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Abstract—Uncertainty quantification based on stochastic spec-
tral methods suffers from the curse of dimensionality. This issue
was mitigated recently by low-rank tensor methods. However,
there exist two fundamental challenges in low-rank tensor-based
uncertainty quantification: how to automatically determine the
tensor rank and how to pick the simulation samples. This paper
proposes a novel tensor regression method to address these
two challenges. Our method uses an `2,p-norm regularization
to determine the tensor rank and an estimated Voronoi diagram
to pick informative samples for simulation. The proposed frame-
work is verified by a 19-dim photonic band-pass filter and a
57-dim CMOS ring oscillator, capturing the high-dimensional
uncertainty well with only 90 and 290 samples respectively.

I. INTRODUCTION

Fabrication process variations are a major concern in nano-
scale chip design. To estimate and quantify the uncertain-
ties caused by process variations, Monte Carlo (MC) is
the mainstream uncertainty quantification (UQ) tool used in
commercial EDA tools, but it requires a huge amount of
simulation samples. Instead, stochastic spectral methods based
on generalized polynomial chaos (gPC) [1] offer an efficient
alternative by approximating a stochastic circuit performance
metric as a linear combination of some basis functions [2–4].
However, stochastic spectral methods suffer from the curse
of dimensionality: a huge amount of simulation samples are
required when the number of random parameters is large.

Low-rank tensor methods are a promising technique to
solve high-dimensional UQ problems [5–8]. In [6], a high-
dimensional gPC expansion is obtained via a low-rank tensor
recovery, which estimates massive unknown output samples
from a few simulation results. However, the method [6] uses a
fixed tensor rank, which is hard to estimate a-priori in practice.
The most recent work [9] uses a greedy rank-1 update until
a good accuracy is reached. However, greedy rank-1 tensor
update does not provide optimal solutions and can cause over
fitting. Besides, it is not clear how to adaptively pick the
simulation samples to reduce the computation budget.

Contributions. This paper proposes a novel high-
dimensional UQ solver based on tensor regression. In order to
automatically determine the tensor rank, we employ a group-
sparsity regularization in the training process. We also develop
an adaptive sampling strategy to reduce the simulation cost.
This method balances exploration and exploitation of our
model. Our method is used to quantify the uncertainties of
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a 19-dim phonic IC and a 57-dim electronic IC with 90 and
290 simulation samples respectively.

II. BACKGROUND

Generalized Polynomial Chaos. Let ξ = [ξ1, . . . , ξd] ∈
Rd be a random vector describing process variations. We aim
to estimate the interested performance metric y(ξ) (e.g., chip
frequency or power) under such uncertainty. A truncated gPC
expansion approximates y(ξ) as

y(ξ) ≈ ŷ(ξ) =
∑
α∈Θ

cαΨα(ξ), (1)

where α is an index vector, and Ψα is a polynomial basis
function of degree |α| = α1 + α2 + · · · + αd. If the joint
probability density function of ξ is ρ(ξ), then the basis
functions satisfy the orthornormal condition:

〈Ψα(ξ),Ψβ(ξ)〉 =

∫
Rd

Ψα(ξ)Ψβ(ξ)dξ = δα,β. (2)

Once the index set Θ is chosen, we need to determine the un-
known coefficient cα for each α ∈ Θ. The gPC only requires a
small number of basis functions and simulation samples when
the parameter dimensionality d is small. However, a huge
number of basis functions and simulation samples are required
when d is large. For instance, in the classical stochastic collo-
cation method [1], the number of simulation samples required
to obtain cα’s is an exponential or polynomial function of d.

Tensors. A promising tool to overcome the curse of dimen-
sionality is tensors. A d-dim tensor X ∈ Rn1×···nd represents
a d-dimensional data array, and it becomes a matrix when
d = 2. The (i1, · · · , id)-th element of X can be denoted as
xi1···id . Given two tensors X and Y of same size, their inner
product is defined as:

〈X ,Y〉 :=
∑
i1···id

xi1···idyi1···id . (3)

A d-dim rank-R tensor can be written as the sum of R rank-1
tensors, known as a CP decomposition:

X =

R∑
r=1

u(1)
r ◦ u(2)

r · · · ◦ u(d)
r = [[U(1),U(2), . . . ,U(d)]], (4)

where ◦ denotes an outer product. The last term is the Krusal
form, where factor matrix U(k) =

[
u

(k)
1 , . . . ,u

(k)
R

]
∈ Rnk×R

includes all vectors associated with the k-th dimension.



