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Abstract— In production test data analytics, it is often that
an analysis involves the recognition of a conceptual pattern
on a wafer map. A wafer pattern may hint a particular
issue in the production by itself or guide the analysis into a
certain direction. In this work, we introduce a novel approach
to recognize patterns on a wafer map of pass/fail locations.
Our approach utilizes Tucker decomposition to find projection
matrices that are able to project a wafer pattern represented by
a small set of training samples into a nearly-diagonal matrix.
Properties of such a matrix are utilized to recognize wafers
with a similar pattern. Also included in our approach is a novel
method to select the wafer samples that are more suitable to
be used together to represent a conceptual pattern in view of
the proposed approach.

I. INTRODUCTION

Machine learning techniques have been utilized in pro-
duction yield optimization and other applications in design
automation and test in recent years (e.g. [1]). In the context
of production yield, the recent work in [2] proposes using
machine learning for concept recognition. The idea is to view
an analytic process in terms of three components as depicted
in Fig. 1. The top two components in the analyst layer are
driven by domain knowledge. The tool component includes
data processing and analytic tools that can be invoked.

In view of the figure, an analytic workflow can be thought
of as a software script written by an engineer to execute the
analytic process. This script calls a tool when needed. In such
a script, a decision node may involve a concept perceived
by the engineer. Concept classes discussed in [2] include
those based on a set of wafer patterns. For example, a wafer
pattern captures the concept of “edge failures” (EF). Then,
in the script the engineer may write something like “For
each wafer map, if (observe EF on the map), do something.”
In order to automate such a statement, one needs a concept
recognizer to recognize the wafer pattern.

Fig. 1. Three Components to Capture an Analytic Process

The work in [2] employs the approach of Generative
Adversarial Networks (GANs) [3][4] for building a concept
recognizer. As pointed out in [2], it is well known that such
a deep neural network model can have adversarial examples
[5], a slightly perturbed input sample that causes the sample

to be misclassified. This “inherent” issue for using a deep
neural network motivates the search for a second approach
to implement a concept recognizer.

Recent advances in tensor analysis [6] provide an oppor-
tunity for developing an alternative approach for concept
recognition. However, the concept recognition proposed in
[2] is unsupervised learning. Tensor analysis techniques are
usually for general data processing (e.g. compression), and
not developed specifically as a technique for learning or un-
supervised learning. Although it has been used in the context
of machine learning, for the purposes such as compressing
neural network layers [7] and speeding up the training with
a deep neural network [8], it has not been widely used
as a stand-alone learning technique. Therefore, it would be
interesting to investigate if a Tensor analysis technique can
be turned into an approach for concept recognition.

This work considers concepts only in terms of wafer
patterns. For training, a wafer pattern concept is represented
with a small set of wafer maps each plotting the locations
of passing and failing dies in terms of two distinct colors.
Once a model is learned, it can be used to check if a given
wafer map falls within the respective concept.

There are two main contributions in this work: 1) This
work shows that it is feasible to use tensor analysis, specif-
ically Tucker decomposition, to implement a wafer pattern
concept recognizer. 2) The tensor based approach provides a
way to implement a learnability measure. The importance of
such a measure is that it can be used to decide if a given set
of training samples is suitable for learning a concept. If not,
it can be used to select a subset for training a better model,
effectively taking a given concept and refining it.

Note that the scope of the work is to provide a feasible
alternative to the GANs-based approach proposed in [2]
for wafer pattern concept recognition. The proposed tensor-
based approach is not meant to be a replacement. A study
of the two approaches combined is not included in this
work. This is because such a study should not be as simply
as showing the results based on a list of wafer patterns
to be recognized. Tensor analysis can be integrated into
neural network based learning [7][8] to provide a hybrid
approach. As a first step, this work treats tensor analysis as
a standalone technique for concept recognition and focuses
on understanding its feasibility.

II. TENSOR NOTATIONS

Tensors are the generalized form of vectors and matri-
ces. While vectors are one dimensional, matrices have two
dimensions, tensors can have more than two dimensions.



For example, Fig. 2 shows a three-way tensor A and its
Tucker decomposition, which will be explained later. An n-
way tensor has n dimensions or ”modes”.

