Discrete - Time Signals and Systems

FIR Filters-I

Yogananda Isukapalli

Discrete-Time System

Something that can transform an input sequence into an output sequence of numbers

$x[n]$	Discrete-Time System	$\underset{\longrightarrow}{y[n]}=\mathcal{T}\{x[n]\}$
INPUT	$\mathcal{T}\{\cdot\}$	OUTPUT

Fig.8. 1
Since a discrete-time signal is a sequence of numbers, the operator τ can be described by a mathematical formula. It is just a computational process

An Evolution of computing machines

> For the price of a small house, you could have one of these

Fig.8.4
TMS32010, 1983: First PC plug-in board from Atlanta Signal Proc

Digital Cell Phone (ca. 2000)

Example1: A Simple Discrete System

$$
\xrightarrow{x[n]} \tau\{\mathrm{x}[\mathrm{n}]\} \xrightarrow{y[n]=x[n]}
$$

Output is the absolute value of input

Fig. 8. 7

Example2: 3-point averaging method

Consider an input sequence $\mathbf{x}[\mathrm{n}]$

Take the average of any three points in a sequence

$$
\begin{array}{ll}
\frac{\{2+4+6\}}{3}=4, & \frac{\{4+6+4\}}{3}=14 / 3 \\
\frac{\{6+4+2\}}{3}=4, & \frac{\{4+2+0\}}{3}=2
\end{array}
$$

Notation for the output is arbitrary, following the notation shown below leads to the output;

$$
y[0]=\frac{\{x[0]+x[1]+x[2]\}}{3} \quad y[1]=\frac{\{x[1]+x[2]+x[3]\}}{3}
$$

n	$n<-2$	-2	-1	0	1	2	3	4	5	$n>5$
$x[n]$	0	0	0	2	4	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{2}$	0	0
$y[n]$	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	$\mathbf{4}$	2	$\frac{2}{3}$	0	0

Fig.8. 9

$$
\begin{array}{|l|l}
\hline \boldsymbol{n}=\mathbf{0} & y[0]=\frac{1}{3}(x[0]+x[1]+x[2]) \\
& \boldsymbol{n}=\mathbf{1}
\end{array}{ }^{y[1]}=\frac{1}{3}(x[1]+x[2]+x[3])
$$

Output

Fig.8. 10

The above process (3-point average) generalizes to an important input-output equation known as difference equation

$$
y[n]=\frac{1}{3}(x[n]+x[n+1]+x[n+2])
$$

The above equation describes a very important class of discrete-time systems called 'FIR filters'

However, the equation $y[n]=\frac{1}{3}(x[n]+x[n+1]+x[n+2])$ doesn't seem practical as we need two future samples to calculate present output

$$
y[n]=\frac{1}{3}(x[n]+x[n-1]+x[n-2])
$$

Depends only on past values, a causal system

Difference equations

$y[n]=\sum_{l=1}^{N} a_{l} y[n-l]+\sum_{k=0}^{M} b_{k} x[n-k]$,
Represents a class of filters known as IIRfilters

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k] \text {, Non-Recursive part }
$$

FIR filters

First order discrete - time system $y[n]=a_{1} y[n-1]+b_{0} x[n]$ a Recursive equation

Solution:

$$
\begin{array}{rlrl}
n=1 & & y[1] & =a_{1} y[0]+b_{0} x[1] \\
n=2 & y[2] & =a_{1} y[1]+b_{0} x[2] \\
& =a_{1}\left(a_{1} y[0]+b_{0} x[1]\right)+b_{0} x[2] \\
& =a_{1}^{2} y[0]+a_{1} b_{0} x[1]+b_{0} x[2] \\
n=3 & & y[3] & =a_{1} y[2]+b_{0} x[3]
\end{array}
$$

$$
=a_{1}\left(a_{1}^{2} y[0]+a_{1} b_{0} x[1]+b_{0} x[2]\right)+b_{0} x[3]
$$

$y[3]=a_{1}^{3} y[0]+a_{1}^{2} b_{0} x[1]+a_{1} b_{0} x[2]+b_{0} x[3]$
Generalizing the $1^{\text {st }}$ order discrete - time system, $y[r]=a_{1}^{r} y[0]+b_{0}\left[a_{1}^{r-1} x[1]+a_{1}^{r-2} x[2]+\ldots \ldots .+a_{1}^{0} x[r]\right]$ $y[r]=a_{1}^{r} y[0]+b_{0} \sum_{m=1}^{r} a_{1}^{(r-m)} x[m]$
For a causal system, $y[0]=a_{1} y[-1]+b_{0} x[0]=b_{0} x[0]$
$\therefore y_{c}[r]=a_{1}^{r} b_{0} x[0]+b_{0} \sum_{m=1}^{r} a_{1}^{(r-m)} x[m]$

$$
y_{c}[r]=b_{0} \sum_{m=0}^{r} a_{1}^{(r-m)} x[m]
$$

Example

Let $x[n]=1 \quad$ for all $n, \quad n \geq 0$

$$
\begin{aligned}
y[r] & =a_{1}^{r} y[0]+b_{0}\left[a_{1}^{r-1} x[1]+a_{1}^{r-2} x[2]+\ldots \ldots . .+a_{1}^{0} x[r]\right] \\
& =a_{1}^{r} y[0]+b_{0}\left[a_{1}^{r-1}+a_{1}^{r-2}+\ldots \ldots+1\right] \\
y[r] & =a_{1}^{r} y[0]+b_{0} \frac{a_{1}^{r}-1}{a_{1}-1} \quad a_{1} \neq 1
\end{aligned}
$$

