# Discrete - Time Signals and Systems 

## Z-Transform-FIR filters

Yogananda Isukapalli

## FIR filters-Review

$y[n]=\sum_{k=0}^{M} b_{k} x[n-k] \ldots$ general difference equation for FIR filters
Filter Order $=\mathrm{M}$ : No. of memory blocks required in the filter implementation

Filter Length, $\mathrm{L}=\mathrm{M}+1$ : Total No. of samples required in calculating the output, $M$ from memory (past) and one present sample

Filter coefficients $\left\{b_{k}\right\}:$ Completely defines an FIR filter. All the properties of the filter can be understood through the coefficients
$Z$-transform of impulse response $h[n]$ results in 'transfer function', it is also known as 'system function'
$H(z)=\sum_{n} h[n] z^{-n}$
From the previous lecture recall that Transfer function $H(z)=\frac{Y(z)}{X(z)}$
$\Rightarrow Y(z)=H(z) X(z)$
Notice the mathematical simplicity of the above result
Convolution becomes a simple multiplication
$h[n] * x[n] \leftrightarrow H(z) X(z)$

Calculating the output of a FIR filter using $Z$-transforms
Steps involved

1) Find the $Z$-transform of input signal $x[n]$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

2) Find the $Z$-transform of impulse response $h[n]$

$$
H(z)=\sum_{n=0}^{M} h[n] z^{-n}
$$

3) Multiply $X(z)$ and $H(z)$ to get $Y(z)$
4) Obtain output $y[n]$ by applying inverse $Z$-transform to $Y(z)$

$$
y[n] \stackrel{\mathbb{Z}^{-1}}{\longleftrightarrow} Y(z)
$$

## Why to operate in transforms?

## Z-TRANSFORM-DOMAIN

TIME-DOMAIN

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Fig 12.1

$$
\begin{aligned}
& H\left(e^{j \hat{\omega}}\right)=\left.H(z)\right|_{z=e^{j \hat{\omega}}} \\
& \therefore z=e^{j \hat{\omega}}, \text { makes both domains equal }
\end{aligned}
$$



Same output from all three domains
Computational complexity determines the domain Some of the filter properties are better understood in frequency or Z-domains
Z and frequency transforms are related

## Example 1

Calculating the transfer function of the FIR filter with impulse response co-efficients given by,

$$
\{h[n]\}=\{2,0,-3,0,2\}
$$

$$
\{h[n]\}=\{2,0,-3,0,2\}
$$

$$
H(z)=\sum_{n=0}^{4} h[n] z^{-n}
$$

$$
H(z)=h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}+h[4] z^{-4}
$$

$$
=2+0 z^{-1}-3 z^{-2}-0 z^{-3}+2 z^{-4}
$$

$$
=2-3 z^{-2}+2 z^{-4}
$$

## Example 2

Calculating the transfer function of the FIR filter described by the difference equation

$$
y[n]=x[n]+2 x[n-1]-3 x[n-2]-4 x[n-3]
$$

$$
h[n]=b_{k}
$$

$$
h[n]=\{1,2,-3,-4\}
$$

$$
H(z)=\sum_{n=0}^{3} h[n] z^{-n}
$$

$$
H(z)=h[0]+h[1] z^{-1}+h[2] z^{-2}+h[3] z^{-3}
$$

$$
=1+2 z^{-1}-3 z^{-2}-4 z^{-3}
$$

## Example 3

Calculating the output of the FIR filter
$x[n]=\delta[n-1]-\delta[n-2]+\delta[n-3]-\delta[n-4]$
$h[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 \delta[n-3]$
$\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}$
$X(z)=z^{-1}-z^{-2}+z^{-3}-z^{-4}$
$H(z)=1+2 z^{-1}+3 z^{-2}+4 z^{-3}$
$\because Y(z)=X(z) H(z)$

$$
=\left(z^{-1}-z^{-2}+z^{-3}-z^{-4}\right)\left(1+2 z^{-1}+3 z^{-2}+4 z^{-3}\right)
$$

$$
\begin{aligned}
= & z^{-1}+(-1+2) z^{-2}+(1-2+3) z^{-3}+(-1+2-3+4) z^{-4} \\
& +(-2+3-4) z^{-5}+(-3+4) z^{-6}+(-4) z^{-7} \\
= & z^{-1}+z^{-2}+2 z^{-3}+2 z^{-4}-3 z^{-5}+z^{-6}-4 z^{-7}
\end{aligned}
$$