Fig. 2. Tucker Decomposition for a Three Dimensional Tensor

Tensor analysis and decomposition has been used in many
applications which involve dealing with large amounts of
data. In [6], the authors discuss the main tensor decompo-
sitions and their applications. The work in [7] uses tensors
to represent a deep neural network and shows huge memory
savings while maintaining the same prediction accuracy. The
work in [8] represents the convolution layers of a deep neural
network and show significant speedup in the training time
while maintaining less than 1% loss in accuracy. Tensor
analysis can also be used for dimensionality reduction [9]
and low rank approximation [10], [11].

In this paper, we will follow the notations used in [6]. A
tensor is represented by a boldface Euler script letters, for
example A. A matrix is represented by a boldface uppercase
letter, for example A. And a vector is represented by a
boldface lowercase letter, for example a. In the following,
we introduce some basic tensor operations needed in this
work.

A. Mode Multiplication

Mode-i Multiplication is the operation of multiplying a
tensor and a matrix along a mode-i, and is denoted by the
operation ×i. The second dimension of the matrix has to
agree with the size of mode-i of the tensor. The result is
another tensor with the size of mode-i replaced by the size
of the matrix first dimension. For example, A7×5×3 ×3

A6×3 = B7×5×6.

B. Tucker Decomposition

Tucker decomposition [11] is the high dimensional gen-
eralization of matrix Singular Value Decomposition (SVD)
[12]. As shown in Fig. 2, in Tucker decomposition, a n-
dimensional tensor A (e.g. n = 3) of size R1×R2×R3

is decomposed into n+1 components: a core tensor G of
size r1 × r2 × r3 and n orthogonal projection matrices

Ui
n
i=1 each of size Ri × ri such that A = G

n∏
i=1

×i Ui.

The choice of the core size, or what is referred to as the
intermediate ranks r1, r2, ..., rn determines how accurate
the decomposition is in representing the tensorA. The closer
r1, r2, ..., rn to R1, R2, ..., Rn the higher the accuracy.
For details about Tucker decomposition please refer to [6].

In this work, for building a recognizer model, we would
desire the accuracy to be as high as possible in representing a
tensor. Consequently, we chose r1, r2, ..., rn to be equal to
R1, R2, ..., Rn. Our implementation of Tucker decompo-
sition involves getting an approximate decomposition using
Higher Order Singular Value Decomposition (HOSVD) [13]
and using this approximation as a starting point in the
iterative Higher Order Orthogonal Iteration (HOOI) [14].

III. WAFER PATTERN RECOGNITION

Given a set of wafer maps as the training samples to learn
a wafer pattern concept, each wafer essentially is a matrix,
where each die is an element of this matrix. Failing dies
are indicated by a value ”-1”, passing dies are indicated
by a value of ”+1” while ”0” indicates no die present at
the location. Fig. 4 (discussed in the next section) shows
some examples of wafer maps. They represent two distinct
concepts: an Edge Failures concept on the first row, and a
Systematic (grid) Failures concept in the second row.

To build a recognizer model, the training wafer maps
are put together to form a 3-dimensional tensor. Tucker
decomposition is then applied to the tensor to get a core
tensor, along with the three projection matrices. Since the
focus is on capturing the pattern on each wafer, the projection
matrix along the third mode U3 is discarded. This is because
this projection matrix records the information regarding to
wafer-to-wafer variations.

The first two projection matrices are used to produce
transformed wafer maps for each original wafer map, by mul-
tiplying the original wafer map with the first two projection
matrices, Σp = UT

1 × Xp × U2 where Xp is a matrix
representing the original wafer map. In our experiments, we
observed that such transformed matrices are very close to
being diagonal (if the given wafer maps are very similar). In
fact, if the wafer maps are exactly the same, the transformed
matrices Σi are exactly diagonal. It’s also worth mentioning
that in that case, the Xp = U1×Σp×UT

2 is the Singular
Value Decomposition of the wafer map Xp.

