Discrete - Time Signals and Systems

Z-Transform-FIR filters

Yogananda Isukapalli



FIR filters-Review

M
yln]= Zbkx[n —k]...general difference equation for FIR filters

k=0

Filter Order = M: No. of memory blocks required in the filter
implementation

Filter Length, L = M+1: Total No. of samples required in

calculating the output, M from memory (past) and one present
sample

Filter coefficients {b,}: Completely defines an FIR filter. All the
properties of the filter can be understood through the coefficients



Z —transform of impulse response h|n] results in 'transfer

unction', it is also known as 'system function'
y
H(z)=) h[n]z""
n

From the previous lecture recall that Transfer function
Y(2)

X(2)

= Y(z)=H(2)X(2)

Notice the mathematical simplicity of the above result

H(z)=

Convolution becomes a simple multiplication
hin]*x[n] <> H(z)X(z2)



Calculating the output of a FIR filter using Z —transforms

Steps involved
1) Find the Z —transform of input signal x[n]

o0

X(z)= 2. x[nlz™"

n=—0o0

2) Find the Z —transform of impulse response h[n]

M
H(z)= ) hln]z™"
n=0

—3) Multiply X(z) and H(z) to get Y(z)
4) Obtain output y[n] by applying inverse Z —transform to Y (z)

-1

Yn]—Z—>Y(2)




Why to operate in transforms?

- HE") = H(Z)|Z=ef‘?’ -

;. z=¢e’?, makes both domains equal




H('*)= hlnle "

H(z)=) h[n]z™"

Same output from all three domains
Computational complexity determines the domain
Some of the filter properties are better understood 1n

frequency or Z-domains
Z. and frequency transforms are related



Example 1

Calculating the transfer function of the FIR filter with

impulse response co - efficients given by,
{h[n]} — {29 09_39092}

{h[n]} — {29 03_39092}
4
H(z) = goh[n]z—”

H(z)=h0]+ A1z +A[2]z7 + B[3]z> + H[4]z"*
=2+0z"'=322-0z" +2z7"

—2_3z7242;7*



Example 2
Calculating the transfer function of the FIR filter described

by the difference equation
yln]=x[n]+2x[n-1]-3x[n-2]-4x[n-3]
Aln]=1{1,2,-3,-4}

H(z)= 3 hnlz™"
= n=0

H(z) = h[0]+ A[l1]z"" + A[2]z72 + A[3]z°

— 142z 13272477



Example 3

Calculating the output of the FIR filter
x[n]=0l[n-1]-0[n-2]+0[n-3]-0[n-4]
hin]l=0o[n]+20[n-11+30[n-2]+40[n-3]

gy

v O[n-ngl<—>z
X(z)= zl—z24272
H(z)=1+2z""43z"%+4z7

"~ Y(z)=X(z)H(2)

:(Z_l —z P4z —2_4)(1+ 2z 1 43272 +4Z_3)



= 4 (-1+2)z77 +(1-2+3)z" +(-142-3+4)z"*
+H(2+43-4)z7 +(-3+4)z° +(-4)z”’
= 22422 40 327 1 20 4

Apply the inverse Z —transform

1
oz E >O[n-ngy|

Y(z)= 2 4z 42270 4227 3270+ 270 — 427
y[n]=0[n-1]+0[n-2]+20[n-3]+20[n-4]-30[n-35]
+0[n-6]—-40[n-7]




