Discrete - Time Signals and Systems

FIR Filters-I

Yogananda Isukapalli

Discrete-Time System

Something that can transform an input sequence into an output sequence of numbers

Since a discrete-time signal is a sequence of numbers, the operator τ can be described by a mathematical formula. It is just a computational process

Discrete-Time System

An Evolution of computing machines

For the price of a small house, you could have one of these

Variable-Order Digital Filter for Realizing All Classical Designs

The Bockland Model 4136 Programmable Digital Filter consists of a second-order digital filter section which is multiplexed four ways to achieve eighth-order filtering Each of the four sections has fully-programmable coefficients which are stored internally in a read-write memory.

Filter input and output words are in 16-bit parallel form at a maximum sampling rate of 80 KHz while internal computations are made with 24-bit ac-

TRANSFER FUNCTION

The transfer function from filter input to filter output in z-transform rotation is given by

$$H_{N}(z) = \frac{N}{1 - z^{-1}B_{1,-}^{-1} - z^{-2}B_{2,-}^{-2}}$$

n = 1 (1)
2879 N=0.1.2.3.4 is ppe-half the filter order se-

TMS32010, 1983: First PC plug-in board from Atlanta Signal Proc

Digital Cell Phone (ca. 2000)

Example1: A Simple Discrete System x[n], $\tau\{x[n]\}$, y[n] = |x[n]|

Output is the absolute value of input

Example2: 3-point averaging method

Consider an input sequence x[n]

Take the average of any three points in a sequence

$$\frac{\{2+4+6\}}{3} = 4, \qquad \frac{\{4+6+4\}}{3} = \frac{14}{3}$$
$$\frac{\{6+4+2\}}{3} = 4, \qquad \frac{\{4+2+0\}}{3} = 2$$

Notation for the output is arbitrary, following the notation shown below leads to the output;

$$y[0] = \frac{\left\{x[0] + x[1] + x[2]\right\}}{3} \qquad \qquad y[1] = \frac{\left\{x[1] + x[2] + x[3]\right\}}{3}$$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0
y[n]	0	$\frac{2}{3}$	2	4	$\frac{14}{3}$	4	2	$\frac{2}{3}$	0	0

n=0 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$ **n=1** $y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$

Fig.8.9

The above process (3-point average) generalizes to an important input-output equation known as difference equation $y[n] = \frac{1}{3}(x[n]+x[n+1]+x[n+2])$ The above equation describes a very important class of discrete-time systems called '*FIR filters*'

However, the equation $y[n] = \frac{1}{3}(x[n]+x[n+1]+x[n+2])$ doesn't seem practical as we need two future samples to calculate present output

$$Difference equations$$

$$y[n] = \sum_{l=1}^{N} a_{l}y[n-l] + \sum_{k=0}^{M} b_{k}x[n-k], \quad Recursive \ equation$$
Represents a class of filters known as IIRfilters
$$y[n] = \sum_{k=0}^{M} b_{k}x[n-k], \quad Non-Recursive \ part$$
FIR filters

First order discrete-time system $y[n] = a_1 y[n-1] + b_0 x[n]$ a Recursive equation Solution: $y[1] = a_1 y[0] + b_0 x[1]$ n = 1n=2 $y[2] = a_1 y[1] + b_0 x[2]$ $= a_1 (a_1 y[0] + b_0 x[1]) + b_0 x[2]$ $= a_1^2 y[0] + a_1 b_0 x[1] + b_0 x[2]$ $y[3] = a_1 y[2] + b_0 x[3]$ n=3

 $= a_1 \left(a_1^2 y[0] + a_1 b_0 x[1] + b_0 x[2] \right) + b_0 x[3]$ $y[3] = a_1^3 y[0] + a_1^2 b_0 x[1] + a_1 b_0 x[2] + b_0 x[3]$ Generalizing the 1st order discrete – time system, $y[r] = a_1^r y[0] + b_0 \left[a_1^{r-1} x[1] + a_1^{r-2} x[2] + \dots + a_1^0 x[r] \right]$ $y[r] = a_1^r y[0] + b_0 \sum_{m=1}^r a_1^{(r-m)} x[m]$ For a causal system, $y[0] = a_1 y[-1] + b_0 x[0] = b_0 x[0]$:. $y_c[r] = a_1^r b_0 x[0] + b_0 \sum_{n=1}^{r} a_1^{(r-m)} x[m]$ $y_c[r] = b_0 \sum_{r=1}^{r} a_1^{(r-m)} x[m]$

$$y[r] = y[0] + b_0 r \qquad a_1 = 1$$

$$\because \lim_{a_1 \to 1} \frac{a_1^r - 1}{a_1 - 1} = \lim_{a_1 \to 1} \frac{\frac{d}{da_1}(a_1^r - 1)}{\frac{d}{da_1}(a_1 - 1)}$$

$$= \lim_{a_1 \to 1} \frac{ra_1^{r-1}}{1} = r1^{r-1} = r$$

Let $a_1 = 1/2, \ b_0 = 2, \ y[0] = 3$

$$y[n] = (1/2)^n \ 3 + 2\frac{(1/2)^n - 1}{(1/2) - 1}$$

$$= (1/2)^n \ 3 - 4\left[(1/2)^n - 1\right] = 4 - (1/2)^n \quad n \ge 0$$

The General FIR Filter

Non - Recursive part of difference equation represents a general FIR filter

$$y[n] = \sum_{k=0}^{M} b_k x[n-k],$$

The above equation doesn't involve any past samples, so the system is a *causal* one. The moving average problem discussed earlier is an FIR filter

