Discrete - Time Signals and Systems

Continuous-Time signals \& systems Introduction

Yogananda Isukapalli

Mathematical Representation of Signals

Function of an independent variable, in
Mathematical Sense

- Independent variable can be
- 'Time', ex. Speech signal
- 'spatial co-ordinates', ex. Image
- 'time and space', ex. Video
- 'numerical index'
- Function can be,
- Of many Dimensions
- Continuous, Notation "()", as in $\mathbf{x}(\mathrm{t})$
- Discrete, Notation "[]", as in x[n]

Examples of common Continuous signals 」

Folded step u(1-t)

rect(t)

$\operatorname{rect}[(t-1) / 4]$

tri(t)

Continued.... Examples

Gaussian $\exp \left(-\mathrm{pi}^{*} \mathrm{t}^{*} \mathrm{t}\right)$

Continued.... Examples

A sinc and sinc-squared function

Classification of Continuous-Time Signals

A) Energy Signals

$$
E=\lim _{L \rightarrow \infty} \int_{-L}^{L}|x(t)|^{2} d t
$$

B) Average Power
D) Area

$$
P=\lim _{L \rightarrow \infty}\left[\frac{1}{2 L} \int_{-L}^{L}|x(t)|^{2} d t\right]
$$

$$
\mathrm{A}[|x(t)|]=\int_{-\infty}^{\infty}|x(t)| d t
$$

C) Periodic Signals; Average Power

$$
P=\frac{1}{T_{0}} \int_{0}^{T_{0}}|x(t)|^{2} d t
$$

Common Continuous-Time Signals.

Function	Notation	Duration	Symmetry	$A[[x(t) \mid]$	Energy/Power
Step	$u(t)$	Causal	None	∞	$P=\frac{1}{2}$
Signum	$\operatorname{sgn}(t)$	Twosided	Odd	∞	$P=1$
Ramp	$r(t)$	Causal	None	∞	Neither
Rect	rect (t)	Timelimited	Even	1	$E=1$
Tri	tri((t)	Timelimited	Even	1	$E=\frac{2}{3}$
Exponential	$\exp (-t) u(t)$	Causal	None	1	$E=\frac{1}{2}$
Laplace	$\frac{1}{2} \exp (-\|t\|)$	Twosided	Even	1	$E=\frac{1}{4}$

Common Continuous-Time Signals.

Laplace	$\frac{1}{2} \exp (-\|t\|)$	Twosided	Even	1	$E=\frac{1}{4}$
Damped \exp	$t \exp (-t) u(t)$	Causal	None	1	$E=\frac{1}{4}$
Cosine	$\cos \left(2 \pi f_{0} t\right)$	Periodic	Even	∞	$P=\frac{1}{2}$
Sine	$\sin \left(2 \pi f_{0} t\right)$	Periodic	Odd	∞	$P=\frac{1}{2}$
Sinc	$\sin (\pi t) / \pi t$	Twosided	Even	∞	$E=1$
Gaussian	$\exp \left(-\pi t^{2}\right)$	Twosided	Even	1	$E=1 / \sqrt{2}$
Lorentzian	$1 /\left[\pi\left(1+t^{2}\right)\right]$	Twosided	Even	1	$E=1 /(2 \pi)$
Impulse	$\delta(t)$	Zero	Even	1	Neither
Doublet	$\delta^{\prime}(t)$	Zero	Odd	∞	Neither

Infinite length signalls: Example 1

$$
\text { a) } x(t)=A \cos \left(\omega_{0} t+\phi\right) \quad-\infty<t<\infty
$$

$$
\text { with } \omega_{0}=3 \pi \mathrm{rad} / \mathrm{s}, A=10 \text { and } \phi=0
$$

$$
x(t)=10 \cos (3 \pi t)
$$

Examples 2\&3: Infinite length signals

b) Periodicsignals, $x(t)=x\left(t+T_{0}\right) \quad-\infty<t<\infty$ Square wave with fundamental frequency of 3 Hz

c) Two sided decaying exponential $x(t)=5 e^{-|t|} \quad-\infty<t<\infty$

Finite length signals

Fig 16.7
$p(t)=u(t-2)-u(t-4), u(t) \ldots$ unit step signal, next section
$x(t)=\sin (4 \pi t)[u(t)-u(t-3)]$

Unit Step Signal

Fig 16.8

$$
u(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Finite continuous pulse

One Sided Signals: Application of Unit step signal

Unit step signal operates on the ideal non-causal infinite length signal into a causal one

Rectangular Pulse

Fig 16.15

$$
\begin{aligned}
& x(t) \ldots \text { is derived from } 2 \text { unit step functions } \\
& x(t)=A[u(t+a)-u(t-a)]
\end{aligned}
$$

Unit Ramp Signal

Fig 16.16

$$
\begin{aligned}
& r(t)=\int_{-\infty}^{t} u(\tau) d \tau \\
& u(\tau) \ldots \text { unit step signal } \\
& \text { Also note that, } u(\tau)=\frac{d r(t)}{d t}=\frac{d t}{d t}=1
\end{aligned}
$$

Unit Impulse Signal

Unit-impulse signal is symbolized with an arrow

The area of the impulse is written in paranthesses next to the arrow head
a) $\delta(t)=0 t \neq 0$
b) $\int_{t_{1}}^{t_{2}} \delta(t) d t= \begin{cases}1 & t_{1}<0<t_{2} \\ 0 & \text { otherwise }\end{cases}$
c) $\delta(t)$ undefined at $t=0$
d) $\delta(t)=\delta(-t)$; even function

Unit Impulse \& Unit Step Signals

Fig 16.18
Δ is an infinitely small value
$u(t)=\lim _{\Delta \rightarrow 0} \hat{u}(t)$
Definition: $\quad \hat{\delta}(t)=\frac{d \hat{u}(t)}{d t}$

Unit Impulse \& Unit Step Signals, contd.