We also observed that if a wafer map Xq has a different
pattern than the training wafer maps, the resulting trans-
formed matrix Σq is neither diagonal, nor close to being
diagonal. Hence, in order to recognize the wafer maps with
a similar pattern as the training wafer maps, we can use
the first two projection matrices obtained from the Tucker
decomposition to get a transformed matrix Σ and check how
”diagonal” it is.

In order to do this, we need a measure of “diagonal-ness.”
Our measure is based on the following error equation:

Error =

∑
σ ij

i 6=j

2∑
σ2

ij
i=j

(1)

Where σij is the element on row i and column j in the
transformed matrix Σ. The lower the error, the more diagonal
the matrix is. The algorithm is summarized in Fig. 3.



Fig. 3. Algorithm 1: Tensor-Based Concept Recognition

IV. BUILDING A COLLECTION OF RECOGNIZERS

To show how the proposed algorithm is used for concept
recognition, wafers from two different concepts are illus-
trated in Fig. 4. The first concept can be called the ’Edge
Failures’ and the second concept the ’Systematic Failures’.

Fig. 4. Sample Wafer Maps From the Two Concepts

Then Fig. 5 shows five wafer maps used as the training
samples to learn the first concept using the proposed algo-
rithm. The recognizer is then applied to scan 8300 wafer
maps collected from an automotive SoC product line and
the sorted error values are shown in Fig. 6.

Fig. 5. Training Wafer Maps for Edge Failures

In Fig. 6, wafer maps with Edge Failures are marked. They
are manually picked and there are 35 of them. It is clear from
the figure that there are some wafer maps with substantially
large error values on the right. However, the wafer maps of
Edge Failures have error values, while small, spread across a
large range that also contains many other wafer maps without
Edge Failures. This indicates that a direct application of the
proposed algorithm would not work.

Suppose we focus on a small set of wafer maps. In this
case, we use 15 wafer maps from the first concept and 15
wafer maps from the second concept in Fig. 4. We apply the
recognizer to this small set of 30 wafer maps. Fig. 7 plots

Fig. 6. Error Value for All 8300 Wafers

the resulting error values after sorting. In this figure, it is
clear that the two types of wafer maps can be separated by
setting a threshold around 0.4.

Fig. 7. Error Value for The Two Concepts

A. Multi-Concept Recognizer Set
The two experiments above motivate us to follow an

approach that treat concept recognizers as a collection. The
idea is that given a wafer map, this set of recognizers are
applied in parallel and the wafer map would be recognized
as the concept by the recognizer reporting the smallest error
value. This approach has the advantage that there is no
need to set a threshold as the algorithm in Fig. 3 might
have suggested, hence removing the subjectivity in concept
recognition with the algorithm.

Fig. 8. Different Failure Densities for Normal Failure Wafers

However, to implement the multi-recognizer approach, we
will need a recognizer for the concept of a ’Normal’ wafer
map. This Normal concept recognizer can then serve as the
baseline to other concept recognizers.



To implement the approach, we first categorize all wafers
into three groups (Low Yield Loss, Medium Yield Loss, and
High Yield Loss) based on their yield loss. Fig. 8 shows
some examples in each group. The low-loss group contains
about 70% of the wafers. For those wafers, they are not of
interest. For the medium-loss and high-loss groups, a concept
recognition set is developed for each group.

B. Medium Yield Loss Wafers
There are about 2K Medium yield loss wafers. In addition

to the Normal concept, three other concepts are identified:
Edge Failures, Systematic Failures, and Center Failures.
They are illustrated in Fig. 9.

Fig. 9. Concepts Identified Within the Medium Yield Loss Wafers

For each concept, five wafer maps are used to train its
recognizer. In total there are four recognizers in this group.
The set of recognizers are applied to scan the 2K wafer maps.
Examples of recognized wafer maps for the three concepts
are shown in Fig. 10.

Fig. 10. Examples of Recognized Wafer Maps

C. High Yield Loss Wafers

Fig. 11. Concepts Identified Within the High Yield Loss Wafers

In this group, six concepts (Edge Failure, Center Failure,
Middle Ring Failure, Massive Failure, Upper Failure, Outer
Ring Failure) are identified in addition to the Normal con-
cept. Fig. 11 illustrates these six concepts.

