Discrete - Time Signals and Systems

Z-Transform-FIR filters

Yogananda Isukapalli

FIR filters-Review

 $y[n] = \sum_{k=0}^{M} b_k x[n-k]...general \ difference \ equation \ for \ FIR \ filters$

Filter Order = M: *No. of memory blocks required in the filter implementation*

Filter Length, L = M+1: *Total No. of samples required in calculating the output, M from memory (past) and one present sample*

Filter coefficients $\{b_k\}$: Completely defines an FIR filter. All the properties of the filter can be understood through the coefficients

Z – transform of impulse response h[n] results in 'transfer function', it is also known as 'system function' $H(z) = \sum_{n} h[n] z^{-n}$ From the previous lecture recall that Transfer function $H(z) = \frac{Y(z)}{X(z)}$ $\Rightarrow Y(z) = H(z)X(z)$

Notice the mathematical simplicity of the above result Convolution becomes a simple multiplication $h[n] * x[n] \leftrightarrow H(z)X(z)$ Calculating the output of a FIR filter using Z – transforms

Steps involved

1) Find the Z-transform of input signal x[n]

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

2) Find the Z – transform of impulse response h[n]
$$H(z) = \sum_{n=0}^{M} h[n]z^{-n}$$

3) Multiply X(z) and H(z) to get Y(z)

4) Obtain output y[n] by applying inverse Z -transform to Y(z) $y[n] \xleftarrow{\mathbb{Z}^{-1}} Y(z)$

Same output from all three domains

Computational complexity determines the domain Some of the filter properties are better understood in frequency or Z-domains

Z and frequency transforms are related

Calculating the transfer function of the FIR filter with *impulse response co-efficients given by,* ${h[n]} = {2, 0, -3, 0, 2}$ ${h[n]} = {2, 0, -3, 0, 2}$ $H(z) = \sum_{n=1}^{4} h[n] z^{-n}$ n=0 $H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4}$ $= 2 + 0z^{-1} - 3z^{-2} - 0z^{-3} + 2z^{-4}$ $= 2 - 3z^{-2} + 2z^{-4}$

Calculating the transfer function of the FIR filter described by the difference equation y[n] = x[n] + 2x[n-1] - 3x[n-2] - 4x[n-3] $h[n] = b_k$ $h[n] = \{1, 2, -3, -4\}$ $H(z) = \sum_{n=1}^{3} h[n] z^{-n}$ n=0 $H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3}$ $=1+2z^{-1}-3z^{-2}-4z^{-3}$

Calculating the output of the FIR filter $x[n] = \delta[n-1] - \delta[n-2] + \delta[n-3] - \delta[n-4]$ $h[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$ $:: \delta[n - n_0] \longleftrightarrow^z Z^{-n_0}$ $X(z) = z^{-1} - z^{-2} + z^{-3} - z^{-4}$ $H(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$ $\therefore Y(z) = X(z)H(z)$ $= \left(z^{-1} - z^{-2} + z^{-3} - z^{-4}\right) \left(1 + 2z^{-1} + 3z^{-2} + 4z^{-3}\right)$

$$=z^{-1} + (-1+2)z^{-2} + (1-2+3)z^{-3} + (-1+2-3+4)z^{-4}$$

+(-2+3-4)z^{-5} + (-3+4)z^{-6} + (-4)z^{-7}
=z^{-1} + z^{-2} + 2z^{-3} + 2z^{-4} - 3z^{-5} + z^{-6} - 4z^{-7}
Apply the inverse Z - transform
$$\because z^{-n_0} \xleftarrow{\not{z}^{-1}} \delta[n - n_0]$$

$$Y(z) = z^{-1} + z^{-2} + 2z^{-3} + 2z^{-4} - 3z^{-5} + z^{-6} - 4z^{-7}$$

$$y[n] = \delta[n - 1] + \delta[n - 2] + 2\delta[n - 3] + 2\delta[n - 4] - 3\delta[n - 5]$$

