
Performance Evaluation and Acceleration of the
QTensor Quantum Circuit Simulator on GPUs

Danylo Lykov∗¶, Angela Chen†¶, Huaxuan Chen‡¶, Kristopher Keipert§, Zheng Zhang†, Tom Gibbs§, and Yuri Alexeev∗
∗Computational Science Division, Argonne National Laboratory, Lemont, IL 60439

†Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
‡Northwestern University, Evanston, IL 60208
§NVIDIA Corporation, Santa Clara, CA 95050
¶ These authors contributed equally to the paper

Abstract—This work studies the porting and optimization
of the tensor network simulator QTensor on GPUs, with the
ultimate goal of simulating quantum circuits efficiently at scale
on large GPU supercomputers. We implement NumPy, PyTorch,
and CuPy backends and benchmark the codes to find the optimal
allocation of tensor simulations to either a CPU or a GPU.
We also present a dynamic mixed backend to achieve optimal
performance. To demonstrate the performance, we simulate
QAOA circuits for computing the MaxCut energy expectation.
Our method achieves 176× speedup on a GPU over the NumPy
baseline on a CPU for the benchmarked QAOA circuits to solve
MaxCut problem on a 3-regular graph of size 30 with depth
p = 4.

I. INTRODUCTION

Quantum information science (QIS) has a great potential to
speed up certain computing problems such as combinatorial
optimization and quantum simulations [1]. The development
of fast and resource-efficient quantum simulators to classically
simulate quantum circuits is the key to the advancement of
the QIS field. For example, simulators allow researchers to
evaluate the complexity of new quantum algorithms and to
develop and validate the design of new quantum circuits. An-
other important application is to validate quantum supremacy
and advantage claims.

One can simulate quantum circuits on classical computers
in many ways. The major types of simulation approaches are
full amplitude-vector evolution [2]–[5], the Feynman paths
approach [6], linear algebra open system simulation [7], and
tensor network contractions [8]–[10]. These techniques have
advantages and disadvantages. Some are better suited for small
numbers of qubits and high-depth quantum circuits, while
others are better for circuits with a large number of qubits
but small depth. Some are also tailored toward the accuracy
of simulation of noise in quantum computers.

For shallow quantum circuits the state-of-the-art technique
to simulate quantum circuits is currently arguably the tensor
network contraction method because of the memory efficiency
for the method relative to state vector methods that scale by
2N , where N is the number of qubits. This effectively limits
the state vector methods to quantum circuits with less than
50 qubits. The challenge with the tensor network methods is
determining the optimal contraction order, which is known

to be an NP-complete problem [8]. We choose to focus on
the simulation of the Quantum Approximate Optimization
Algorithm (QAOA) [11] given its importance to machine
learning and its suitability for the current state of the art with
noisy intermediate state quantum computers that generally
work with circuits of short depth.

In this work we ported and optimized the tensor net-
work quantum simulator QTensor to run efficiently on GPUs,
with the eventual goal to simulate large quantum circuits on
the modern and upcoming supercomputers. In particular, we
benchmarked QTensor on a NVIDIA DGX-2 server with a
V100 accelerator using the CUDA version 11.0. The perfor-
mance is shown for the full expectation value simulation of
the QAOA MaxCut problem on a 3-regular graph of size 30
with depth p = 4.

II. METHODOLOGY

A. QAOA Overview

The Quantum Approximate Optimization Algorithm is a
variational quantum algorithm that combines a parameterized
ansatz state preparation with a classical outer-loop algorithm
that optimizes the ansatz parameters. QAOA is used for
approximate solution of binary optimization problems [12]. A
solution to the optimization problem is obtained by measuring
the ansatz state on a quantum device. The quality of the QAOA
solution depends on the depth of the quantum circuit that
generated the ansatz and the quality of parameters for the
ansatz state.

A binary combinatorial optimization problem is defined on
a space of binary strings of length N and has m clauses. Each
clause is a constraint satisfied by some assignment of the bit
string. QAOA maps the combinatorial optimization problem
onto a 2N -dimensional Hilbert space with computational basis
vectors |z〉 and encodes C(z) as a quantum operator Ĉ diag-
onal in the computational basis. One of the most widely used
benchmark combinatorial optimization problems is MaxCut,
which is defined on an undirected unweighted graph. The goal
of the MaxCut problem is to find a partition of the graph’s
vertices into two complementary sets such that the number of
edges between the sets is maximized. It has been shown in

[12] that on a 3-regular graph, QAOA with p = 1 produces a
solution with an approximation ratio of at least 0.6924.

A graph G = (V,E) of N = |V | vertices and m = |E|
edges can be encoded into a MaxCut cost operator over N
qubits by using m two-qubit gates.