Apply the inverse $Z$-transform
$\because z^{-n_{0}} \stackrel{z^{-1}}{\longleftrightarrow} \delta\left[n-n_{0}\right]$
$Y(z)=z^{-1}+z^{-2}+2 z^{-3}+2 z^{-4}-3 z^{-5}+z^{-6}-4 z^{-7}$
$y[n]=\delta[n-1]+\delta[n-2]+2 \delta[n-3]+2 \delta[n-4]-3 \delta[n-5]$

$$
+\delta[n-6]-4 \delta[n-7]
$$

## Example 4

Find the impulse response of the FIR filter

$$
\begin{aligned}
& x[n]=\delta[n-2] \\
& y[n]=\delta[n]+2 \delta[n-1]+3 \delta[n-2]+4 \delta[n-3]
\end{aligned}
$$

$$
\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}
$$

$$
X(z)=z^{-2}
$$

$$
Y(z)=1+2 z^{-1}+3 z^{-2}+4 z^{-3}
$$

$$
\because H(z)=\frac{Y(z)}{X(z)}
$$

$$
=\frac{1+2 z^{-1}+3 z^{-2}+4 z^{-3}}{z^{-2}}=z^{2}+2 z+3+4 z^{-1}
$$

$$
h[n]=\delta[n+2]+2 \delta[n+1]+3 \delta[n]+4 \delta[n-1] \ldots n o n \text { causal }
$$

## Example 5

Calculating the output of the FIR filter

$$
\begin{aligned}
& x[n]=\left\lvert\, \begin{array}{ll}
A & 0 \leq n \leq 4 \\
0 & \text { elsewhere }
\end{array}\right. \\
& h[n]=\left\lvert\, \begin{array}{ll}
(1 / 2)^{n} & 0 \leq n \leq 3 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

$$
=\sum_{n=0}^{4} A z^{-n}=A\left(1+z^{-1}++z^{-2}+z^{-3}+z^{-4}\right)
$$

$$
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{3}(1 / 2)^{n} z^{-n}= \\
& =\left(1+(1 / 2) z^{-1}+(1 / 4) z^{-2}+(1 / 8) z^{-3}\right)
\end{aligned}
$$

$$
\because Y(z)=H(z) X(z)
$$

$$
\begin{aligned}
= & A\left(1+z^{-1}++z^{-2}+z^{-3}+z^{-4}\right)\left(1+(1 / 2) z^{-1}+(1 / 4) z^{-2}+(1 / 8) z^{-3}\right) \\
= & A\left(1+(3 / 2) z^{-1}+(7 / 4) z^{-2}+(15 / 8) z^{-3}+(15 / 8) z^{-4}\right. \\
& \left.\quad+(7 / 8) z^{-5}+(3 / 8) z^{-6}+(1 / 8) z^{-7}\right)
\end{aligned}
$$

$$
y[n]=A(\delta[n]+(3 / 2) \delta[n-1]+(7 / 4) \delta[n-2]+(15 / 8) \delta[n-3]
$$

$$
+(15 / 8) \delta[n-4]+(7 / 8) \delta[n-5]+(3 / 8) \delta[n-6]
$$

$$
+(1 / 8) \delta[n-7])
$$

## Cascading Systems


$x[n] \ldots$ input signal to the $1^{\text {st }}$ FIRfilter
$h[n] .$. impulse response of the $1^{\text {st }}$ FIRfilter
$w[n] \ldots$ output of the $1^{\text {st }}$ FIR filter and input to the $2^{\text {nd }}$ FIR filter
$y[n] \ldots$ output of the $2^{\text {nd }}$ filter, also this is the overall output


$$
h[n]=h_{1}[n] * h_{2}[n] \stackrel{z}{\longleftrightarrow} H(z)=H_{1}(z) H_{2}(z)
$$

Cascaded system can be replaced by a single filter with system function $H(z)$

## Example 1

The impulse responses in a cascaded system are $h_{1}[n]=\delta[n]-\delta[n-1]$
$h_{2}[n]=\delta[n]+\delta[n-1]$
Find the impulse response of an effective system that can replace the cascading arrangement
$\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}$
$h_{1}[n] \longleftrightarrow H_{1}(z), h_{2}[n] \stackrel{z}{\longleftrightarrow} H_{2}(z)$
$H_{1}(z)=1-z^{-1}$
$H_{2}(z)=1+z^{-1}$
$H(z)=H_{1}(z) H_{2}(z)=\left(1-z^{-1}\right)\left(1+z^{-1}\right)=1-z^{-2}$
$h[n]=\delta[n]-\delta[n-2]$

