Discrete - Time Signals and Systems

Spectrum Representation

Yogananda Isukapalli

Spectrum

- A compact representation of the frequency content of a signal that is composed of sinusoids
- Any complicated signal can be constructed out of sums of sinusoidal signals of different amplitudes, phases, and frequencies. spectrum is simply the collection of these parameters

Two-sided spectrum

The most general method for producing new

 signals from sinusoids is the 'additive linear combination'Mathematically the signal can be represented as,
$x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(2 \pi f_{k} t+\phi_{k}\right)$,
Eq. 1
Where each amplitude, phase, and frequency may be choosen independently

From the properties of sinuosids, $s(t)=A \cos \left(2 \pi f_{0} t+\phi\right)=\mathfrak{R} e\left\{X e^{j 2 \pi f_{0} t}\right\}$ where, $X=A e^{j \phi}$
$\because X e^{j 2 \pi f_{0} t}=A e^{j \phi} e^{j 2 \pi f_{0} t}=A e^{j\left(2 \pi f_{0} t+\phi\right)}$
$\mathfrak{R} e\left\{X e^{j 2 \pi f_{0} t}\right\}=\mathfrak{R} e\left\{A\left[\cos \left(2 \pi f_{0} t+\phi\right)+j \sin \left(2 \pi f_{0} t+\phi\right)\right]\right\}$

$$
=A \cos \left(2 \pi f_{0} t+\phi\right)=s(t)
$$

eq.1, $x(t)$, can now be written as,
$x(t)=X_{0}+\sum_{k=1}^{N} \mathfrak{R e}\left\{X_{k} e^{j 2 \pi f_{k} t}\right\}$
where, $X_{0}=A_{0}$, and $X_{k}=A_{k} e^{j \phi_{k}}$

Continue Two-sided spectrum,......

Using inverse Euler formula,

$$
\mathfrak{R} e\left\{X_{k} e^{j 2 \pi f_{k} t}\right\}=\frac{X_{k}}{2} e^{j 2 \pi f_{k} t}+\frac{X_{k}^{*}}{2} e^{-j 2 \pi f_{k} t}
$$

$x(t)$ can now be written as,

$$
x(t)=X_{0}+\sum_{k=1}^{N}\left\{\frac{X_{k}}{2} e^{j 2 \pi f_{k} t}+\frac{X_{k}^{*}}{2} e^{-j 2 \pi f_{k} t}\right\}
$$

The above equation shows that each sinusoid in the sum, decomposes into two rotating phasors, one with positive frequency ' f_{k} ' and ' $-f_{k}$ '

Two-sided spectrum: Definition

The signal $x(t)$ as defined in eq. 1 , is composed of $2 N+1$ frequencies with $2 N+1$ complex amplitudes, this kind of representation is known as two-sided spectrum of a signal
The mathematical notation for two-sided spectrum is,

$$
\left\{\begin{aligned}
\left(0, X_{0}\right),\left(f_{1}, \frac{1}{2} X_{1}\right), & \left(-f_{1}, \frac{1}{2} X_{1}^{*}\right), \ldots \ldots \ldots \\
& \left(f_{k}, \frac{1}{2} X_{k}\right),\left(-f_{k}, \frac{1}{2} X_{k}^{*}\right), \ldots \ldots \ldots . .
\end{aligned}\right\}
$$

Continue Two-sided spectrum: Definition,......

Each pair $\left(f_{k}, \frac{1}{2} X_{k}\right)$, indicates the size and relative phase of the sinusoidal component contributing at frequency f_{k}

The above representation is also known as frequency-domain representation of the signal, the original signal $x(t)$ is known as time-domain representation

Example1: Two-sided spectrum

$$
x(t)=4 \cos (2 \pi(5) t)
$$

Using Euler's Identity,

$$
\cos (\omega t)=\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)
$$

$$
4 \cos (2 \pi(5) t)=\frac{4}{2} e^{j 2 \pi(5) t}+\frac{4}{2} e^{-j 2 \pi(5) t}
$$

There is no constant or DC term in the above equation, The two-sided spectrum of the signal is the sum of two rotating phasors represented by

$$
\{(0,0),(5,2),(-5,2)\}
$$

Comments \& Graphical plot of the spectrum

$$
\{(0,0),(5,2),(-5,2)\}
$$

The DC term, with frequency ' 0 ', has no contribution in the signal

Negative frequency ' 5 ' with amplitude ' 2 '
Positive frequency ' 5 ' with amplitude ' 2 '
Note that the amplitude is areal number as there is no phase term in sinusoidal signal

What is negative frequency?

