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Discrete-Time System
Something that can transform an input
sequence into an output sequence of numbers

x[n] Discrete-Time y[n] = T{x[n])
—> System —>
INPUT T{) OUTPUT
Fig.8.1

Since a discrete-time signal is a sequence of

numbers, the operator|T can be described by a
mathematical formula. It is just a computationa
process j
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TMS32010, 1983: First PC plug-in board from Atlanta Signal Proc



Digital Cell Phone (ca. 2000)
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® Examplel: A Simple Discrete System
ni=\xin
xn] ‘C{X[n]} y[n]=x{n]
Output is the absolute value of input
Eg.8.61 2 3 Sa‘:-nph; lndex&i‘ ) 6 7 g 1 2 3 Sa?»np|9 |nde: ) 6 7 ];lgM




Example2: 3-point averaging method

Consider an input sequence x|n]
Ax[n]

ol

Figgg8 —2 -1 O 1 2

6@

Take the average of
any three points in a
sequence




Notation for the output is arbitrary, following
the notation shown below leads to the output;

x[O]+ x[1]+ x[2] x[1]+ x[ 2]+ x| 3]
y[0]= { i ] = { i
3 3
n n< —2 —2 —1 1 2 3 4 5 n=>>5
x[n] 0 0 0o |24 |6 _la 20 0
y[n] 0 z 2 2 1412 ]2 |0 0
n=0 | Y[0] = 3(x[0] + x[1] + x[2])

n=1 | y[11 = 3&[1] + x[2] + x[3]D

Fig.8.9
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The above process (3-point average) generallzes
to an important input-output equation known as

diference equaion [ ERRERA

The above equation describes a very important
class of discrete-time systems called ‘FIR filters’




1
However, the equation y»]= B (x[n]+ x{n+1]+x[n+2])

doesn’t seem practical as we need two future
samples to calculate present output

AX [£]
.."L'.. PAST FUTURE .
.. l |“l‘llTTrrrrrrtTTTTTTTr, rTII“‘[ R
0 % RSP >
Fig.8.11 Present: £=n

Depends only on past

yln] = - (x[n] + x[n—1]+x[n— 2])
values, a causal system

3










= a, (@] y[0]+ a,byx[1]+ b,x[2]) + byx[3]
V[3]1=a; y[0]+ a;byx{1]+ a,b,x[2] + byx[3]
Generalizing the 1" order discrete —time system,

y[r]=a/ y[0]+b, [a;—lx[l] e afx[r]]

0
For a causal system, y|0]=a,y[/1]+b5,x[0] = b5,x[0]

y[r]=a; y[0]+ b, > al" " x[m]
m=1

sy [rl=albx 01+ b5, al ™ x[m]
m=1

y.[r]=b, Z e oan]
m=0









ﬁ The General FIR Filter

The above equation doesn’t involve any past
samples, so the system is a causal one. The moving
average problem discussed earlier is an FIR filter



Filter Order = M: No. of memory blocks required
in the filter implementation

Filter Length, L. = M+1: Total No. of samples
required in calculating the output, M from
memory (past) and one present sample

Filter coefticients {b,}: Completely define an FIR
filter. All the properties of the filter can be
understood through the coefficients



Graphical view of a general FIR filter

y.[nl Zbkxn k]

A1
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Fig.8.13
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Block Diagrams: An Implementation view of FIR filters

Building blocks required

p x1[n]
x[n] 25\ yin] yln] - xlnl | Unit | YIn]
Delay
x2[n]
(2) (b) (Q  Figgud
s l




bo
x[n] g ¢ ><>§
Unit
Delay b1
. x[n—1]
direct form of »é) -®
block diagram | L
Unit
Delay b>
x[n—2]
X
Y
2 Unit
Difference Delay b3
equation i ,é) s
l Fig.8.15 X < -

yln]= (((box[n] + b x[n - 1]) +b,x[n— 2]) +b,x[n - 3])



[)‘;

x[n] _ »é
transposed form | Ui :3 (]
Of blOCk diagram »ég Delay
y[n] s b()x:n: i v [n 5 1] %2[71]
Unit
V1[n] = blxn =t V2 [n o 1] »g;l Delay
v,[n]=b,x[n]+v,[n—1] »%)vl[n]
7 7] Unit
SLiths b3x'n- b Delay
% >é—> ]

Fig.8.16

v = (((Bxln] + bx{n —11)+ byx{n - 21)+ byx{n —3])

Same Result!!!



‘ Example: FIR filter application

Averaging of a sequence with different filter lengths

{(1.02)" @nmmm for 0 < n <40

Slgnal NOlSG, cosine part

x[n] = (1.02)X4 3 cos(27m/8 n/4)forO) <n <40

Tt

0 10 20 30 40 50




‘ vilnl=> (L )x[n — k]
k=0

15t 2 samples

I

i

Output goes till n=42 J

\ utput of 3-Point Running-Average Filter

-

(0 10 20

Fig.8.18

30

0

Notice that the output is smoother or its noise

level is low than input




‘ TG |
wn1=2 )x[n k]

I 1 6 samples ekl e e Output goes till n=46 ‘

Wut of 7-Point Runnlng—Average *V
3 -
| M
| H
0

10 20 30 40 50
| Time Index (n)

Notice that the output is much smoother than
3-point averaging method, noise level is low




Example: DJIA signal

50
similar approach, averaging Y [n] = (%) Z x[n—kj

k=0
Filtered by Causal 51-Point Running Averager
1000 s ,
8001
600 r
400 |
200t
|

