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FIR filters-Review
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Filter Order = M: No. of memory blocks required in the filter 
implementation

Filter Length, L = M+1: Total No. of samples required in 
calculating the output, M from memory (past) and one present 
sample

Filter coefficients {bk}: Completely defines an FIR filter. All the 
properties of the filter can be understood through the coefficients
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        Calculating the output of a FIR filter using Z transforms-



Why to operate in transforms?
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Same output from all three domains
Computational complexity determines the domain
Some of the filter properties are better understood in 
frequency or Z-domains
Z and frequency transforms are related
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Calculating the transfer function of the FIR filter with
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Calculating the output of the FIR filter
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Example 4
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Find the impulse response of the FIR filter
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Example 5
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Cascading Systems
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Example 1
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Example 2
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Consider a system described by the difference equations
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Example 4: Deconvolution
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Z-Transform & Unit circle
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Zeros & Poles
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Example 1 continued…

Notice that both the zeros are on real axis, also notice one
pole is not included in the unit circle. There is a double 
pole at z=0

Fig 12.8
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Example 3
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Example 4, Application: Nulling filters
The Graphical Design of a Comb filter

• In medical applications, the 60Hz frequency 
of the power supply is often “picked up” by 
the test equipment (EKG recorder)

• Also harmonically related frequencies such 
as f2 = 2x60 = 120Hz, and f3 = 3x60 = 180 Hz 
are generated because of non-linear 
phenomena.



• The object of a digital filter design is to 
eliminate or suppress these unwanted frequencies 
which distort or mask up the signals of interest
Thus the desired response of the filter would be, 
Assume a sampling frequency of 360Hz

0             60             120           180                     f Hz

p/3           2p/3            p q rad

M

Fig 12.11



Thus we have :

q1 = w1T = 2p(60)/360 = p/3

q2 = w2T = 2p(120)/360 = 2p/3

q3 = w3T = 2p(180)/360 = p

1) Complex zeros must occur in conjugate pairs

2) q = 0 is added to eliminate any DC component in the signal

0                  60             120           180                     f Hz

p/3           2p/3            p q rad

Actual 
Response

Fig 12.12



But the above obtained filter is non-causal !! To 
make it causal filter we place six poles at z = 0. 

Thus the required causal FIR comb filter is:
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Filter properties & the location zeros
There is an extremely close relationship
between the frequency response of the filter
and the location of zeros on the unit circle

One can design a filter with required frequency
by placing zeros in the appropriate place. The 
difference equation of the filter can be obtained
by multiplying the factors associated with zeros 



Example: Running average filter
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3 dimensional view of the frequency response
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Notice changes in the
impulse response h[n] 
and the frequency 
response as the 
complex zero pair is 
moved around the 
unit circle (changing 
the angle of the zeros)

ˆ[ ] [ ] 2cos( ) [ 1] [ 2]h n n n nd w d d= - - + -

FIR filter with two zeros

Fig 12.22



FIR filter with three zeros; one is held fixed at z = -1

Notice changes in 
the impulse response
h[n] and the frequency 
response as the 
complex zero pair is
moved around the unit
circle (changing angle)

Fig 12.23



FIR filter with ten zeros equally spaced around the unit circle

Notice changes 
in the impulse
response h[n]
and the frequency
response as the 
zero at z = 1,
is moved radially

Fig 12.24



FIR filter with ten zeros equally spaced around the unit circle

Notice changes 
in the impulse 
response h[n] 
and the frequency
response as the 
zero pair at 72 
degrees is 
moved radially. 

Fig 12.25
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