-By definition, frequency (number of repetitions per second) is a positive quantity

- Mathematically, frequency is an absolute quantity

$$
\begin{aligned}
& \cos \left(\omega_{0} t\right)=\cos \left(-\omega_{0} t\right), \quad \text { als } o \\
& e^{ \pm j \omega_{0} t}=\cos \left(\omega_{0} t\right) \pm j \sin \left(\omega_{0} t\right)
\end{aligned}
$$

which suggests that frequency of the sinusoid is an absolute quantity $\left|\omega_{0}\right|$

In conclusion, the presence of a spectral component at $-\omega_{0}$, has only mathematical significance, suggesting the presence of $e^{-j \omega_{0} t}$, in the series, which is required to express a sinusoid in exponential form

In a practical sense the negative frequency can symbolize the motion. Towards you (positive), away from you (negative)

Example 2: With phase term

$x(t)=4 \sin (2 \pi(5) t)$, This can be written as

$$
x(t)=4 \cos (2 \pi(5) t+\pi / 2), \text { Euler identity },
$$

$$
x(t)=\frac{4}{2}\left\{e^{j 2 \pi(5) t} e^{j \pi / 2}+e^{-j 2 \pi(5) t} e^{-j \pi / 2}\right\}, \text { the spectrum is }
$$

$$
\left\{\left(5,2 e^{j \pi / 2}\right),\left(-5,2 e^{-j \pi / 2}\right)\right\}
$$

The only differnce is the phase, associated with amplitude

Example 3: Sum of a constant and 2 sinusoids

$x(t)=10+14 \cos (2 \pi(100) t-\pi / 3)+8 \cos (2 \pi(250) t+\pi / 2)$
Applying Euler identity,

$$
\begin{aligned}
x(t)=10 & +7 e^{-j \pi / 3} e^{j 2 \pi(100) t}+7 e^{j \pi / 3} e^{-j 2 \pi(100) t} \\
& +4 e^{j \pi / 2} e^{j 2 \pi(250) t}+4 e^{-j \pi / 2} e^{-j 2 \pi(250) t}
\end{aligned}
$$

The DC component value corresponds to a frequency of ' 0 ' Mathematically the spectrum,
$\left\{(0,10),\left(100,7 e^{-j \pi / 3}\right)\left(-100,7 e^{j \pi / 3}\right),\left(250,4 e^{j \pi / 2}\right),\left(-250,4 e^{-j \pi / 2}\right)\right\}$

Graphical plot of the spectrum

'DC' term

Amplitude along with phase

Fig. 3.3
Negative frequencies

Notice that the phase for the | same positive and negative
Ifrequency

A Change in Notation

The spectrum involves the multiplication of every $\boldsymbol{X}_{\boldsymbol{k}}$ with $1 / 2$, except for X_{0}, this multiplication factor can be eliminated for mathematical simplicity, by introducing a new notation,

$$
a_{k}= \begin{cases}A_{0} & \text { for } k=0 \\ \frac{1}{2} A_{k} e^{j \phi_{k}} & \text { for } k \neq 0\end{cases}
$$

The spectrum set will now denoted as a set of $\left(f_{k}, a_{k}\right)$, subsequently The Fourier series follows the same notation,

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi f_{0} k t}
$$

Multiplication of Sinusoids

When two sinusoids are multiplied, the resulting signal should also be represented as an additive linear combination of complex exponential signals.

When two sinusoids with different frequencies are multiplied, an interesting audio effect called 'beat note' is observed

A sinusoid of 660 Hz sounds like, 6

Graphical illustration of a sinusoid of 660 Hz

Fig. 3.4

The effect of multiplying the above sinusoid by another one with a frequency of 12 Hz 倬