Example 4

Find the impulse response of the FIR filter
x[n]=0o[n-2]

y[n] =o[n]+20[n-1]+30[n-2]+406[n-3]

ny

s On-nyl<——z

X(z)=z""
Y(z)=1+ 2z 432724427
o H(z) = &)
— X(z)
-1 —7 -3
_ L2z +3_§ T4z =22 42z+43+4z"!
z

hin]=0[n+2]+20[n+1]+30[n]+40[n-1]..non causal



Example 5

Calculating the output of the FIR filter
A 0<n<4

elsewhere

0
Hin] = (1/2)" 0<n<3

0 elsewhere

4
=N Az = A(+z " 4z 27 +277)
n=0

o0

Hiz)= Y hnlz™"

n=—o0



3 (2 -
=(1+(1/2)z7 +(1/4) 27 +(1/8)z7)
Y(z)=H(2)X(2)
A +z" ++z7 +z0 +z2 A+ (1/2)z7 +(1/4) 27 +(1/8)z7)
= A1+(3/2)z7 +(7/4)z7 +(15/8)z~> +(15/8) ™"
. +(7/8)z> +(3/8)z° +(1/8)z™")
y[n] = A(S8[n]+(3/2)6[n—1]1+(7/4)S[n—2]1+(15/8) 6[n —3]
+(15/8)8[n—41+(7/8) 6[n—5]1+(3/8) 6[n—6]
+(1/8)8[n—7])



Cascading Systems

x[n]

— | Hi(2), hy[n]

X(2)

(), holn] |20

Fig 12.3

x[n]...input signal to the I°' FIRfilter

h[n]...impulse response of the I*" FIRfilter
win]...output of the I* FIR filter and input to the 2" FIR filter

y|[n]...output of the pnd filter, also this is the overall output

x[n]
X (z

)

H(z)h[n]

yln]

Y (2) Fig12.4

An] = y[n]* hy[nl«—— H(z) = H(2)H,(2)

Cascaded system can be replaced by a single filter with system function H(z)



Example 1

The impulse responses in a cascaded system are
h[n]=o[n]—0o[n—-1]

h,[n]=o[n]+o[n—1]

Find the impulse response of an effective system that
can replace the cascading arrangement

ny

cO[n-nyl<——z
h[n]<—— H,(z), hy[n]<——> H,(2)
Hi(z)=1- Z_l

H,(z) = 1+Z_1

H(Z) = H{(z2)H,(2) = (1—2_1)(1+2_1) = 1—2_2

h[n]=o[n]—o[n—2]



Example 2

Consider a system described by the difference equations
wln]=3x[n]—x[n—1]

yln]=2wn]—wln—1]

Find the impulse response of an effective system that

can replace the cascading arrangement

n[n] = by (k) =[3,~1]
— Ny[n]=30[n]—-o[n—1]

hy[n] = by (k) =[2,~1]

h,[n]=20[n]—o[n—1]



ny

e 5[7[ -I’ZO](_Z_)Z_

h[n]«—— H,(2), ly[n]«——> H, ()

Hy(z) = 3—2_1

Hy(z) = 2—2_1

H(z) = H|(2)H,(z) = (3—2_1)(2—2_1)

= 6_52_1 _|_Z—2

h[n]=60[n]—50[n—1]+0o[n—2]
The system can now be expressed as one difference equation
yln]=6x|n]-35x|n—-1]+x|n—-2]



Example 3

The impulse response of an effective system,
h[n]=o[n]—20[n—1]+20[n—-2]—o[n—3]

Split the above filter into two cascaded filters such that
the 1°" system is described by,

wln] = x[n]—x[n—1]

o

cO[n-ngle——>z
_H(Z) =1-2z""'+2z7%-z7

hn]=0o[n]—o[n—1]

H (z)= 1—z!






Example 4: Deconvolution

Cascading of filters has an important practical application
Undoing the effects of the first filter

Example : Communication channel

Undoing the effects of channel on signal is called equalization
Y(z) = H(2)H,(2)X(2)

if Y(z)=X(z2)

= H,(z2)H,(z) =1

Assume H, (z)=1- z !

1
HQ(Z) =

1—z!