III. PROPOSED TENSOR REGRESSION METHOD

A. Tensor Regression Formulation

We choose the following index set for the gPC expansion:

Θ =
{
α = [α1, α2, · · · , αd] | 0 ≤ {αi}di=1 ≤ p

}
. (5)

This specifies a gPC expansion with (p+ 1)d basis functions.
Let ik = αk+1, then we can define two d-dimensional tensors
X and B(ξ) with their (i1, i2, · · · id)-th element specified as

xi1i2···id = cα and bi1i2···id(ξ) = Ψα(ξ). (6)

Combining (1), (5) and (6), the truncated gPC expansion
can be written as a tensor regression model

y(ξ) ≈ ŷ(ξ) = 〈X ,B(ξ)〉. (7)

It is worth noting that tensor B(ξ) depends on ξ. When the
random parameters ξ are mutually independent, Ψα(ξ) can
be written as the product of d uni-variable basis functions for
each parameter ξk. In this case B(ξ) is a rank-1 tensor.

Our goal is to compute X given a set of data samples
{ξn, y(ξn)}Nn=1. Assume that X has the rank-R decomposi-
tion in (4), we can solve the following optimization problem

min
{U(k)}dk=1

h(X ) =
1

2

N∑
n=1

(
yn − 〈[[U(1),U(2), . . . ,U(d)]],Bn〉

)2

,

(8)
where yn = y(ξn) and Bn = B(ξn).

B. Automatic Rank Determination

The low-rank tensor regression (8) requires the rank of X to
be determined a-priori, which is often infeasible in practice.
In order to address this issue, we first choose a sufficiently
large R such that it is above the actual rank, then we choose
a proper rank-shrinking penalty function to regularize (8).

Specifically, we employ a group `2,q-norm regularization
function to shrink the rank of X :

g(X ) =

R∑
r=1

( d∑
k=1

‖u(k)
r ‖22

) 1
2


1
q

, q ∈ [0, 1] . (9)

This function puts u
(k)
r , the r-th column of each U(k), in the

same group, and measures the `2,p norm of all groups. As a
result, one can shrink some groups to zero by reducing g(X ),
leading to an automatic rank reduction. A smaller q leads to
a stronger shrinkage, and q = 1 corresponds to a group lasso.

By adding the penalty term (9), we have the following
improved tensor regression model:

min
{U(k)}dk=1

f(X ) =h(X ) + λg(X ). (10)

After solving this optimization problem, each obtained factor
matrix U(k) has a few common columns whose values are
close to zero. These columns can be deleted and the actual
rank of our obtained tensor becomes R̂ ≤ R, where R̂ is the
number of remaining columns that are not deleted.

It is non-trivial to minimize f(X ) since the regularization
function g(X ) is usually non-differentiable and non-convex

with respect to U(k)’s. Instead, we solve the following opti-
mization problem in practice:

min
{U(k)}dk=1

f̂(X ) =h(X ) + λĝ(X ). (11)

Here ĝ(X ) is an upper bound of g(X ) obtained via the
variational inequality [10]:

g(X ) ≤ĝ(X ) = min
η∈RR

λ

2

R∑
r=1

d∑
k=1

‖u(k)
r ‖22

ηr
+
λ

2
‖η‖q. (12)

Once {U(k)}dk=1 is given, the values of ĝ(X ) and f̂(X ) can
be estimated by setting the elements of η as

ηr = (zr)
2

q+1 ‖z‖q2q1 , ∀ r = 1, . . . , R, (13)

where zr =

(
d∑

k=1

‖u(k)
r ‖22

) 1
2

, q1 = 2q
q+1 and q2 = q−1

q+1 .

Problem (11) can be solved via an alternating algorithm
such as a block coordinate descent solver or alternating
direction method of multipliers. Due to the page limitation,
we omit the details in this paper and will explain the detailed
optimization algorithm in an extended journal paper.