+ $\delta[n - 6] - 4\delta[n - 7]$

Find the impulse response of the FIR filter $x[n] = \delta[n-2]$ $v[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$ $\therefore \delta[n - n_0] \longleftrightarrow z^{-n_0}$ $X(z) = z^{-2}$ $Y(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$ $\because H(z) = \frac{Y(z)}{X(z)}$ $=\frac{1+2z^{-1}+3z^{-2}+4z^{-3}}{z^{-2}}=z^2+2z+3+4z^{-1}$ $h[n] = \delta[n+2] + 2\delta[n+1] + 3\delta[n] + 4\delta[n-1]...non \ causal$

Calculating the output of the FIR filter

 $x[n] = \begin{vmatrix} A & 0 \le n \le 4 \\ 0 & elsewhere \end{vmatrix}$ $h[n] = \begin{vmatrix} (1/2)^n & 0 \le n \le 3\\ 0 & elsewhere \end{vmatrix}$ $X(z) = \sum_{n=1}^{\infty} x[n] z^{-n}$ $n = -\infty$ $= \sum_{n=1}^{4} Az^{-n} = A(1+z^{-1}+z^{-2}+z^{-3}+z^{-4})$ n=0 $H(z) = \sum_{n=1}^{\infty} h[n] z^{-n}$ $n = -\infty$

$$= \sum_{n=0}^{3} (1/2)^{n} z^{-n} =$$

$$= (1 + (1/2) z^{-1} + (1/4) z^{-2} + (1/8) z^{-3})$$

$$\because Y(z) = H(z)X(z)$$

$$= A(1 + z^{-1} + z^{-2} + z^{-3} + z^{-4})(1 + (1/2) z^{-1} + (1/4) z^{-2} + (1/8) z^{-3})$$

$$= A(1 + (3/2) z^{-1} + (7/4) z^{-2} + (15/8) z^{-3} + (15/8) z^{-4} + (7/8) z^{-5} + (3/8) z^{-6} + (1/8) z^{-7})$$

$$y[n] = A(\delta[n] + (3/2) \delta[n-1] + (7/4) \delta[n-2] + (15/8) \delta[n-3] + (15/8) \delta[n-4] + (7/8) \delta[n-5] + (3/8) \delta[n-6] + (1/8) \delta[n-7])$$

Cascading Systems

x[n]...input signal to the 1st FIRfilterh[n]...impulse response of the 1st FIRfilter<math>w[n]...output of the 1st FIR filter and input to the 2nd FIR filter<math>y[n]...output of the 2nd filter, also this is the overall output

$$\frac{x[n]}{X(z)} \qquad H(z)h[n] \qquad \frac{y[n]}{Y(z)}$$
_{Fig 12}

 $h[n] = h_1[n] * h_2[n] \xleftarrow{z} H(z) = H_1(z)H_2(z)$

Cascaded system can be replaced by a single filter with system function H(z)

The impulse responses in a cascaded system are

 $h_1[n] = \delta[n] - \delta[n-1]$

$$h_2[n] = \delta[n] + \delta[n-1]$$

Find the impulse response of an effective system that can replace the cascading arrangement

$$\therefore \delta[n - n_0] \xleftarrow{z} z^{-n_0}$$

$$h_1[n] \xleftarrow{z} H_1(z), h_2[n] \xleftarrow{z} H_2(z)$$

$$H_1(z) = 1 - z^{-1}$$

$$H_2(z) = 1 + z^{-1}$$

$$H(z) = H_1(z)H_2(z) = (1 - z^{-1})(1 + z^{-1}) = 1 - z^{-2}$$

$$h[n] = \delta[n] - \delta[n - 2]$$

Consider a system described by the difference equations w[n] = 3x[n] - x[n-1] y[n] = 2w[n] - w[n-1]Find the impulse response of an effective system that can replace the cascading arrangement