$y[r]=y[0]+b_{0} r \quad a_{1}=1$
$\because \lim _{a_{1} \rightarrow 1} \frac{a_{1}^{r}-1}{a_{1}-1}=\lim _{a_{1} \rightarrow 1} \frac{\frac{d}{d a_{1}}\left(a_{1}^{r}-1\right)}{\frac{d}{d a_{1}}\left(a_{1}-1\right)}$

$$
=\lim _{a_{1} \rightarrow 1} \frac{r a_{1}^{r-1}}{1}=r 1^{r-1}=r
$$

Let $a_{1}=1 / 2, \quad b_{0}=2, \quad y[0]=3$

$$
\begin{aligned}
y[n] & =(1 / 2)^{n} 3+2 \frac{(1 / 2)^{n}-1}{(1 / 2)-1} \\
& =(1 / 2)^{n} 3-4\left[(1 / 2)^{n}-1\right]=4-(1 / 2)^{n} \quad n \geq 0
\end{aligned}
$$

The General FIR Filter

Non-Recursive part of difference equation represents a general FIR filter
$y[n]=\sum_{k=0}^{M} b_{k} x[n-k]$,
The above equation doesn't involve any past samples, so the system is a causal one. The moving average problem discussed earlier is an FIR filter

Filter Order = M: No. of memory blocks required in the filter implementation

Filter Length, $\mathrm{L}=\mathrm{M}+1$: Total No. of samples required in calculating the output, M from memory (past) and one present sample

Filter coefficients $\left\{b_{k}\right\}$: Completely define an FIR filter. All the properties of the filter can be understood through the coefficients

Graphical view of a general FIR filter

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Block Diagrams: An Implementation view of FIR filters

 Building blocks required$$
\begin{aligned}
& \text { (a) } \\
& x_{2}[n] \\
& y[\eta]=x_{1}[\eta]+x_{2}[n] \\
& y[n]=\beta x[n] \\
& \text { (b) } \\
& \text { (c) Fig.8.14 } \\
& y[n]=x[n-1]
\end{aligned}
$$

direct form of block diagram

Difference equation

$$
y[n]=\left(\left(\left(b_{0} x[n]+b_{1} x[n-1]\right)+b_{2} x[n-2]\right)+b_{3} x[n-3]\right)
$$

Example: FIR filter application

Averaging of a sequence with different filter lengths

Fig.8.17

$$
y_{3}[n]=\sum_{k=0}^{2}\left(\frac{1}{3}\right) x[n-k]
$$

$1^{\text {st }} 2$ samples
Output goes till $\mathrm{n}=42$

Fig.8.18
Notice that the output is smoother or its noise level is low than input

$$
y_{7}[n]=\sum_{k=0}^{6}\left(\frac{1}{7}\right) x[n-k] \quad \text { Output goes till } \mathbf{n}=46
$$

Fig.8.19
Notice that the output is much smoother than 3 -point averaging method, noise level is low

Example: DJIA signal

similar approach, averaging

$$
y[n]=\left(\frac{1}{51}\right) \sum_{k=0}^{50} x[n-k]
$$

Filtered by Causal 51-Point Running Averager

Compensating for delay,

Centralized Averager Fig. 8.21

Filtered by Noncausal 51-Point Running Averager

In these two examples, FIR filters are shown to remove rapid fluctuations

Discrete-Time Unit Impulse Sequence

Unit Impulse is the simplest sequence with only one nonzero value at $\mathbf{n}=\mathbf{0}$

$\delta[n]$ Is known as Kronecker delta function

Tabular form and a shifted version of unit impulse

n	\ldots	-2	-1	0	1	2	3	4	5	6	\ldots
$\delta[n]$	0	0	0	1	0	0	0	0	0	0	0
$\delta[n-3]$	0	0	0	0	0	0	1	0	0	0	0

Shifted impulse sequence, $\delta[n-3]$.
Fig.8.24

Unit Impulse Response Sequence

The response of an FIR filter to a unit impulse sequence is called as unit impulse response or simply 'impulse response'

General FIR equation

$$
y[n]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Impulse Response

$x[n]=\delta[n], \quad y[n]=h[n]$
$h[n]=\sum_{k=0}^{M} b_{k} \delta[n-k]=\left\{\begin{array}{c}b_{n} \\ 0\end{array}\right.$

$$
\begin{aligned}
n= & 0,1,2, \ldots M \\
& \text { otherwise }
\end{aligned}
$$