## Example 2

Consider a system described by the difference equations $w[n]=3 x[n]-x[n-1]$
$y[n]=2 w[n]-w[n-1]$
Find the impulse response of an effective system that can replace the cascading arrangement

$$
\begin{aligned}
& h_{1}[n]=b_{1}(k)=[3,-1] \\
& h_{1}[n]=3 \delta[n]-\delta[n-1] \\
& h_{2}[n]=b_{2}(k)=[2,-1] \\
& h_{2}[n]=2 \delta[n]-\delta[n-1]
\end{aligned}
$$

## $\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}$

$$
h_{1}[n] \longleftrightarrow{ }^{z} H_{1}(z), h_{2}[n] \stackrel{z}{\longleftrightarrow} H_{2}(z)
$$

$$
H_{1}(z)=3-z^{-1}
$$

$$
H_{2}(z)=2-z^{-1}
$$

$$
H(z)=H_{1}(z) H_{2}(z)=\left(3-z^{-1}\right)\left(2-z^{-1}\right)
$$

$$
=6-5 z^{-1}+z^{-2}
$$

$h[n]=6 \delta[n]-5 \delta[n-1]+\delta[n-2]$
The system can now be expressed as one difference equation $y[n]=6 x[n]-5 x[n-1]+x[n-2]$

## Example 3

The impulse response of an effective system,
$h[n]=\delta[n]-2 \delta[n-1]+2 \delta[n-2]-\delta[n-3]$
Split the above filter into two cascaded filters such that the $I^{\text {st }}$ system is described by,
$w[n]=x[n]-x[n-1]$
$\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}$
$H(z)=1-2 z^{-1}+2 z^{-2}-z^{-3}$
$h_{1}[n]=\delta[n]-\delta[n-1]$
$H_{1}(z)=1-z^{-1}$

$$
\begin{aligned}
& \because H(z)=H_{1}(z) H_{2}(z) \\
& \begin{aligned}
H_{2}(z) & =\frac{H(z)}{H_{1}(z)} \\
& =\frac{1-2 z^{-1}+2 z^{-2}-z^{-3}}{1-z^{-1}} \\
= & 1-z^{-1}+z^{-2}
\end{aligned}
\end{aligned}
$$

$$
h_{2}[n]=\delta[n]-\delta[n-1]+\delta[n-2]
$$

$$
y[n]=w[n]-w[n-1]+w[n-2]\}
$$

$$
w[n]=x[n]-x[n-1]
$$

Complete system


## Example 4: Deconvolution

Cascading of filters has an important practical application Undoing the effects of the first filter
Example : Communication channel
Undoing the effects of channel on signal is called equalization $Y(z)=H_{1}(z) H_{2}(z) X(z)$
if $Y(z)=X(z)$
$\Rightarrow H_{1}(z) H_{2}(z)=1$
Assume $H_{1}(z)=1-z^{-1}$
$H_{2}(z)=\frac{1}{1-z^{-1}}$

## Z-Transform \& Unit circle

The frequency or $\hat{\omega}$-domain is a subset of $z$-domain The general expression for $Z$ is,
$z=r e^{j \hat{\omega}}$,
where, ' $r$ ' is the radius of the circle
$z=e^{j \hat{\omega}}$, makes both domains equal
$H\left(e^{j \hat{\omega}}\right)=\left.H(z)\right|_{z=e^{j \hat{\omega}}}$
$\because|z|=\left|e^{j \hat{\omega}}\right|=1$, the unit circle has a unique significance
in the $z$-domain


Note that ' $\hat{\omega}$ ' is the discrete-time frequency discussed in previous lectures
$-\pi \leq \hat{\omega} \leq \pi \longleftrightarrow-1 \leq z \leq 1$
Periodicity in $\hat{\omega}$-domain $--2 \pi$ radians, one cycle in $z$-domain

## Zeros \& Poles

Consider the transfer function of an FIR filter
$H(z)=1-2 z^{-1}+2 z^{-2}-z^{-3}$
Convert the above function as a polynomial in ' $z$ '

$$
\begin{aligned}
H(z) & =\frac{\left(1-2 z^{-1}+2 z^{-2}-z^{-3}\right) z^{3}}{z^{3}} \\
& =\frac{z^{3}-2 z^{2}+2 z-1}{z^{3}}
\end{aligned}
$$

write the numerator in factored form,

$$
z^{3}-2 z^{2}+2 z-1=(z-1)\left(z-e^{j \pi / 3}\right)\left(z-e^{-j \pi / 3}\right)
$$