$$h_{1}[n] = b_{1}(k) = [3, -1]$$
$$h_{1}[n] = 3\delta[n] - \delta[n-1]$$
$$h_{2}[n] = b_{2}(k) = [2, -1]$$
$$h_{2}[n] = 2\delta[n] - \delta[n-1]$$

$$\therefore \delta[n - n_0] \xleftarrow{z} z^{-n_0}$$

$$h_1[n] \xleftarrow{z} H_1(z), h_2[n] \xleftarrow{z} H_2(z)$$

$$H_1(z) = 3 - z^{-1}$$

$$H_2(z) = 2 - z^{-1}$$

$$H(z) = H_1(z)H_2(z) = \left(3 - z^{-1}\right)\left(2 - z^{-1}\right)$$

$$= 6 - 5z^{-1} + z^{-2}$$

$$h[n] = 6\delta[n] - 5\delta[n - 1] + \delta[n - 2]$$

$$The system can now be expressed as one d$$

The system can now be expressed as one difference equation y[n] = 6x[n] - 5x[n-1] + x[n-2]

The impulse response of an effective system, $h[n] = \delta[n] - 2\delta[n-1] + 2\delta[n-2] - \delta[n-3]$ Split the above filter into two cascaded filters such that the 1st system is described by, w[n] = x[n] - x[n-1] $:: \delta[n - n_0] \longleftrightarrow z^{-n_0}$ $H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$ $h_1[n] = \delta[n] - \delta[n-1]$ $H_1(z) = 1 - z^{-1}$

$$\therefore H(z) = H_1(z)H_2(z)$$
$$H_2(z) = \frac{H(z)}{H_1(z)}$$
$$= \frac{1 - 2z^{-1} + 2z^{-2} - z^{-3}}{1 - z^{-1}}$$
$$= 1 - z^{-1} + z^{-2}$$

$$h_{2}[n] = \delta[n] - \delta[n-1] + \delta[n-2]$$

$$y[n] = w[n] - w[n-1] + w[n-2]$$

$$w[n] = x[n] - x[n-1]$$
Complete system

Example 4: Deconvolution

Cascading of filters has an important practical application Undoing the effects of the first filter **Example : Communication channel** Undoing the effects of channel on signal is called equalization $Y(z) = H_1(z)H_2(z)X(z)$ if Y(z) = X(z) \Rightarrow $H_1(z)H_2(z) = 1$ Assume $H_1(z) = 1 - z^{-1}$ $H_2(z) = \frac{1}{1 - z^{-1}}$

Z-Transform & Unit circle

The frequency or $\hat{\omega}$ -domain is a subset of z-domain The general expression for Z is, $z = re^{j\hat{\omega}}$. where, 'r' is the radius of the circle $z = e^{j\hat{\omega}}$, makes both domains equal $H(e^{j\hat{\omega}}) = H(z)\Big|_{z=a^{j\hat{\omega}}}$ $\therefore |z| = |e^{j\hat{\omega}}| = 1$, the unit circle has a unique significance in the *z* – domain

Note that ' $\hat{\omega}$ ' is the discrete – time frequency discussed in previous lectures

 $-\pi \le \hat{\omega} \le \pi \longleftrightarrow -1 \le z \le 1$

Periodicity in $\hat{\omega}$ – domain – -2π radians, one cycle in z – domain

Zeros & Poles

Consider the transfer function of an FIR filter $H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$

