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Sampling at diffe-
-rent rates
From these figures,
it can be concluded
that it is very 
important to 
sample the signal
adequately to avoid
problems in 
reconstruction, 
which leads us to
Shannon’s sampling
theorem

Fig:7.1



Claude Shannon: The man who started the digital 
revolution

1916-2001 

Shannon arrived at the revolutionary
idea of digital representation by 
sampling the information source at 
an appropriate rate, and converting 
the samples to a bit stream 

Before Shannon, it was commonly 
believed that the only way of achieving
arbitrarily small probability of error
in a communication channel was to 
reduce the transmission rate to zero.

All this changed in 1948 with the publication of “A Mathematical 
Theory of Communication”—Shannon’s landmark work



Shannon’s Sampling theorem
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This simple theorem is one of the theoretical 
Pillars of digital communications, control and 
signal processing 



Shannon’s Sampling theorem,
• States that reconstruction from the samples 
is possible, but it doesn’t specify any 
algorithm for reconstruction
• It gives a minimum sampling rate that is 
dependent only on the frequency content of
the continuous signal x(t)
• The minimum sampling rate of 2fmax is called

the “Nyquist rate”



Example1: Sampling theorem-Nyquist rate
( ) 2cos(20 ),        ?x t t find the Nyquist frequencyp=

max
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( ) 2cos(2 (10) )       
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The only frequency in the continuous time
signal is Hz
f Hz

Nyquist sampling rate Sampling rate
f f Hz

p=
-

\ =

= =



Continuous-time sinusoid of frequency 10Hz 

Sampled at Nyquist rate, so, the theorem states 
that 2 samples are enough per period. Intuitively
it doesn’t seem to be enough, there must be a 
sophisticated algorithm for reconstruction

Fig:7.2
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Example2: Nyquist rate

Fig:7.3



Example3: Nyquist rate
The positive side of the spectrum is shown below,
find the ‘Nyquist rate’ of sampling for this signal?

0 21 48  f Hz

The range of the spectrum is from 21 to 48
fmax=48Hz
Nyquist sampling rate, fs=2 fmax=96Hz 

Fig:7.4



Frequency mapping
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Thus there is a corresponding continuous-time
frequency for every discrete-time frequency

However, the converse is not true, due to aliasing
and folding. Principal aliases are the generally
accepted basis for obtaining a continuous-time
frequency from a discrete-time one

Frequency mapping contd….



With the “Nyquist sampling rate”:
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correspondingly for negative frequencies

Thus the discrete - time frequencies are guaranteed
to be in the range  - <
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The above result is the combined effect of Applying
‘Nyquist rate’ to the principal alias domain
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Spectrum view of frequency mapping
Consider a continuous-time sinusoid x(t) with
frequency f0

0 0( ) cos( ) cos(2 )x t A t A f tw f p f= + = +

1
2

jAe f

Fig. 7.5
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Notice that the spectrum is plotted against w
0
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[ ] ( ) cos(( ) )
This discrete-time spectrum has, 
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The continuous-time signal sampled at a rate fs

Fig. 7.6
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fundamental domain obtained with Nyquist rate

Principal aliases

Frequencies
associated with
principal +ve 
frequency, 0 sfw

Frequencies
associated with
principal –ve 
frequency,
notice conjugate
for magnitude.
folded aliases are
also associated 
with –ve 
frequencies

0 sfw-



Example1: Over Sampling
• In most applications sampling rate is chosen to 
be higher than Nyquist rate to avoid problems in 
reconstruction

• The sampling rate in CD’s is 44.1kHz. The 
highest frequency we can hear is 20kHz, so 
sampling rate is slightly higher than 40kHz

• Consider sampling a 100Hz sinusoid at 500samples/sec



Fig:7.7

Fig:7.8



2 100ˆ 0.4
500

 2(100) 200 ,   500
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Notice that both principal aliases are well with in the 
limit of                   . In the reconstruction only frequencies 
in this range are used to get continuous frequencies 

ˆ- <p w p£

Fig:7.9



Example2: Under Sampling, aliasing

 2(100) 200 ,   125
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f Nyquist rate
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The effect of 
under sampling 
can be seen in 
the time-domain 
plot itself Fig:7.10

Fig:7.11
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Notice that prinipal aliases are beyond the range
And their aliases are in the primary range
Mapping results an analog frequency of Hz
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Example3: Sampling at the rate of signal frequency

Analog spectrum,
notice that the 
signal and the 
sampling 
frequencies are 
same, 100Hz  2(100) 200 ,   100
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sampling at the 
signal frequency 
means picking 
up the same 
value from each 
cycle

Fig:7.13
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Notice that prinipal aliases are at and
And is their common alias, which is in the range

p p
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The result is obvious as we have the same value 
for each sample

Fig:7.15



This movie illustrates the phenomenon of 
aliasing. A 600 Hz sinusoid is sampled at 
500 samples per second. 