$H(z)=\frac{(z-1)\left(z-e^{j \pi / 3}\right)\left(z-e^{-j \pi / 3}\right)}{z^{3}}$
Zeros....The values of $z$ for which $H(z)=0$
In this example,
$H(z)=0$ for $z=\left\{1, e^{j \pi / 3}, e^{-j \pi / 3}\right\}$
Poles....The values of $z$ for which $H(z) \rightarrow \infty$
$H(z) \rightarrow \infty$ for $z=\{0,0,0\}$
note that $z^{3}=0$ result s in 3 roots
It is also known as a $3^{r d}$ order pole at $z=0$

Significance of zeros in an FIR system :
Except for a constant FIR system is completely characterized by the zeros The difference equation which desribes the relation between $x[n]$ and $y[n]$, can be found with the knowledge of zero locations


Fig 12.7

## Example 1

Find the poles and zeros for the transfer function?

$$
H(z)=1-3 z^{-1}+2 z^{-2}
$$

Converting into a polynomial in ' $z$ '
$H(z)=\frac{z^{2}-3 z+2}{z^{2}}$
write the numerator in factored form,
$z^{2}-3 z+2=(z-2)(z-1)$
zeros $=\left[z_{1}, z_{2}\right]=[2,1]$
poles $=\left[p_{1}, p_{2}\right]=[0,0]=2^{\text {nd }}$ order pole at $z=0$

Example 1 continued...


Notice that both the zeros are on real axis, also notice one pole is not included in the unit circle. There is a double pole at $\mathrm{z}=0$

## Example 2

Find the poles and zeros of an FIR system described by the difference equation,
$y[n]=x[n]-x[n-1]+x[n-2]$
Theimpulseresponsefunctionisgivenby
$h[n]=\delta[n]-\delta[n-1]+\delta[n-2]$
$\because \delta\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}}$
$H(z)=1-z^{-1}+z^{-2}$
Converting into a polynomial in ' $z$ '
$H(z)=\frac{z^{2}-z+1}{z^{2}}$
write the numerator in factored form,
$z^{2}-z+1=\left(z-e^{j \pi / 3}\right)\left(z-e^{-j \pi / 3}\right)$
zeros $=\left[e^{j \pi / 3}, e^{-j \pi / 3}\right]$, both on unit circle poles $=[0,0]=2^{\text {nd }}$ order pole at $z=0$


Fig 12.9

## Example 3

The zeros and poles of an FIR filter are given,
zeros $=\left[e^{j \pi / 4}, e^{-j \pi / 4}\right]$
poles $=[0,0]$
Find the difference equation of the filter
The numerator is obtained through multiplication of factors
$\left(z-e^{j \pi / 4}\right)\left(z-e^{-j \pi / 4}\right)=z^{2}-\sqrt{2} z+1$
denominator through poles, $z^{2}$
$H(z)=\frac{z^{2}-\sqrt{2} z+1}{z^{2}}$

$$
=1-\sqrt{2} z^{-1}+z^{-2}
$$

Apply inverse $Z$-transform,

$$
h[n]=\delta[n]-\sqrt{2} \delta[n-1]+\delta[n-2]
$$

The difference equation

$$
y[n]=x[n]-\sqrt{2} x[n-1]+x[n-2]
$$



Fig 12.10

## Example 4, Application: Nulling filters

The Graphical Design of a Comb filter

- In medical applications, the 60 Hz frequency of the power supply is often "picked up" by the test equipment (EKG recorder)
- Also harmonically related frequencies such as $\mathrm{f}_{2}=2 \times 60=120 \mathrm{~Hz}$, and $\mathrm{f}_{3}=3 \times 60=180 \mathrm{~Hz}$ are generated because of non-linear phenomena.
- The object of a digital filter design is to eliminate or suppress these unwanted frequencies which distort or mask up the signals of interest Thus the desired response of the filter would be, Assume a sampling frequency of 360 Hz


Thus we have :
$\theta_{1}=\omega_{1} \mathrm{~T}=2 \pi(60) / 360=\pi / 3$
$\theta_{2}=\omega_{2} \mathrm{~T}=2 \pi(120) / 360=2 \pi / 3$
$\theta_{3}=\omega_{3} \mathrm{~T}=2 \pi(180) / 360=\pi$

