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Discrete-Time System
Something that can transform an input 
sequence into an output sequence of numbers

Since a discrete-time signal is a sequence of 
numbers, the operator     can be described by a
mathematical formula. It is just a computational
process 

τ
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TMS32010, 1983: First PC plug-in board from Atlanta Signal Proc
Fig.8.4



Digital Cell Phone (ca. 2000)



{ }x[n]τ ][][ nxny =][nx

Output is the absolute value of input

Example1: A Simple Discrete System

Fig.8.6 Fig.8.7



Example2: 3-point averaging method
Consider an input sequence x[n]

[0] 2 [3] 4
[1] 4 [4] 2
[2] 6 [5] 0

x x
x x
x x

= =
= =
= =

Take the average of 
any three points in a 
sequence
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Notation for the output is arbitrary, following
the notation shown below leads to the output;

n=0
n=1

{ } { }[0] [1] [2] [1] [2] [3]
[0]              [1]

3 3
x x x x x x

y y
+ + + +

= =

Fig.8.9



The above process (3-point average) generalizes 
to an important input-output equation known as 
difference equation ( )1[ ] [ ] [ 1] [ 2]

3
y n x n x n x n= + + + +

Output

The above equation describes a very important 
class of discrete-time systems called ‘FIR filters’

Fig.8.10



( )1[ ] [ ] [ 1] [ 2]
3

y n x n x n x n= + + + +However, the equation                                           
doesn’t seem practical as we need two future
samples to calculate present output  

( )1[ ] [ ] [ 1] [ 2]
3

y n x n x n x n= + - + -
Depends only on past 
values, a causal system

Fig.8.11



Difference equations
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Represents a class of filters known as IIRfilters
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First order discrete time system
y n a y n b x n a Recursive equation
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Example
 [ ] 1        ,           Let x n for all n  n 0 = ³
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[ ] [ ],   
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Non - Recursive part of difference equation represents
a general FIR filter

y n b x n k
=

= -å

The General FIR Filter

The above equation doesn’t involve any past 
samples, so the system is a causal one. The moving
average problem discussed earlier is an FIR filter



Filter Order = M: No. of memory blocks required 
in the filter implementation

Filter Length, L = M+1: Total No. of samples 
required in calculating the output, M from
memory (past) and one present sample

Filter coefficients {bk}: Completely define an FIR 
filter. All the properties of the filter can be 
understood through the coefficients



Graphical view of a general FIR filter
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x[n-M] x[n]

Mth order Causal filter
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Block Diagrams: An Implementation view of FIR filters

Building blocks required

[ ] [ ]y n x nb= 1 2[ ] [ ] [ ]y n x n x n= + [ ] [ 1]y n x n= -

Fig.8.14



( )( )( )0 1 2 3[ ] [ ] [ 1] [ 2] [ 3]y n b x n b x n b x n b x n= + - + - + -

direct form of
block diagram

Difference
equation

Fig.8.15



transposed form
of block diagram

( )( )( )0 1 2 3[ ] [ ] [ 1] [ 2] [ 3]y n b x n b x n b x n b x n= + - + - + -

0 1

1 1 2

2 2 3

3 3

[ ] [ ] [ 1]
[ ] [ ] [ 1]
[ ] [ ] [ 1]
[ ] [ ]

y n b x n v n
v n b x n v n
v n b x n v n
v n b x n

= + -
= + -
= + -

=

Same Result!!!
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Example: FIR filter application

[ ] (1.02) cos(2 /8 / 4) for 0 40nx n n np p= + + £ £

Averaging of a sequence with different filter lengths

Signal Noise, cosine part

Fig.8.17
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Output goes till n=421st 2 samples

Notice that the output is smoother or its noise 
level is low than input

Fig.8.18



Notice that the output is much smoother than 
3-point averaging method, noise level is low

1st 6 samples Output goes till n=46
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Example: DJIA signal
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Compensating for delay,

( )
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1
51

25
[ ] [ ]
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y n x n k
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In these two examples, FIR filters are shown to remove 
rapid fluctuations

Fig.8.21
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Discrete-Time Unit Impulse Sequence

Unit Impulse is the simplest sequence with only
one nonzero value at n=0 
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[ ]nd Is known as Kronecker delta function
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d[n] is NON-ZERO
When its argument
is equal to ZERO

3=n

Tabular form and a shifted version of unit impulse

Fig.8.24



Unit Impulse Response Sequence

The response of an FIR filter to a unit impulse
sequence is called as unit impulse response or 
simply ‘impulse response’

Input: General Output: General

Input: Impulse Output: Impulse response
Fig.8.25
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General FIR equation

0
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Impulse Response

The sum evaluates to a single term for each
value of n, as          is nonzero only when n=k [ ]n kd -



Tabular form for ‘Impulse Response’ equation

    [ ] 0  0  ,
       .

   ( )
      

 
  

In the above table h n for n and n M
The length of impulse response sequence is finite
This
Finite Impuls

is why the
e Response
system is calle

FIR m
a
te

d
sys

= < >
Fig.8.26
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Example1: 3-point average filter

Fig.8.27



Example2
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     3, 1,2,1
Find the difference equation governing the input output

relation with FIR filter coefficients

-

-

{ }

0
3

0

0 1 2 3

 

    [ ]= 3, 1,2,1
[ ]         0,1...

[ ] [ ]

     [ ]

     [ ] [ 1] [ 2] [ 3]
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Representation of a general sequence x[n]

]4[2]3[4]2[6]1[4][2][ -+-+-+-+= nnnnnnx ddddd

Any sequence can be obtained by adding shifted 
impulses

Fig.8.28



For any signal

Tabular form: Breaking a sequence into shifted impulses

Fig.8.29



Discrete-Time Convolution Sum
General Discrete-System

[ ]nd

[ 1]nd -

[ 1]nd +

[ 2]nd +

[ 1]h n -

[ ]h n

[ 1]h n +

[ 2]h n +

Fig.8.30
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As shown previously using superposition
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Example1: FIR from Convolution
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Example2: Computing the output

{ } { }[ ] 2,4,6,4,2 ,   [ ] 3, 1,2,1  
 [ ]  [ ]   [ ]

x n h n

convolve x n and h n to get y n

= = -

•Write out the signals x[n] and y[n] on separate rows
• The output is to be computed as sum of shifted rows
• Each shifted row is to be produced by multiplying
the x[n] row by one of the h[k] values and,
• By shifting the result to the right so that it lines up 
with h[k] position



Numerical convolution done through the above process 
is also called as synthetic polynomial multiplication
Tabular form describing the convolution

0 0 1 2 3 4 5 6 7 7
[ ] 0 2 4 6 4 2 0 0 0 0
[ ] 0 3 1 2 1 0 0 0 0 0

[0] [ ] 0 6 12 12 6 0 0 0 0
[1] [ 1] 0

18
4

[2] [ 2] 0 0 0 4 8 12 8 4 0 0
0 2 6 4 2 0 0 0

[3] [ 3] 0 0 0 20
1

4 6 4 2 0
[ ] 0 6 10 16 18 2 2 08 1 8

n n n
x n
h n

h x n
h x n

h x n
n

y

h

n

x

< >

-

- - - - -

-

-
-

[2]y Fig.8.32



Try the demo on your CD 

Fig.8.33
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