Filter Order = M: *No. of memory blocks required in the filter implementation*

Filter Length, L = M+1: *Total No. of samples required in calculating the output, M from memory (past) and one present sample*

Filter coefficients $\{b_k\}$: Completely define an FIR filter. All the properties of the filter can be understood through the coefficients

Graphical view of a general FIR filter

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Block Diagrams: An Implementation view of FIR filters

Building blocks required

Example: FIR filter application Averaging of a sequence with different filter lengths $\cos(2\pi n/8 + \pi/4)$ for $0 \le n \le 40$ x[n] = .02) Signal Noise, cosine part $x[n] = (1.02)^n + \frac{1}{2}\cos(2\pi n/8 + \pi/4)$ for $0 \le n \le 40$ 3 7 10 30 20 50 40 **Fig.8.17**

the Cogenation of the Country of the Cogenation of the Cogenation of the Country of the Cogenation of the Count

Notice that the output is much smoother than 3-point averaging method, noise level is low

Example: DJIA signal

similar approach, averaging

Compensating for delay,

rapid fluctuations

Discrete-Time Unit Impulse Sequence Unit Impulse is the simplest sequence with only

one nonzero value at n=0

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Fig.8.230n $\delta[n]$ Is known as Kronecker delta function

Tabular form and a shifted version of unit impulse

Unit Impulse Response Sequence

The response of an FIR filter to a unit impulse sequence is called as unit impulse response or simply *'impulse response'*

General FIR equation

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Impulse Response

The sum evaluates to a single term for each value of n, as $\delta[n-k]$ is nonzero only when n=k

Tabular form for 'Impulse Response' equation

n	n < 0 0		1	2	3		М	M + 1	n > M + 1	
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0	
y[n] = h[n]	0	b_0	b_1	<i>b</i> ₂	<i>b</i> ₃	•••	b_M	0	0	

In the above table h[n] = 0 for n < 0 and n > M, The length of impulse response sequence is finite. This is why the system is called a Finite Impulse Response (FIR) system

Fig.8.26

Example1: 3-point average filter

Example2

Find the difference equation governing the input – output relation with FIR filter coefficients $\{3, -1, 2, 1\}$

FIR filter coefficients $h[n] = \{3, -1, 2, 1\}$ $h[n] = b_k$ for k = 0, 1...N $y[n] = \sum_{k=1}^{M} b_k x[n-k]$ $=\sum b_k x[n-k]$ $= b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + b_3 x[n-3]$ =3x[n]-x[n-1]+2x[n-2]+x[n-3] difference equation

Representation of a general sequence x[n]

Any sequence can be obtained by adding shifted impulses

 $x[n] = 2\delta[n] + 4\delta[n-1] + 6\delta[n-2] + 4\delta[n-3] + 2\delta[n-4]$

Tabular form: Breaking a sequence into shifted impulses

n		-2	-1	0	1	2	3	4	5	6	
$2\delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4\delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6\delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4\delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2\delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
<i>x</i> [<i>n</i>]	0	0	0	2	4	6	4	2	0	0	0
$x[n] = \sum_{k} x[k]\delta[n-k]$ For any signal											
$= \dots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$											

Fig.8.29

Discrete-Time Convolution Sum

General Discrete-System

From the previous figure,

$$x[0]\delta[n] = x[0]h[n]$$

 $x[0]\delta[n-1] = x[0]h[n-1]$
.
 $x[0]\delta[n-k] = x[0]h[n-k]$
As shown previously using superposition,
 $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$
 $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$, Convolution Sum

Sum

Example1: FIR from Convolution $y[n] = \sum x[k]h[n-k]$, If h[n] is non-zero $k = -\infty$ only in the interval $0 \le n \le M$ then, $y[n] = \sum_{k=1}^{n} x[k]h[n-k],$ k=n-Mwhich is a classic FIR filter About limits: $0 \le (n-k) \le M$ $(n-M) \le k \le n$

Example2: Computing the output
$$x[n] = \{2, 4, 6, 4, 2\}, h[n] = \{3, -1, 2, 1\}$$

convolve $x[n]$ *and* $h[n]$ *to get* $y[n]$

- Write out the signals x[n] and y[n] on separate rows
- The output is to be computed as sum of shifted rows
- Each shifted row is to be produced by multiplying the x[n] row by one of the h[k] values and,
- By shifting the result to the right so that it lines up with h[k] position

Numerical convolution done through the above process is also called as synthetic polynomial multiplication Tabular form describing the convolution

n	<i>n</i> < 0	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	2	4	6	4	2	0	0	0	0
h[n]	0	3	-1	2	1	0	0	0	0	0
h[0]x[n]	0	6	12	18	12	6	0	0	0	0
h[1]x[n-1]	0	0	-2	-4	-6	-4	-2	0	0	0
h[2]x[n-2]	0	0	0	4	8	12	8	4	0	0
h[3]x[n-3]	0	0	0	0	2	4	6	4	2	0
<i>y</i> [<i>n</i>]	0	6	10	18	16	18	12	8	2	0
y[2]										

Try the demo on your CD

Fig.8.33

Reference

James H. McClellan, Ronald W. Schafer and Mark A. Yoder, "5.1-5.4 and 5.6--Signal Processing First", Prentice Hall, 2003