The sum evaluates to a single term for each value of \mathbf{n}, as $\delta[n-k]$ is nonzero only when $n=k$

Tabular form for 'Impulse Response' equation

n	$n<0$	0	1	2	3	\ldots	M	$M+1$	$n>M+1$
$x[n]=\delta[n]$	0	1	0	0	0	0	0	0	0
$y[n]=h[n]$	0	b_{0}	b_{1}	b_{2}	b_{3}	\ldots	b_{M}	0	0

Fig.8.26
In the above table $h[n]=0$ for $n<0$ and $n>M$,
The length of impulse response sequence is finite. This is why the system is called a Finite Impulse Response (FIR) system

Example1: 3-point average filter

$y_{3}[n]=\left(\frac{1}{3}\right) \sum_{k=0}^{2} x[n-k]$ compare with standard equation
$y[n]=\sum_{k=0}^{M} b_{k} x[n-k], \quad h[0]=b_{0}, h[1]=b_{1}, h[2]=b_{2}$
$\therefore h[0]=\frac{1}{3}, h[1]=\frac{1}{3}, h[2]=\frac{1}{3}$

Example2

Find the difference equation governing the input-output relation with FIR filter coefficients $\{3,-1,2,1\}$

FIR filter coefficients $h[n]=\{3,-1,2,1\}$
$h[n]=b_{k} \quad$ for $k=0,1 \ldots N$

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{M} b_{k} x[n-k] \\
& =\sum_{k=0}^{3} b_{k} x[n-k] \\
& =b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]+b_{3} x[n-3] \\
& =3 x[n]-x[n-1]+2 x[n-2]+x[n-3] \text { difference equation }
\end{aligned}
$$

Representation of a general sequence $\mathbf{x}[\mathrm{n}]$

Any sequence can be obtained by adding shifted impulses

$$
x[n]=2 \delta[n]+4 \delta[n-1]+6 \delta[n-2]+4 \delta[n-3]+2 \delta[n-4]
$$

Tabular form: Breaking a sequence into shifted impulses

n	\cdots	-2	-1	0	1	2	3	4	5	6	\ldots
$2 \delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4 \delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6 \delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4 \delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2 \delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
$x[n]$	0	0	0	2	4	6	4	2	0	0	0

$$
\begin{array}{rlrl}
x[n] & =\sum_{k} x[k] \delta[n-k] & \text { For any signal } \\
& =\ldots+x[-1] \delta[n+1]+x[0] \delta[n]+x[1] \delta[n-1]+\ldots
\end{array}
$$

Discrete-Time Convolution Sum

General Discrete-System

From the previous figure, $\mathrm{x}[0] \delta[n]=\mathrm{x}[0] \mathrm{h}[n]$
$\mathrm{x}[0] \delta[n-1]=\mathrm{x}[0] \mathrm{h}[n-1]$
$\mathrm{x}[0] \delta[n-k]=\mathrm{x}[0] \mathrm{h}[n-k]$
As shown previously using superposition,
$x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$
$y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$, Convolution Sum

Example1: FIR from Convolution

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k], \text { If } h[n] \text { is non }-z e r o
$$

only in the interval $0 \leq n \leq M$ then,
$y[n]=\sum_{k=n-M}^{n} x[k] h[n-k]$,
which is a classic FIR filter
About limits: $0 \leq(n-k) \leq M$
$\therefore(n-M) \leq k \leq n$

Example2: Computing the output

$$
\begin{aligned}
& x[n]=\{2,4,6,4,2\}, h[n]=\{3,-1,2,1\} \\
& \text { convolve } x[n] \text { and } h[n] \text { to get } y[n]
\end{aligned}
$$

- Write out the signals $x[n]$ and $y[n]$ on separate rows
- The output is to be computed as sum of shifted rows
- Each shifted row is to be produced by multiplying the $x[n]$ row by one of the $h[k]$ values and,
- By shifting the result to the right so that it lines up with $h[k]$ position

Numerical convolution done through the above process is also called as synthetic polynomial multiplication
Tabular form describing the convolution

n	$n<0$	0	1	2	3	4	5	6	7	$n>7$
$x[n]$	0	2	4	6	4	2	0	0	0	0
$h[n]$	0	3	-1	2	1	0	0	0	0	0
$h[0] x[n]$	0	6	12	18	12	6	0	0	0	0
$h[1] x[n-1]$	0	0	-2	-4	-6	-4	-2	0	0	0
$h[2] x[n-2]$	0	0	0	4	8	12	8	4	0	0
$h[3] x[n-3]$	0	0	0	0	2	4	6	4	2	0
$y[n]$	0	6	10	18	16	18	12	8	2	0

Try the demo on your CD

Fig.8.33

Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, " 5.1-5.4 and 5.6-Signal Processing First", Prentice Hall, 2003