Three training wafer maps are chosen as the training
samples for each concept. Examples of recognized wafer
maps for each of the six concepts are shown in Fig. 12.

Fig. 12. Recognized Wafer Maps in Each of the Six Concepts

1) An observed issue: Fig. 13 shows three wafer maps that
are misclassified by the collection of the seven recognizers.
These wafer maps show that they should have been classified
into the Center Failures concept, but the collection recognizes
them as wafers of Outer Ring Failure.

Fig. 13. Center Failures Recognized as Outer Rings

The mistake had something to do with how a wafer map is
represented. For a wafer map, passing parts and failing parts
are denoted as +1 and -1 values, respectively. As a result,
the matrix representing a wafer map of Outer Ring Failure
and the matrix representing a wafer of Center Failure can
have opposite values on most of the entries. In other words,
if we flip the two values, they are similar. Consequently,
their transformed matrices are similar except that all signs
are flipped. The error value calculation used earlier does not
take this into account, resulting in the misclassification seen.
To avoid this issue, a sanity check on the sign of the largest
diagonal value of the transformed matrix is added. This
simple modification resolves the issue and enables correct
classification between the two concepts.

D. An Observed Limitation

A major limitation was observed with the proposed
Tensor-based approach for concept recognition when com-
pared to the GANs-based approach proposed in [2]. The
results in [2] show that a GANs-based recognizer can be
trained to recognize a pattern even though the pattern is
rotated. This is especially the case for Edge Failures pattern
which may appear in different direction on a wafer map.
In [2], a recognizer is trained to recognize edge failures
regardless of where the failures concentrate on. On the other
hand, we were unable to produce a single recognizer to
do so using the proposed approach. Our recognizer only
recognize edge failures in the same direction as that shown
on the training samples. For example, Fig. 14 show several
examples not recognized by the Edge Failures recognizer
from the medium-loss group (or the high-loss group).

In [2], a single recognizer was built by taking five training
samples all with edge failures in a similar direction and



Fig. 14. Rotated Edge Patterns that are Missed by Our Concept Recognizer

rotating each clockwise to produce 11 other maps. This gives
60 wafer maps in total for training. When this method is used
with our approach, the result is that the recognizer would
become basically a recognizer for the low-yield-loss concept,
i.e. wafer map containing almost no failure. This is because
Tucker decomposition is not rotation-invariant. Hence, when
an edge pattern appear in all 12 directions, they are treated
as “noise” in the data. Their “commonality” essentially is an
empty wafer map with no failure.

V. IMPROVING TRAINING SET

One of the challenges in practice for building a concept
recognizer is choosing the training samples. This is because
concept recognition is based on unsupervised learning. When
a set of training samples are given, it is unknown if the
training samples should be treated as a single concept class
or multiple concept classes. It would be desirable to have a
way to assess that question.

The Error in equation (1) provides a convenient way
to develop a method for that purpose. The quantity LB =
1 − Error can be thought of as how good the projection
matrices from the Tucker decomposition can be used to
represent a wafer map, i.e. similar to the notion of model
fitting in machine learning. For example if the Tucker model
is built from a set of identical wafer maps, we would have
LB = 1 for every wafer. Intuitively, we can use LB to
indicate how well a tucker model fits a wafer map.

Fig. 15. A Training Set With Samples From Two Concepts

To illustrate the point, Fig. 15 shows five wafer maps
from the Edge Failures and Center Failures classes in the
medium-loss group. After Algorithm 1 is applied to these five
samples, their LB values are [0.24, 0.19, 0.58, 0.62, 0.67]
following the same order as shown in the figure. Observe
that the LB values for the two Center Failures wafer maps
are noticeably lower than the other three.

Training Wafers Learnability Vector Average
Edge Failures [0.76, 0.77, 0.81, 0.77, 0.74] 0.77

Systematic Failures [0.77, 0.77, 0.74, 0.75, 0.76] 0.76
Center Failures [0.61 , 0.58 , 0.61 , 0.47 , 0.35] 0.52
Normal Failures [0.74, 0.74, 0.73, 0.73, 0.72] 0.73

TABLE I
LB VALUES FROM THE MEDIUM-LOSS GROUP

Recall that for the concepts in the medium-loss group,
five samples are used in training. Table I shows their LB

values after the training. Observe that the average LB value
in the Center Failures case is much lower than others while
the last two samples have noticeably lower LB values. This
indicates that for this concept class, there might be room for
improvement in terms of choosing a better training set.