C. Adaptive Sampling Strategy

Another fundamental question is how to select the parameter
samples {ξn}Nn=1 for simulation. The method in [7] uses some
Monte Carlo random samples. Instead, this paper reduces the
simulation cost by selecting only a few informative samples
for detailed device- or circuit-level simulations.

We first use the Latin Hybercube (LH) sampling to generate
an initial sample set Ω. Then we employ an exploration step
via the Voronoi diagram to measure the sample density in Ω.
Given two distinct samples ξi, ξj ∈ Ω, a Voronoi cell Ci(ξi)
covers the region that are closest to ξi. It is defined as the
intersection of a set of half-planes (hp):

Ci(ξi) =
⋂

ξj∈Ω\ξi

hp(ξi, ξj)

hp(ξi, ξj) ={ξ ∈ Rd| ‖ξ − ξi‖ ≤ ‖ξ − ξj‖}.
(14)

It is intractable to calculate an Voronoi cell exactly in a high-
dimensional space. However, we can easily estimate it via
Monte Carlo [11]. The sample density of Ci is approximated
by counting the number of samples that are closest to ξi. Each
sample in Ω determines one Voronoi cell with itself as the
center, and we can select a new sample from the cell region
with the lowest density.

If the performance metric y(ξ) is known to be highly
nonlinear, we can further exploit its non-linearity. Given ξ and
a Voronoi cell center a, we measure the nonlineary of y(ξ) as

γ(ξ) = |ŷ(ξ)− ŷ(a)−∇ŷ(a)T (ξ − a)|. (15)

We select a new sample as the one with largest γ(ξ) in a
Voronoi cell with the lowest sample density. This method can
be easily extended to a batch version by searching the top-K
least-sampled regions.



Fig. 1. Left: a photonic band-pass filter with 9 micro-ring resonators. Right:
Schematic of a CMOS ring oscillator.
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Fig. 2. Result of the photonic filter. (a) Testing error on 105 MC samples,
achieving 98.3% accuracy. (b) The estimated tensor ranks.

IV. NUMERICAL EXPERIMENT

We verify our algorithm by a photonic band-pass filter and
a CMOS ring oscillator as shown in Fig. 1.

Photonic band-pass filter: This benchmark has 19 Gaus-
sian random parameters describing the variations of the ef-
fective phase index (nneff) of each ring, and the gap (g)
between adjacent rings and between the end ring and the bus
waveguides. We set the highest polynomial order p = 2 for
each dimension, and initialize X as rank-4, and use q = 0.5
in the regularizer. We initialize 60 samples with a standard
LH experimental design, and further select 6 batches with 60
additional samples. The proposed tensor regression framework
is compared with a fixed rank method, a random and an
adaptive exploration sampling method (shown in Fig. 2).

CMOS ring oscillator: This circuit has 57 Gaussian ran-
dom parameters describing the variations of threshold voltages,
gate-oxide thickness, and effective gate length/width. The
simulation results are obtained by calling a periodic steady-
state simulator repeatedly. We set basis as order-2 in each
dimension, initialize X as rank-5, and use q = 0.5 in the
regularizer. We start from 140 standard LH samples, and
adaptively select additional 7 batches with 210 samples. The
results and comparison are summarized in Fig. 3 and Table I.

V. CONCLUSION

This paper has proposed a tensor regression framework for
high-dimensional uncertainty quantification. Our method has
addressed two fundamental challenges: automatic tensor rank
determination and adaptive sampling. The numerical result
has demonstrated the excellent capability of automatic rank
determination of our method, and the simulation cost reduction
by our adaptive sampling method.
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Fig. 3. Results of the CMOS ring oscillator. (a) Testing error on 105 MC
samples (b) Probability density functions of the oscillator frequency.

TABLE I
COMPARISON WITH THE GPC MODEL WITH A TOTAL DEGREE SCHEME.

Proposed Total-degree gPC MC

# of variables 855 1711 N/A
# of samples 290 1711 105

Mean 106.28 106.58 106.53
Stdvar 4.616 6.810 4.641
Error 1% 4.84% N/A
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