Convert the above function as a polynomial in 'z'

$$H(z) = \frac{\left(1 - 2z^{-1} + 2z^{-2} - z^{-3}\right)z^3}{z^3}$$
$$= \frac{z^3 - 2z^2 + 2z - 1}{z^3}$$

write the numerator in factored form,

 $z^{3} - 2z^{2} + 2z - 1 = (z - 1)(z - e^{j\pi/3})(z - e^{-j\pi/3})$

$$H(z) = \frac{(z-1)(z-e^{j\pi/3})(z-e^{-j\pi/3})}{z^3}$$

Zeros... The values of z for which H(z) = 0In this example, $H(z) = 0 \text{ for } z = \left\{1, e^{j\pi/3}, e^{-j\pi/3}\right\}$ **Poles....** The values of z for which $H(z) \rightarrow \infty$ $H(z) \rightarrow \infty \text{ for } z = \{0, 0, 0\}$ note that $z^3 = 0$ results in 3 roots It is also known as a 3^{rd} order pole at z = 0

Significance of zeros in an FIR system: Except for a constant FIR system is completely characterized by the zeros The difference equation which desribes the relation between x[n] and y[n], can be found with the knowledge of zero locations

Fig 12.7

Find the poles and zeros for the transfer function?

$$H(z) = 1 - 3z^{-1} + 2z^{-2}$$

Converting into a polynomial in 'z'

$$H(z) = \frac{z^2 - 3z + 2}{z^2}$$

write the numerator in factored form,

$$z^{2} - 3z + 2 = (z - 2)(z - 1)$$

 $zeros = [z_{1}, z_{2}] = [2, 1]$
 $poles = [p_{1}, p_{2}] = [0, 0] = 2^{nd}$ order pole at $z = 0$

Notice that both the zeros are on real axis, also notice one pole is not included in the unit circle. There is a double pole at z=0

Find the poles and zeros of an FIR system described by the difference equation, y[n] = x[n] - x[n-1] + x[n-2]Theimpulseresponsefunctionisgivenby $h[n] = \delta[n] - \delta[n-1] + \delta[n-2]$ $\therefore \delta[n-n_0] \xleftarrow{z} z^{-n_0}$ $H(z) = 1 - z^{-1} + z^{-2}$

Converting into a polynomial in 'z'

$$H(z) = \frac{z^2 - z + 1}{z^2}$$

write the numerator in factored form,

$$z^2 - z + 1 = (z - e^{j\pi/3})(z - e^{-j\pi/3})$$

 $zeros = [e^{j\pi/3}, e^{-j\pi/3}], both on unit circles$
 $poles = [0,0] = 2^{nd} order pole at z = 0$

The zeros and poles of an FIR filter are given, $zeros = [e^{j\pi/4}, e^{-j\pi/4}]$ poles = [0,0]Find the difference equation of the filter The numerator is obtained through multiplication of factors $(z-e^{j\pi/4})(z-e^{-j\pi/4}) = z^2 - \sqrt{2}z + 1$

denominator through poles, z^2

$$H(z) = \frac{z^2 - \sqrt{2}z + 1}{z^2}$$

$$= 1 - \sqrt{2}z^{-1} + z^{-2}$$

Apply inverse Z – transform, $h[n] = \delta[n] - \sqrt{2}\delta[n-1] + \delta[n-2]$ The difference equation

 $y[n] = x[n] - \sqrt{2}x[n-1] + x[n-2]$

Notice that, because of conjugate zeros a sinusoid signal with frequency $\pi/4$ will be nulled out by this FIR filter

Fig 12.10

Example 4, Application: Nulling filters The Graphical Design of a Comb filter

- In medical applications, the 60Hz frequency of the power supply is often "picked up" by the test equipment (EKG recorder)
- Also harmonically related frequencies such as $f_2 = 2x60 = 120$ Hz, and $f_3 = 3x60 = 180$ Hz are generated because of non-linear phenomena.