Spectrum of Product

Consider the signal obtained by the product of two sinusoids At 5 Hz and $1 / 2 \mathrm{~Hz}$
$x(t)=\cos (2 \pi(1 / 2) t) \cos (2 \pi(5) t)$
$\cos (2 \pi(1 / 2) t)=\left(\frac{e^{j \pi t}+e^{-j \pi t}}{2}\right)$
$\cos (2 \pi(5) t)=\left(\frac{e^{j \pi 10 t}+e^{-j \pi 10 t}}{2}\right)$
$x(t)=\left(\frac{e^{j \pi t}+e^{-j \pi t}}{2}\right)\left(\frac{e^{j \pi 10 t}+e^{-j \pi 10 t}}{2}\right)$
$x(t)=\left(\frac{e^{j \pi t}+e^{-j \pi t}}{2}\right)\left(\frac{e^{j \pi 10 t}+e^{-j \pi 10 t}}{2}\right)$

Addition of Sinusoids

Beat notes can also be produced by adding two sinusoids whose frequencies are closely spaced, the central idea is that multiplying sinusoids is equivalent to addition, as shown in the phasors.
Let the frequencies of sinusoids be f_{1} and f_{2},
$x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)$

As demonstrated earlier, each sinusoid has two components, one at Positive and another at negative frequency, totaling 4 components

Using the complex exponential representation, $x(t)$ can be written as a product of two cosines
$x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)$
Let the center frequency be, $f_{c}=\frac{\left(f_{1}+f_{2}\right)}{2}$
and deviation frequency be, $f_{\Delta}=\frac{\left(f_{2}-f_{1}\right)}{2}, f_{2} \geq f_{1}$
$\therefore f_{1}=f_{c}-f_{\Delta}$ and $f_{2}=f_{c}+f_{\Delta}$
$x(t)=\mathfrak{R} e\left\{e^{j 2 \pi f_{1} t}\right\}+\mathfrak{R} e\left\{e^{j 2 \pi f_{2} t}\right\}$
$=\mathfrak{R e}\left\{e^{j 2 \pi\left(f_{c}-f_{\Delta}\right) t}+e^{j 2 \pi\left(f_{c}+f_{\Delta}\right) t}\right\}$

$$
\begin{aligned}
= & \mathfrak{R} e\left\{e^{j 2 \pi \pi_{c} t}\left(e^{-j 2 \pi f_{\Delta} t}+e^{j 2 \pi f_{\Delta} t}\right)\right\} \\
& =\mathfrak{R} e\left\{e^{j 2 \pi \pi_{c} t}\left(2 \cos \left(2 \pi f_{\Delta} t\right)\right)\right\} \\
& =2 \cos \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{\Delta} t\right)
\end{aligned}
$$

Thus, the equivalence of product and sum is proved
To obtain beats with multiplication, the frequency difference between the sinusoids should be high

As seen from the above equation the frequencies in the sum should be closely spaced, so that the difference between the terms, f_{c} and f_{Δ} is high

$$
\begin{aligned}
& f_{c}=200 \mathrm{~Hz} \quad f_{\Delta}=20 \mathrm{~Hz} \\
& \text { The time interval betweẹn nulls is } \frac{1}{2}\left(1 / f_{\Delta}\right)=25 \mathrm{~m} \mathrm{sec}
\end{aligned}
$$

The variation of f_{Δ} causes the resulting Signal to fade in and out, this effect is called 'beating', in other words the envelope is formed By the f_{Δ} :omponent

Notice the effect of changing the deviation frequency f_{Δ}, the envelope changes more slowly, an increase in time difference between the nulls is also seen

(b) Waveform of a Beat N ote

Amplitude Modulation

Multiplying sinusoids results in a useful modulation scheme called 'amplitude modulation', this technique is used to broadcast AM radio

The AM signal is a product of the form,

$$
x(t)=v(t) \cos \left(2 \pi f_{c} t\right)
$$

f_{c}, is called the carrier frequency, it is much higher than the signal frequency

Spectrum helps in understanding how modulation works

Example: Amplitude Modulation

Let, $v(t)=5+4 \cos (40 \pi t)$ and,
carrier frequency $f_{c}=200 \mathrm{~Hz}$

$$
\begin{aligned}
x(t) & =[5+4 \cos (40 \pi t)] \cos (400 \pi t) \\
& =5 \cos (400 \pi t)+4 \cos (40 \pi t) \cos (400 \pi t)
\end{aligned}
$$

converting the above equation into exponentials,

$$
\begin{gathered}
x(t)=\frac{5}{2} e^{j 400 \pi t}+e^{j 440 \pi t}+e^{j 360 \pi t}+\frac{5}{2} e^{-j 400 \pi t} \\
+e^{-j 440 \pi t}+e^{-j 360 \pi t}
\end{gathered}
$$

Except for a ' DC ' component the AM signal is nothing but a beat waveform

Time domain

Notice that the only difference compared to beats is, there are no Nulls.

