)
ROC =R, (except for the possible addition or

deletion of z=0 or z=wx)

3. Multiplication by an exponential Sequence:
zo" x[n] «&=>X(z/zy) ROC =|z-|R,;
dX(z)

4. Differentiation of X(z) :  nxinj & —z—
ROC =R, (except for the possible addition or

\deletion of z=0 or z=w) /
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/ Properties of the \

Z-Transform contd...

5. Conjugation of a complex Sequence:
X*[n] —s X*(Z*), ROC :|ZO|RX1

6. Time Reversal : x[-n] <% X(1/2),ROC=1/R,;

7. Convolution of Sequences :
Xl[n]Xz[n] PECER XI(Z).Xz(Z), ROC:Rxl M sz

8. Relationship with the Laplace transform:

Let z = e*!, where s is the complex variable
given by s =d + jo, then z = e(djo)T = adTgjoT

Thus |z| —eT and Lz=0T =27f | F, =270/ 0,
where @ (rad s!) is the sampling frequency.

As o varies from -oc to oc the s-plane is
mapped to the z-plane as shown in the
following figure.

16




Properties of the
Z-Transform contd...

s-plane z-plane

jo 4 AMm (z)

Figure: Mapping of frequencies from the s-plane to the z-
plane (T is also referred to as 0)
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/ Example \

Solution for Differential Equations:

N L
yIn]= ) agyln-k]+ D byx[n—k
k=1 k=0

example)
yln] = —%y[n—11+x[n1+x[n—11

Y(z) = —%z_lY(z) +X(2)+ 7 1X(2)

1+ %Z_I]Y(Z) -n+z 1 X(2)

He < Y _ [1+271]
X q L,
2

Thus here the transfer function H(z) 1s

Q)eciﬁed by the above equation. /
18




Inverse Z - Transform

e The inverse z-transform (IZT) allows us to
recover the discrete-time sequence x(n), given
1ts z-transform.

* In practice, X(z) 1s often expressed as a ratio of
two polynomials in z'! or equivalently in z:

N

v (6)

by +bz +byz 7 . +byz”

X(z)= - - —
ap+a,z +ayz “+..t+ayz

In this form, the inverse z-transform, x(n), may
be obtained using one of several methods
including the following three:

1. Power series expansion method
2. Partial fraction expansion method

3. Residue method

19




1. Power series method

* Given the z-transform, X(z), of a causal
sequence as in eqn (6), 1t can be expanded 1nto
an infinite series in z! or z by long division or
synthetic division:

X()= by +bz” +byz " 4. +byz

1 ) _
ay+az " +azt +.4ayz M

= x(0)+x(Dz" +x(2)z % +x(3)z > +.....

 The coefficients of z™ are the values of x(n).

e The numerator and denominator are first
expressed 1n either descending powers of z or
ascending powers of z'! and the quotient is then
obtained by long division.

20



Power series method
examples

1. Given the following z-transform of a causal LTI system, obtain its IZT by expanding

it into a power series using long division:

14227 +2°%
v 7! +0.3561z%

Sol) First, we expand X(z
polynomials in ascending powers of z

) into a power series with the numerator and denominator
1 and then perform the usual long division.

~1 ~2 -3

Lt soaseirt [1v2rt 2
1—_z'+0.3561

377! + 0.6439z77

—2 -3

=3

3.643972 — 1.06832

- - ~4
2 3+

257567 — 1.297592 7"

Alternatively, we may express the numerator and denominator in positive powers of

in descending order, and then perform the long division:

22+2z+1
72 -z + 0.3561

~1 -2 ~3

2-z+03561 | Z+2z+1
Z-_2+03561
3z + 0.6439
32-3+10683"
3.6439 — 3.643 917" + 1.297592 %
257567 — 129759272

21



Power series method
examples contd...

Either way, the z-transform 1s now expanded
into the familiar power series, that 1s

X(z)=1+3z""+3.6439z7% +2.5756z 7 +.....

The 1inverse z-transform can now be written
directly:
x(0) = 1; x(1) = 3; x(2) = 3.6439; x(3) = 2.5756:...

e The values of x(n) are also obtained recursively:

x(0)=by/a,
x(1) =[b; = x(0)a, ]/ a,
x(2) =[by —x(Da; —x(0)a, ]/ a,

(7)

{bn - i x(n—i)a;
x(n) =

i=1
n=12,....

where

22




Power series method
examples contd...