Z-Transform & Unit circle

The frequency or @ —domain is a subset of z —domain

The general expression for Z is,

z=re’?,

where, 'r' is the radius of the circle

« A

1% makes both domains equal

H('”) = H(z)|

Z =€

z=e/?

j@

‘Z‘ = ‘e =1, the unit circle has a unique significance

inthe z—domain






Z.eros & Poles

Consider the transfer function of an FIR filter
H(z)=1- 2z 4277277

Convert the above function as a polynomial in 'z’

(1—22_1 12772 —2_3)23
H(z)= :
z
B 23 —2z2 4271

3
z

write the numerator in factored form,

z> —2z7? +2Z—l:(Z—l)(z—ej”/3)(z—e_j”/3)



(z=1)(z=e""*)z =77

3
4

Zeros...The values of z for which H(z) =0

In this example,

H(z)=0 forz = {1,ef”/3,e‘f”/3}

Poles....The values of z for which H(z) > o
—— H(z) > for z={0,0,0}

H(z) =

note that z> = 0 results in 3 roots

It is also known as a 3 order pole at z=0






Example 1

Find the poles and zeros for the transfer function?
H(z)=1- 327 42277
Converting into a polynomial in 'z’

zZ—3z+2

2
z

H(z) =

write the numerator in factored form,
72 —3z42 = (z=2)(z—-1)

zeros =|z;,z, | =[2,1]

poles =[p;, p,]1=10,0] = 2™ order pole at z=0
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Example 2

Find the poles and zeros of an FIR system described
by the difference equation,

yln]=x|n]—x[n—1]+ x[n—-2]
Theimpulseresponsefunctionisgivenby
h[n]=o[n]—o[n—1]+0o[n—2]

ny

" on-nyl<——>z

H(Z)Zl—Z_l + 772

Converting into a polynomial in 'z’

22—z +1

2
Z

H(z) =
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Example 3
The zeros and poles of an FIR filter are given,

zeros =[e/™/*, e/
poles =[0,0]
Find the difference equation of the filter

The numerator is obtained through multiplication of factors

(z—e/ Yz —e )= 22 — 22 +1

denominator through poles, z*
22 2z +1
2

Z

H(z)=
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k Example 4, Application: Nulling filters

The Graphical Design of a Comb filter

 In medical applications, the 60Hz frequency
of the power supply 1s often “picked up” by
the test equipment (EKG recorder)

» Also harmonically related frequencies such
as £, =2x60 = 120Hz, and {; = 3x60 = 180 Hz
are generated because of non-linear
phenomena.



» The object of a digital filter design 1s to
eliminate or suppress these unwanted frequencies

which distort or mask up the signals of interest

Thus the desired response of the filter would be,
Assume a sampling frequency of 360Hz

0 60 120
/3

Fig 12.11 180 f Hz
T 0 rad

21/3




Thus we have :

0, =, T=2n(60)/360 = n/3

0, = 0, T =2m(120)/360 = 21/3

0; = 0;T=2n(180)/360 ==

1) Complex zeros must occur in conjugate pairs

2) 6 =0is added to eliminate any DC component in the signal

Actual
Response

0 60 120 180 fHz

Kig 12.12 /3 21/3 m 0 rad



27T 4 7

H(z)=(z-1)(z—¢)z—¢ > Yz—e")z—¢ > Nz—¢ ?)
H(z)=z°—1

Implies : y[n]=x{n+6]=x{n]

But the above obtained filter 1s non-causal !! To
make 1t causal filter we place six poles at z = 0.

6
z°—1
6

H(z)= L= H(Z)=(1-2°

I Z

Thus the required causal FIR comb filter is:

Nn]=x{n]=x{n—6]



Filter properties & the location zeros

There is an extremely close relationship
between the frequency response of the filter
and the location of zeros on the unit circle

One can design a filter with required frequency
by placing zeros in the appropriate place. The

difference equation of the filter can be obtained
by multiplying the factors associated with zeros