This movie illustrates the phenomenon of 
folding. A 600 Hz sinusoid is sampled at 
750 samples per second. 

A 600 Hz sinusoid is sampled at 2000 
samples per second. Since the samples are 
taken at more than two times the frequency 
of the cosine wave, there is no aliasing. 



Apparent frequency
If the Nyquist rate is not followed, the apparent
frequency will not be the actual frequency
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If the sampling rate is 
not enough, the chirp
signal could sound like
this      , remember how
an actual chirp is 
supposed to sound 

Fig:7.16



A Mechanical viewpoint of sampling
In this movie the video camera is sampling at a 
fixed rate of 30 frames/second. Observe how the 
rotating phasor aliases to different speeds as it 
spins faster. 

In this movie the video camera is sampling at a
fixed rate of 30 frames/second. Observe how the 
rotating phasors alias to a different speed as the 
disk spins faster. The fact that the four phasors 
are identical further contributes to the aliasing 
effect. 



A/D
Converter

C/D
Converter

A/D
Converter

D/C
Converter

Signal 
Sensors

Processing Actuators

Fig:7.17, General System

Samples of continuous time signal are processed as 
required in this stage, output is also discrete samples

Fig:7.18

Reconstruction



Ideal Reconstruction

Ideal C-D converter was defined as:
( ) [ ] [ ]s sx t x nT x n f= =

Ideal D-C converter is governed by an inverse relation 
to that of C-D converter
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Ideal Reconstruction contd….

The simple substitution of ‘n=fst’, is only valid 
if the signal consists of one or more sinusoids or 
if the signal can be expressed as a mathematical
formula

0

0

[ ] cos(2 )
( ) cos(2 )

sy A f
y A
n n
t tf

Tp f
p f

= +
= +

Most of the real world signals can’t be reduced
into a simple mathematical equation from the 
discrete samples 



•D-C conversion involves filling in the signal 
values between sampling instances tn=nTs

•“Interpolation” can be used to approximate the 
behavior of ideal D-C converter

( ) [ ] ( )s
n

y t y n p t nT
¥

=-¥

= -å

The above equation describes a broad class of 
D-C converters. Where p(t) is the characteristic
Pulse shape of the converter 



Mathematical proof of the sampling theorem gives 
the ideal pulse shape, which is a sinc function

Fig:7.20
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Square Pulse
The simplest of all is the ‘square pulse’ defined as,

1 11          
( ) 2 2

0                    

s sT t T
p t

otherwise

ì - < £ï= í
ïî

Each term                    will create flat region of 
Amplitude y[n]  centered at  

[ ] ( )sy n p t nT-
st nT=

Since the effect of the flat pulse is to hold or 
replicate each sample for      seconds, it is also
known as ‘zero-order hold reconstruction’ 

sT



Movie Illustrates a similar process

In all the examples sampling rate is greater than 
Nyquist rate

Fig:7.21



Obviously the more no. of samples we have the better
we should be able to reconstruct the signal 

Notice that the 
sampling is much 
higher than 
previous case

Movie Illustrates a similar process

Fig:7.22



Triangular Pulse

1           
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It is a pulse of 1st order polynomial, defined as,

In this case the output y(t) of the D-C converter
at any time ‘t’ is the sum of the scaled pulses
that overlap at that time instant. The performance
is better than a square pulse



Movie Movie

More than Nyquist 4 times Nyquist

Fig:7.23 Fig:7.24



Cubic spline interpolation: A third order polynomial
with exactly a similar process as a triangular pulse
More than Nyquist 4 times Nyquist

Movie Movie
The results with this pulse are extremely close to original !!

Fig:7.25 Fig:7.26
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