The formation of Envelope is important For the detection Process, this is the Reason for choosing A higher carrier frequency

(b) Amplitude Modulated Waveform

Frequency domain (spectrum)

The carrier frequency is 700 Hz , and the signal frequency is maintained at 20 Hz , the formation of envelope can be clearly seen, the receiver's job will be easy, which basically tracks the envelope

Fig. 3.12
The spectrum contains two identical subsets centered around f_{c} and - f_{c}

Periodic waveforms

The condition $x\left(t+T_{0}\right)=x(t)$ is satisfied by periodic signals
The time interval T_{0} is called period of $x(t)$
If T_{0} is the smallest such interval it is called the fundamental period
$\cos (2 \pi t)$ is periodic for $T=1,2,3 \ldots . n \sec$, where ' n ' is an integer,
The fundamental period, $T_{0}=1 \mathrm{sec}$

Periodic waveforms continued....

Periodic signals can be synthesized by adding the harmonically related sinusoids

$x(t)=A_{0}+\sum_{k=1}^{N} A_{k} \cos \left(2 \pi k f_{0} t+\phi_{k}\right)$
The frequency of $k^{\text {th }}$ cosine component, $f_{k}=k f_{0}$
f_{k} is known as $k^{\text {th }}$ harmonic of fundamental frequency f_{0}
Sum of two periodic signals $z(t)=a x(t)+b y(t)$

$$
\begin{aligned}
& x(t) \text { period }=T_{1} \\
& y(t) \text { period }=T_{2}
\end{aligned}
$$

$z(t)$ will be periodic with a period of T_{0}, $T_{0}=k T_{1}=l T_{2}$, or
$\frac{T_{1}}{T_{2}}=\frac{l}{k}, l^{\prime} l^{\prime}$ and ' k ' are integers
= a rational number
Mathematically the procedure is called 'gcd', gcd (greatest common devisor)
Example: $x(t)=2 \sin (2 / 3 t)+3 \cos (1 / 2 t)$
$T_{1}=3 \pi, T_{2}=4 \pi$
$T_{0}=4(3 \pi)=3(4 \pi)=12 \pi$

Signal	Period	Signal	Period
$\cos (t)$	2π	$\sin (2 \pi t)$	2
$\sin (t)$	2π	$\cos (n t)$	$2 \pi / n$
$\cos (2 t)$	π	$\sin (n t)$	$2 \pi / n$
$\sin (2 t)$	π	$\cos (2 \pi t / k)$	k
$\cos (\pi t)$	2	$\sin (2 \pi t / k)$	k
$\sin (\pi t)$	π	$\cos (2 \pi n t / k)$	k / n
$\cos (2 \pi t)$	2	$\sin (2 \pi n t / k)$	k / n

Example: Synthesizing of a periodic signal

- The signal approximating the waveform produced by a man speaking the vowel sound " $A h$ ", is synthesized
- The fundamental frequency is 100 Hz
- The signal is obtained by summing 5 harmonics, with different amplitudes and phases
- The period of the waveform obtained at each stage depends on the 'ged' of the harmonics added

Complex amplitudes and harmonic frequencies for the periodic signal approximating the vowel "ah", note that the fundamental frequency is 100 Hz , the coefficient values for the negative frequencies will be complex conjugates

k	$f_{k}(\mathrm{~Hz})$	a_{k}	Mag	Phase
1	100	0	0	0
2	200	$386+j 6101$	6113	1.508
3	300	0	0	0
4	400	$-4433+j 14024$	14708	1.877
5	500	$24000-j 4498$	24418	-0.185
6	600	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots
15	1500	0	0	0
16	1600	$828-j 6760$	6811	-1.449
17	1700	$2362+j 0$	2362	0

Spectrum of the signal synthesized, for clarity phase and magnitude are plotted separately

Fig. 3.14

Periodic waveforms can only be synthesized by summing the harmonically related sinusoids

waveform

Fig. 3.16
Spectrum of the signal, it can be seen that all the frequencies are multiples of 10

Synthesized
Waveform,
'non periodic'

Fig. 3.18

Spectrum of the signal, it can be seen that the frequencies do not have a common multiple, so they can not produce a periodic waveform

Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, "Signal Processing First", Prentice Hall, 2003