0 200 400 600 800 1000
Fig.8.20 Time (in weeks) starting in 1950



Compensating for delay,

51-point Advance ~ 25
x[n] o yln] - yln] B8 ; ©
—> ausa —> ystem —> o (_) E e
Averager hr[n] = é[n + 25] y[n] Ok X[n ]
k=-25
Centralized Averager Fig.8.21
Filtered by Noncausal 51—-Point Running Averager
1000
800
600
400
200
R
0 200 400 600 800 1000
Fig.8.22 Time (in weeks) starting in 1950

In these two examples, FIR filters are shown to remove
rapid fluctuations



i Discrete-Time Unit Impulse Sequence

Unit Impulse is the simplest sequence with only
one nonzero value at n=0

1 n=0
o[n]=-+ |
0 n#0
$1
Fig.8.23 o o o o @ 0 @ o @ @ o o > n

oln] Is known as Kronecker delta function



Tabular form and a shifted version of unit impulse

n e | =2 | =1 10 |1 |2 |3 |4 |56
é[n] 0 0 0 1470100011070
d[n — 3] 0 0 0 O 0|0 O [0 |0
A S[n - 3]
l g !
o o ° ° ® —o o o ° °
-4 -3 =2 -1 0 | 2 3 4 5 6 7

Shifted impulse sequence, §[n — 3].

Fig.8.24




Unit Impulse Response Sequence

The response of an FIR filter to a unit impulse
sequence is called as unit impulse response or
simply ‘impulse response’

Input: General Output: General
X [n : n|
Discrete-Time Yy

/r(s[n] FIR Filter h [ll]\

Fig.8.25 b

Input: Impulse Output: Impulse response




General FIR equation
y[n]= 2 bx{n—k]

Impulse Response

x[n]=oln],  y[n]= hln]

Hinl= b,0Tn - k] 5. 1= 0L2 M
nl= n—kl=-+
— ‘ 0 otherwise

The sum evaluates to a single term for each
value of n, ass[»-k] 1s nonzero only when n=k



| Tabular form for ‘Impulse Response’ equation

| N n<0 10 1|23 ..M |M+1L n>M+1]
=m0 [rlolo oo o] o )|
y:n::h:n: 0 bo bl bz b3 bM | 0

| Fig.8.26 |
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Representation of a general sequence x|n]

5

impulses

Any sequence can be obtained by adding shifted

x[n]=26[n]+46[n 1]+ 66[n—2]+46[n—3]+25[n - 4]

Axin] 6o




Tabular form: Breaking a sequence into shifted impulses

n

28[n]

46[n — 1

66[n — 2]

46|n — 3]

26[n —4]

S| O | O O O O
S| o O O O] O

S|l o O O] O O

x[n] = Zx[k]é[n — k] <—| For any signal

k
— .+ x[=1]8[n + 1] + x[018[n] + x[1]8[n — 1] + ...

Fig.8.29




Discrete-Time Convolution Sum

General Discrete-System

5 - Fig.8.30
x[n] Discrete-Time y[n] = T{x[n]) '8
—> System —>

INPUT T{} OUTPUT

Discrete-Time
System

| U mw



From the previous figure,
x[0]o[n] = x[0]h[#~]
x[0]o[n—1]=x[0]h[#n —1]

x[0]6[n — k] = x[0Th[n — k]

As shown previously using superposition,

x[n]= i x[k]oln—k]

y|ln]= Z x|kh[n—k], Convolution Sum
k=—c0



i Examplel: FIR from Convolution
yln] = Z xlklh[n—k], If h|n]is non—zero
k=—o0

only in the interval 0<n <M then,

n

yinl= ) x[klhln—k],

k=n—-M

which is a classic FIR filter
About limits: 0<(n—k)<M
(m—M)<k<n



i Example2: Computing the output
x[n] = {2,4, 6,4, 2} , h[n]= {3, —1,2,1}
convolve x|n] and h[n] to get y[n]

* Write out the signals x|n] and y[n] on separate rows

* The output is to be computed as sum of shifted rows

e Each shifted row is to be produced by multiplying
the x|n] row by one of the h[k] values and,

By shifting the result to the right so that it lines up
with h[Kk] position



Numerical convolution done through the above process
is also called as synthetic polynomial multiplication

Tabular form describing the convolution

n i e O e S SRt e e R o int 8 e K

x[n] AR W S o ke BRSSOk A | ) O ik
h[n] IR (e AR R e b R i O e b W b
h[0]x[n] TG U ot (PSR DU WS R U et O AU i ¢
h[1]x[n—1] 0O |0 -2 4 -6 4 -2 0 0] O
W2x[n—=2]] 0 |0 AGRES N (VIR R SR G R )
W3x[n—-3]| 0 |O 0N R SRl SRA
y[n] 0 |6 10 18 16 18 12 8 2| O

y[ 2] Fig.8.32



Try the demo on your CD

_Signal POOOOO0
Input Impulse R
8|-Flipped Signal IH 1 npu e e
Lololololo]

=}
5

OF OOl O

I N

% 5 :o % 5 :o
1 1 1 1 1 1 kl
Th=2
ann Get x[n] Get h[n]
. | Multiplication
© Flip x[n] @ Flip h[n]
Signal Axis:
o = X[K]
] 1 1 1 | 1 1 1 ] kl O = h[n'k]
Yn=2 Multiplication Axis:
| Linear Convolution ol [lo X[K]h[n-k]
o 9 Convolution Axis:
y[n] = Zx[k]h[n-K]
(o]
Close Help
| 1 1 1 TT WTT | nI ‘ ‘

0
-25 -20 -15 -10 5 0 5 10 15 20 25

Fig.8.33
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