Example: Running average filter

i=l

Minl= Y ln—k]

k=0
The system function

HE =S =
k=0 1-2z
5 |
gL (Z — 1)
- Zeros.. from numerator,

L -1=0
z=e/¥HL Kk =01,2..L-1



Zeros are equally spaced around the circle

Poles.. from numerator,

22 z-1)=0

ZEM =0, L-1" order pole at 0

And another pole at z =1

Note that this pole and zero at z =1 get cancelled

— . The primary reason for the filter to become a lowpass
filter is this cancellation of the zero at z =1 due

to the pole present in the same location






3 dimensional view of the frequency response

Fig 12.15

If the zeros locations are known, the transfer function

i ,
of the filter can be obtained through, H(z) =[] 1 — /27K L]
k=1












FIR filter with two zeros

Notice changes 1n the
impulse response h[n]
and the frequency
response as the
complex zero pair is e v w0

1-1.62"1 + 0.642°

2 2 DTFT: MAGNITUDE RESPONSE

Imaginary Part
X
0

Bosi Part 0504030201 0 04 02 03 04 05

moved around the ; 'IMPULSE‘ RESPON'SE: h[n]' . DTFT: PHASE RESPONSE (DEGREES)
____unit circle (Changing | i Sess——
the angle of the zeros) | , l =

0 10 : 20 30 -0.5 -0.4 -:3"-::“2-2; Frﬂeqult:w:.zorgf 0.4 05

Fig 12.22

h[n] = 8[n]—-2cos(@)0[n—1]+o[n-2]



FIR filter with three zeros: one is held fixed at z = -1

1. ) : '.
Notice changes in . 1.082" - 0.6427 + 051227
. ¢ 15| .
the 1mpulse IreSponsc E 1A L [?TFT:: I?'IAG:HIT:UDE:RE:SPO:HSI:E
h[n] and the frequency| 1, | e
e
response as the B 4 DESEERReSy
C()mplex 7Zero pair 1S e Realupm i 0504030201 0 04 02 03 04 05
IMPULSE RESPONSE: h[n] DTFT: PHASE RESPONSE (DEGREES)

180 I I ! I I I I I I

moved around the unit| :
circle (changing angle)

P

—

0
I I
g0 --L--L__[™

A -180
-0.5-04-03-02-01 0 04 02 03 0.4 05
n Hormalized Frequency o/2x

Fig 12.23



FIR filter with ten zeros equally spaced around the unit circle

NOtice Changes 1 o0 1-0'5?—:-0'5.2-2-0'5.29-3-0'5?;4-"'5.21-;
in the 1mpu]se v 05| @ 0 _ -0527-0.52" -052"° - 0.527 - 1.5z

:5 10 DTFT: MAGNITUDE RESPONSE
response h[n] i T
and the frequency | “" % | _°

1
response as the e : ,
Real Part 0504030201 0 04 02 03 0.4 05

zero at z = 1, IMPULSE RESPONSE: h[n] DTFT: PHASE RESPONSE (DEGREES)
T T 180 )

is moved radially :J | | BERERN YRR

[| - = - -F - - 5
1 I I 1 I I I I
: : — 180 L—

0 10 20 30 05-04-03-0.2-014 0 01 02 0.3 0.4 05
n Hormalized Frequency o/2x

Fig 12.24




FIR filter with ten zeros equally spaced around the unit circle

NOtice Changes 1t e i ] 1-0.309z" +1.062° + 09642 - 0,484z - 1.252°

in the impulse 58 ¢ | ®) I ——

= 10 DTFT: MAGNITUDE RESPONSE

response h[n] T 7 B N
~ £ & 7 B f )

and the frequency| = .| ~ 4 VY BRI T

response as the TR ey ; . .
. Peal Part 0504030204 0 04 02 0.3 0.4 0.5
ZEero pair at 72 0 IMPULSE RESPONSE: hin]  _ DTFT: PHASE RESPONSE (DEGREES)
degrees 1s J‘“TH | N B WA W W
. | i n % 3 T 3 3 2 b
— moved radially. || ‘ RAWRAALI A A
li 10 2.l] 3.0 -18!]0.5 —l].l4 -ll.l3 -0.2 -l].l1 l; ll:’l 0.2 0:3 l].l4 0.5
n Hormalized Frequency o/2x

Fig 12.25
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