Thus unit - impulse can't be defined as a single point It is an approximation of narrow pulses whose area is '1' $\delta(t)=\frac{d u(t)}{d t} ; \quad u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$

Unit Impulse: Approximation with pulses

Fig 16.20
Notice that the area of any pulse is '1'
Impulse results at the derivative of any discontinuous point

Unit Impulse: Derivative at discontinuity

$$
\delta(t)=\frac{d u(t)}{d t}
$$

Notice the location and magnitude of impulse

Unit Impulse- Derivative of a discontinuous function

$$
\begin{aligned}
x(t) & =e^{-2(t-1)} u(t-1) \\
\frac{d x(t)}{d t} & =e^{-2(t-1)} \frac{d u(t-1)}{d t}+u(t-1) \frac{d e^{-2(t-1)}}{d t} \\
& =e^{-2(t-1)} \delta(t-1)-2 e^{-2(t-1)} u(t-1) \\
& =e^{0} \delta(t-1)-2 e^{-2(t-1)} u(t-1)
\end{aligned}
$$

Fig 16.22

Unit Impulse - Scaling property

$$
f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

$$
\int_{-\infty}^{\infty} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)
$$

The impulse is shown as pulse

Unit Impulse - Scaling property

signal $f(t)$ multiplied by two shifted unit impulses

$$
f(t)\left(\delta\left(t-t_{1}\right)+\delta\left(t-t_{2}\right)\right)=f\left(t_{1}\right) \delta\left(t-t_{1}\right)+f\left(t_{2}\right) \delta\left(t-t_{2}\right)
$$

$\delta(a t+b)=\frac{1}{|a|} \delta\left(t+\frac{b}{a}\right) ; \quad \delta(a(t-b))=\frac{1}{|a|} \delta(t-b)$

Unit Impulse - Example

Evaluate the expression, $x(t)=\sin (20 \pi t) \delta(t-1 / 80)$

$$
\begin{aligned}
x(t) & =\sin (20 \pi t) \delta(t-1 / 80) \\
& =\sin (20 \pi 1 / 80) \delta(t-1 / 80) \\
& =0.707 \delta(t-1 / 80)
\end{aligned}
$$

the continuous function multiplied by an impulse becomes an impulse with a size depending only on the value of continuous function evaluated at the time location of impulse

$$
\begin{aligned}
\int_{-\infty}^{\infty} x(t) d t & =\int_{-\infty}^{\infty} \sin (20 \pi t) \delta(t-1 / 80) d t=\int_{-\infty}^{\infty} 0.707 \delta(t-1 / 80) \\
& =0.707
\end{aligned}
$$

Unit Impulse - Examples

a) $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j \omega t} d t=e^{-j \omega t_{0}}$
b) $\int_{-\infty}^{\infty} t \delta(t-3) d t=\int_{-\infty}^{\infty} 3 \delta(t-3) d t$

$$
=3 \int_{-\infty}^{\infty} \delta(t-3) d t=3
$$

c) $\int_{-3}^{3}\left(t+t^{2}\right) \delta(t-2) d t=\int_{-3}^{3}\left(2+2^{2}\right) \delta(t-2) d t$

$$
=6 \int_{-3}^{3} \delta(t-2) d t=6
$$

Operations on continuous-time signals

Operation

Time shift

Time scale

Folding
Combinations or

Amplitude scale
Amplitude shift

Example
$x(t-2)$
$x(t+2)$
$x(2 t)$
$x\left(\frac{1}{2} t\right)$
$x(-t)$
$x\left(-\frac{1}{2} t+1\right)$
$x\left[-\frac{1}{2}(t-2)\right]$
$2 x(t)$
$x(t)+\frac{1}{2}$

Explanation
Shift $x(t)$ right by 2 (delay).
Shift $x(t)$ left by 2 (advance).
Compress $x(t)$ by factor of 2 (speed up).
Stretch $x(t)$ by factor of 2 (slow down). Fold $x(t)$ about origin.
Shift $x(t)$ left by 1 , fold and stretch by 2 .
Fold \& stretch $x(t)$ by 2 and shift right by 2.
Multiply ordinate by factor of 2. Add dc offset of $\frac{1}{2}$ to $x(t)$ everywhere.

Operations on continuous-time signals, contd...

Operations on continuous-time signals, contd...

Fig 16.28

Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, " 9.1, and 9.2 "Signal Processing First", Prentice Hall, 2003