2 We now redo the previous example using the recursive
approach.

1422714272

X(@)=—"73 )
-z +0.3561z

Comparing the coefficients of X(z) with those of the
general transform in eqn (6),

bO :1,b1 :2,b2 :l,ao :1,a1 :_1,a2 203561,N:M:2,

From eqn (7), we have

x(0) = by/a, =1
x(1) = [b, — x(0)a,)/ap=[2-1x (-1)]=3
x(2) =[b, — x(1)a; —x(0)a,] =1 -3 x(-1)-1x0.3561 = 3.6439
x(3) = [b; — x(2)a, — x(1)a, + x(0)a;]
=0-x(2)a, — x(1)a, =0 - 3.6439 x (-1) — 3 x 0.3561 = 2.5756

Thus the first four values of the inverse z-transform are

x(0) = 1, x(1) = 3, x(2) = 3.6439, x(3) = 2.5756

It is seen that both the recursive and direct, long division methods lead to identical

solutions. /
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2. Partial fraction
expansion method

e Consider eqn (6) again

by +bz " +byz 7 . +byz Y

X(z2) = 1 i) M
ag+a;z" +ayz " +..tayz

If the poles of X(z) are first order and N=M,
then X(z) can be expanded as:

C C C
X(z)=B, + L+ Tt <

l=pyz= 1-pyz I-pyz
= B, + Gz | Gz, Cw

Zz=p1 Z— P2 Z—Pwm

M CkZ 8
:Bo+z (3)

k=1 =~ Pk

where B,=by/ay

P are the poles of X(z) (assumed distinct)

C are the partial fraction coefficients,
also known as residues of X(z).

24



/ Partial fraction \

expansion method...

¢ IfN<M, BOZO

« [f N>M, X(z) must be first reduced, to make
N<M, by long division and the remainder can
be expressed as 1n eqn (8).

» The coefficient C, associated with the pole p,
can be obtained as:

_X@)

z

Cy

(z=pi) ©)

Z:pk

» The inverse z-transform of each partial fraction
1s then obtained from z-transform tables.

N /




/ Partial fraction \

expansion method...

» Multiple-order poles: 1f X(z) contains an mth-
order pole, the partial fraction expansion must
include terms of the form:

Di (10)
i=1 (Z_Pk)l

The coefficients, D;, may be obtained from the
relation

D 1 d

L (m—1)! dz™m

N /

R I
z=p

k




Partial fraction expansion

method examples

1. X(z) contains simple, first order poles:

-1

X(z)= z Find the inverse
z -1 -2
1-0.25z —-0.375z z-transfo

S Oh’l) Multiplying the numerator and denominator by z° :

z z

X(z)= > =

z?-0.252-0.375 (2-0.75)(z+0.5)
Since N < M,

C C

X(z) = z S I

(z—-0.75)(z+0.5) z-0.75 z+0.5

L X@ _ 1 ¢ . G

z (Z 075)(Z+()5) z—0.75 z+0.5

We have polesp, =0.75and p, =-0.5

Fromeqn (9),
C, = X(Z)(z— D) X(Z)( ~0.75)
z=p, z=0.75
(z-0.75) |

T (2-0.75)(z +0.5)|
o
z+0.5

z=0.75

z=0.75

27




Partial fraction method

examples....
Similarly,
C, X(Z)(z— ) (Z)(z+05)
zZ=p, z=-0.5
o
2—0.75.__, s
__4
5
Therefore,
X(2) = (4/5)z  (4/5)z _(4/5) z z
2-0.75 2+0.5 2-075 z+0.5
So,

x(n) = % [(0.75)" — (—0.5)"1 n>0

2. X(z) contains a second order pole:

2
z

X(z) = 2
(z—-0.5)(z—1)

Find the inverse z-transform.

28




Partial fraction method

examples....
z? C D, D,
X(z)= =
Soln) ® (z-0.5)(z-1)" Z—O-5+Z—1+(z—l)2
c=X3 o5
z z=0.5

_ 22(2—0.5)

2(z=0.5)(z=1)|__,
IR

=2

To obtain D, we use eqn (11), with i=1, m=2.