1) Complex zeros must occur in conjugate pairs
2) $\theta=0$ is added to eliminate any DC component in the signal


$$
\begin{aligned}
& H(z)=(z-1)\left(z-e^{j \frac{\pi}{3}}\right)\left(z-e^{j \frac{2 \pi}{3}}\right)\left(z-e^{j \pi}\right)\left(z-e^{j \frac{4 \pi}{3}}\right)\left(z-e^{j \frac{5 \pi}{3}}\right) \\
& H(z)=z^{6}-1
\end{aligned}
$$

Implies : $y[n]=x[n+6]-x[n]$
But the above obtained filter is non-causal !! To make it causal filter we place six poles at $\mathrm{z}=0$.

$$
H(z)=\frac{z^{6}-1}{z^{6}} \quad \therefore \Rightarrow H(z)=\left(1-z^{-6}\right)
$$

Thus the required causal FIR comb filter is:

$$
y[n]=x[n]-x[n-6]
$$

## Filter properties \& the location zeros

There is an extremely close relationship between the frequency response of the filter and the location of zeros on the unit circle

One can design a filter with required frequency by placing zeros in the appropriate place. The difference equation of the filter can be obtained by multiplying the factors associated with zeros

## Example: Running average filter

$$
y[n]=\sum_{k=0}^{L-1} x[n-k]
$$

The system function

$$
\begin{aligned}
H(z) & =\sum_{k=0}^{L-1} z^{-k}=\frac{1-z^{-L}}{1-z^{-1}} \\
& =\frac{z^{L}-1}{z^{L-1}(z-1)}
\end{aligned}
$$

Zeros..from numerator,
$z^{L}-1=0$
$z=e^{j 2 \pi k / L}, \quad k=0,1,2 \ldots L-1$

Zeros are equally spaced around the circle
Poles..from numerator,
$z^{L-1}(z-1)=0$
$z^{L-1}=0, L-1^{\text {th }}$ order pole at 0
And another pole at $z=1$
Note that this pole and zero at $z=1$ get cancelled
The primary reason for the filter to become a lowpass filter is this cancellation of the zero at $z=1$ due to the pole present in the same location

Example 1
$L=11$
Running average filter
Equi spaced zeros
More gap bewteen zeros close to $z=1$


Fig 12.13


## 3 dimensional view of the frequency response



Fig 12.15
If the zeros locations are known, the transfer function
of the filter can be obtained through, $H(z)=\prod_{k=1}^{L-1}\left(1-e^{j 2 \pi k / L} z^{-1}\right)$

Example 2
$L=10$
Running average filter
$9^{\text {th }}$ order pole at $z=0$
More gap bewteen zeros close to $z=1$


Fig 12.16


Example 3
$L=10$
Band pass filter
A simple trick: cancel the zero in a different location
Transfer function shifts;
$H(z)=\sum_{k=0}^{L-1} z^{-k} e^{j 2 \pi k_{0} k / L}$
$k_{0} \ldots$ determines the
shift
Since there is no conjugate
zero. this result s in a complex filter


Fig 12.18

## same example

due to conjugate symmetry this result s in a filter with real coefficients

$$
\begin{aligned}
H(z)= & \frac{1}{2} \sum_{k=0}^{L-1} z^{-k} e^{j 2 \pi k_{0} k / L}+ \\
& \frac{1}{2} \sum_{k=0}^{L-1} z^{-k} e^{-j 2 \pi k_{0} k / L} \\
H(z)= & H_{1}(z)+H_{2}(z)
\end{aligned}
$$



Fig 12.21

## FIR filter with two zeros

Notice changes in the impulse response h[n] and the frequency response as the complex zero pair is moved around the unit circle (changing the angle of the zeros)


Fig 12.22
$h[n]=\delta[n]-2 \cos (\hat{\omega}) \delta[n-1]+\delta[n-2]$

## FIR filter with three zeros; one is held fixed at $\mathrm{z}=-1$

Notice changes in the impulse response $\mathrm{h}[\mathrm{n}]$ and the frequency response as the
complex zero pair is moved around the unit circle (changing angle)


Fig 12.23

## FIR filter with ten zeros equally spaced around the unit circle

Notice changes in the impulse response $\mathrm{h}[\mathrm{n}$ ] and the frequency response as the zero at $\mathrm{z}=1$, is moved radially



Fig 12.24

## FIR filter with ten zeros equally spaced around the unit circle

Notice changes in the impulse response $\mathrm{h}[\mathrm{n}$ ] and the frequency response as the zero pair at 72 degrees is moved radially.


Fig 12.25

## Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, "7.5-7.8 --Signal Processing First", Prentice Hall, 2003