• The object of a digital filter design is to eliminate or suppress these unwanted frequencies which distort or mask up the signals of interest **Thus the desired response of the filter would be,** Assume a sampling frequency of 360Hz

Thus we have :

 $\theta_1 = \omega_1 T = 2\pi (60)/360 = \pi/3$ $\theta_2 = \omega_2 T = 2\pi (120)/360 = 2\pi/3$ $\theta_3 = \omega_3 T = 2\pi (180)/360 = \pi$

1) Complex zeros must occur in conjugate pairs

2) $\theta = 0$ is added to eliminate any DC component in the signal

$$H(z) = (z-1)(z-e^{j\frac{\pi}{3}})(z-e^{j\frac{2\pi}{3}})(z-e^{j\pi})(z-e^{j\pi})(z-e^{j\frac{4\pi}{3}})(z-e^{j\frac{5\pi}{3}})$$
$$H(z) = z^{6}-1$$
Implies : $v[n] = x[n+6] - x[n]$

But the above obtained filter is non-causal !! To make it causal filter we place six poles at z = 0.

$$H(z) = \frac{z^6 - 1}{z^6} \quad \therefore \Rightarrow H(z) = (1 - z^{-6})$$

Thus the required causal FIR comb filter is:

y[n] = x[n] - x[n-6]

Filter properties & the location zeros

There is an extremely close relationship between the frequency response of the filter and the location of zeros on the unit circle

One can design a filter with required frequency by placing zeros in the appropriate place. The difference equation of the filter can be obtained by multiplying the factors associated with zeros

Example: Running average filter

$$y[n] = \sum_{k=0}^{L-1} x[n-k]$$

The system function

$$H(z) = \sum_{k=0}^{L-1} z^{-k} = \frac{1 - z^{-L}}{1 - z^{-1}}$$
$$= \frac{z^{L} - 1}{z^{L-1} (z - 1)}$$

Zeros.. from numerator,

$$z^{L} - 1 = 0$$

 $z = e^{j2\pi k/L}, \qquad k = 0, 1, 2...L - 1$

Zeros are equally spaced around the circle Poles..from numerator, $z^{L-1}(z-1) = 0$ $z^{L-1} = 0$, $L-1^{th}$ order pole at 0 And another pole at z = 1Note that this pole and zero at z = 1 get cancelled The primary reason for the filter to become a lowpass

filter is this cancellation of the zero at z = 1 due to the pole present in the same location

3 dimensional view of the frequency response

If the zeros locations are known, the transfer function of the filter can be obtained through, $H(z) = \prod_{k=1}^{L-1} \left(1 - e^{j2\pi k/L} z^{-1}\right)$

same example $\Im m\{z\}$ due to conjugate symmetry this results in a filter with real coefficients (9) $H(z) = \frac{1}{2} \sum_{k=0}^{L-1} z^{-k} e^{j2\pi k_0 k/L} +$ $\tilde{\Re}e\{z\}$ $\frac{1}{2} \sum_{k=0}^{L-1} z^{-k} e^{-j2\pi k_0 k/L}$ $H(z) = H_1(z) + H_2(z)$ **Fig 12.20** 5^{+} $\frac{2\pi}{5}$ $\frac{3\pi}{5}$ $\frac{\pi}{5}$ $\frac{\pi}{5}$ $\frac{2\pi}{5}$ $\frac{3\pi}{5}$ $-\pi$ 0 π $\hat{\omega}$

FIR filter with two zeros

Notice changes in the impulse response h[n] and the frequency response as the complex zero pair is moved around the unit circle (changing the angle of the zeros)

 $h[n] = \delta[n] - 2\cos(\hat{\omega})\delta[n-1] + \delta[n-2]$

FIR filter with three zeros; one is held fixed at z = -1

Notice changes in the impulse response h[n] and the frequency response as the complex zero pair is moved around the unit circle (changing angle)

FIR filter with ten zeros equally spaced around the unit circle

Notice changes in the impulse response h[n]and the frequency response as the zero at z = 1, is moved radially

FIR filter with ten zeros equally spaced around the unit circle

Notice changes in the impulse response h[n] and the frequency response as the zero pair at 72 degrees is moved radially.

Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, "7.5-7.8 --Signal Processing First", Prentice Hall, 2003