A. Learnability Measure

Our method to improve a training set is based on calcu-
lating the average LB value. Suppose we are given a set
S of n samples. The goal is to choose a subset of samples
as our training set. Suppose we have also a test set T of
m samples. Samples in S and T are manually selected and
visually determined to be in the same concept class. The
goal is to choose the best set of samples from S to build a
Tucker model. Note that from this perspective, it might be
more intuitive to think the method is for filtering out “noisy”
samples rather than for “choosing” samples.

The idea is simple. Suppose samples in S are ordered by
their LB values as s1, . . . , sn. Let Si = {s1, . . . , si}.
The average LBi is calculated by applying the Tucker model
from the set Si to T . For example, let n = 10 andm = 15.
Fig. 16 shows the average LB results for the four concept
classes from the medium-loss group.

Fig. 16. Deciding the Best Training Set Using Average LB

As shown in the figure (x-axis is the number of wafer
maps and y-axis is the average LB), for Edge Failures, it
reaches the best result when all 10 training wafers are used.
For others, the best result happens with fewer samples. The
models were re-built using the new training sets. Fig. 17
shows some examples of wafer maps previously misclassified
and now correctly classified by the new recognizers. This
shows that the learnability measure enables the use of a
better training set, resulting in more accurate recognition.
Notice that for the Systematic Failures concept, the number
of training samples is five, same as before.

VI. A FINAL REMARK

The intuition behind Tucker decomposition and the in-
tuition behind Principle Component Analysis (PCA) share
some similarity. Because PCA can be used as an outlier
detection technique (see e.g. [15] for general discussion and



Fig. 17. Examples of Recognized Wafers After Training Using the
Improved Training Sets

[16] for its use in outlier analytics with test data), it would be
intuitive to think that Tucker decomposition can be used in
the context of outlier analysis as well. In fact, this is indeed
the case. For example, the work in [17] presents a technique
called Dynamic Tensor Analysis (DTA), which conceptually
is an approximated Tucker decomposition, and uses DTA as
an outlier detection method to capture anomalies in network
traffic data.

In DTA, projection matrices are calculated for a first
matrix, and are updated (refined) for every subsequent matrix
incrementally. In each incremental step, the goal is to mini-
mize the average reconstruction error (e) for all matrices seen

so far, where e =
∑n

t=1

∥∥∥Xt −Xt

∏M
i=1×i(UiU

T
i )
∥∥∥2.

If one views wafer production as providing a stream of
data, then it seems that DTA can also be used to detect
abnormal wafers, for example based on their wafer maps.
We implemented this idea and applied DTA with the 8300
wafers. Fig. 18 shows some of the inliers and some of the
outliers while Fig. 19 shows where their outlier scores stand
in the rankings of the 8300 wafers.

Fig. 18. Issue With Using DTA in Wafer Outlier Detection

As seen, DTA’s inliers/outliers are not consistent with our
intuitive perception for what an outlier/inlier should be. Of
course, most of the DTA’s inliers/outliers are not as bad as
those shown in Fig. 18. However, those examples do illustrate
the challenge to use DTA for detecting outlier wafer maps.
One can say that the view to define an outlier by DTA is not
consistent with the view to perceive an outlier by a person,
but making these two views consistent can be challenging.
This was the reason why we used Tensor analysis in concept
recognition and not in outlier detection, even though both can
be thought of as a form of unsupervised learning.

Fig. 19. Sorted Wafers According to Outlier Score

VII. CONCLUSION

In this work, Tucker decomposition is employed to build
models for recognizing concepts appearing on wafer maps.
A learnability measure is proposed to select training samples
and the effectiveness of various concept recognizers are
illustrated. Future work includes a deeper understanding of
the strengths and weaknesses between the proposed approach
and the GANs-based approach proposed in [2] for concept
recognition. It will also be interesting to investigate a hybrid
approach combining the two.
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