. J (z—l)zX(Z) _ d (2—1)222
1 dz z - dz 2(2—0.5)(2_1)2 o

=)
dz\z-0.5)__

_z=05-z
(z-0.5)?
=2

z=1

29




/ Partial fraction methh

examples....

Similarly, for D, we use eqn (11), with i=2, m=2.

(z-1)%z?

_E-DPX@E)|
2(z=0.5)(z=1)?

z

D,

z=1

z=1

=2

Combining the results, X(z) becomes

2z _22+ 2z
z=05 z-1 (z-1)*

X(z)=

Therefore,

x(n)=2(0.5)" —2+2n
= 2[(n—1)+(0.5)"l n>0

o /
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/ 3. Residue method \

* The inverse z-transform 1s obtained by
evaluating the contour integral

x(n) = % £Zn_1X(Z)dZ (12)

where C 1s the path of integration enclosing
all the poles of z.

* Eqn (12) 1s evaluated using Cauchy’s residue
theorem:

x(n) = % £Z"_IX(Z)CIZ

= sum of the residues of z-/ X(z) at
all the poles 1nside C

N /




/ Residue method... \

* The residue of z-/X{(z) at the pole p, is given by:

1 d m—1
(m—=1)! gz

where F(z)=z"1X{(z),

Re s[F(2), p; |= (c-pF]._,  (13)

m 1s the order of the pole at p,,

Res[F(z),p,] 1s the residue of F(z)
at z= Pr

» For a simple (distinct) pole, eqn (13) reduces to

Re S[F(Z), ) ] =(z-p)F(2)=(z—p; )Zn_lX(Z)‘Z_pk(l4)

o /
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Residue method examples

z

T (2=0.75)(z+0.5)

1. X(2)
Find x(n). Assume C 1s the circle |z|=1.

Soln) This problem 1s the same as example 1
under z-transform examples:

If we let F(z)= z"'X{(z) then

n—1 n
zZ z zZ

F(z)=

(z—0.75)(z+0.5)  (z—0.75)(z+0.5)

A Im

F(z) has poles
atz=0.75 and
z=-0.5.

_~ Contour z| =1

h the /

Fig: A sketch of the contour of integration wit
position of poles /
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/ Residue method \

examples ...

x(n) = Res[F(z),0.75] + Res[F(z),-0.5]
Since the poles are first order, eqn (14) will be

used. Thus, o re07s1=(o— 0.75)F (2)]__y s

_ (2-0.75)z"
 (z-0.75)(z+0.5)

z=0.75
~(0.75)"
0.75+0.5

4
=—(0.75)"
5( )

Re s[F(z),-0.5]=(z + O-S)F(Z)‘Z:_o,s

 (z2+0.5)Z"
 (z=0.75)(z +0.5)

z=-0.5

4 n
=-<(-05)

Thus, x(n)=(4/5)[(0.75)" —(-0.5)"]
which is 1dentical to the result obtained by
the partial fraction expansion method.
34




Residue method
examples ...

D . X(z) contains a second-order pole Find the discrete-time sequence, x(&), with the

following z-transform:

-
-

X(z) =

(z — 0.5)(z — 1)?

This example is the same as Example # under partial fraction expansion. According

to the residue method the discrete-time sequence is given by

M
x(n) = 3 Res[F(2), py]

k=]
where

z.‘l-l

=z =
F(z)=z""X(2) s 2 —1)2

F(2) has a simple pole at z = 0.5 and a second-order pole at z = 1; thus x(n) is given by

x(n) = Res [F(2), p,] + Res [F(z), p,)
_ _ mzu-l o z"t!
Res[F(z), 0.5] = Bz—1 - G- |
= 0.5(0.5)"/(0.5)* = 2(0.5)"
d[_ 4e=Tz""

peacie. 'd?[(z - 0-1)(:—-1')']

o (z - O.SXR Y 1}2- il znfll

(z - 0-5)2 I;-|
= [(0.5)n + 1) = 11/(0.5F =2(n— 1)

Combining the results, we have

x(n) = 2[(n - 1) + (0.5)"]

which is the same result as for the partial fraction expansion method.

N
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