Ĉ =
1

2

∑
(ij)∈E

1− σ̂ziσ̂zj (1)

The QAOA ansatz state |~γ, ~β〉 is prepared by applying
p layers of evolution unitaries that correspond to the cost
operator Ĉ and a mixing operator B̂ =

∑
i∈V σ̂

x
i . The initial

state is the equally weighted superposition state and maximal
eigenstate of B̂.

|~γ, ~β〉p =

p∏
k=1

e−iβkB̂e−iγkĈ |+〉 (2)

The parameterized quantum circuit (2) is called the QAOA
ansatz. We refer to the number of alternating operator pairs p
as the QAOA depth.

The solution to the combinatorial optimization problem is
obtained by measuring the QAOA ansatz. The expected quality
of this solution is an expectation value of the cost operator in
this state.

〈C〉p = 〈~γ, ~β|p C |~γ, ~β〉p
The expectation value can be minimized with respect to
parameters ~γ, ~β. The optimization of ~γ, ~β can be performed
by using classical computation or by varying the parameters
and sampling many bitstrings from a quantum computer to
estimate the expectation value. Acceleration of the optimal
parameters search for a given QAOA depth p is the focus of
many approaches aimed at demonstrating the quantum advan-
tage. Examples include such methods as warm- and multistart
optimization [13], [14], problem decomposition [15], instance
structure analysis [16], and parameter learning [17].

In this paper we focus on application of a classical quan-
tum circuit simulator QTensor to the problem of finding the
expectation value 〈C〉p.

B. Tensor Network Contractions

Calculation of an expectation value of some observable in
a given state generated by some quantum circuit can be done
efficiently by using a tensor network approach. In contrast to
state vector simulators, which store the full state vector of
size 2N , QTensor maps a quantum circuit to a tensor network.
Each quantum gate of the circuit is converted to a tensor. An
expectation value 〈φ|Ĉ|φ〉 = 〈ψ|Û†ĈÛ |ψ〉 is then simulated
by contracting the corresponding tensor network. For more
details on how a quantum circuit is converted to a tensor
network, see [18], [19].

A tensor network is a collection of tensors, which in turn
have a collection of indices, where tensors share some indices
with each other. To contract a tensor network, we create
an ordered list of tensor buckets. Each bucket (a collection
of tensors) corresponds to a tensor index, which is called

bucket index. Buckets are then contracted one by one. The
contraction of a bucket is performed by summing over the
bucket index, and the resulting tensor is then appended to the
appropriate bucket. The number of unique indices in aggregate
indices of all bucket tensors is called a bucket width. The
memory and computational resources of a bucket contraction
scale exponentially with the associated bucket width. For more
information on tensor network contraction, see [20]–[22]. If
some observable Σ̂ acts on a small subset of qubits, most of
the gates in the quantum circuit Û cancel out when evaluating
the expectation value. The cost QAOA operator Ĉ is a sum of
m such terms, each of which could be viewed as a separate
observable. Each term generates a lightcone—a subset of
the problem that generates a tensor network representing the
contribution to the cost expectation value.

The expectation value of the cost for the graph G and
MaxCut QAOA depth p is then

〈C〉p (~γ, ~β) = 〈~γ, ~β|Ĉ|~γ, ~β〉

= 〈~γ, ~β|
∑
jk∈E

1

2
(1− σ̂zj σ̂zk)|~γ, ~β〉

=
|E|
2
− 1

2

∑
jk∈E

〈~γ, ~β|σ̂zj σ̂zk|~γ, ~β〉

≡ |E|
2
− 1

2

∑
jk∈E

ejk(~γ, ~β),

where ejk is an individual edge contribution to the total cost
function. Note that the observable in the definition of ejk is
local to only two qubits; therefore most of the gates in the
circuit that generates the state |~γ, ~β〉 cancel out. The circuit
after the cancellation is equivalent to calculating σ̂zj σ̂zk on
a subgraph S of the original graph G. These subgraphs can
be obtained by taking only the edges that are incident from
vertices at a distance p − 1 from the vertices j and k. The
full calculation of EG(~γ, ~β) requires evaluation of |E| tensor
networks, each representing the value ejk(~γ, ~β) for jk ∈ E.

C. Merged Indices Contraction

Since the contraction in the bucket elimination algorithm
is executed one index at a time, the ratio of computational
operations to memory read/write operations is small. This ratio
is also called the operational intensity or arithmetic intensity.
Having small arithmetic intensity hurts the performance in
terms of FLOPs: for each floating-point operation calculated
there are relatively many I/O operations, which are usually
slower. For example, to calculate one element of the resulting
matrix in a matrix multiplication problem, one needs to read
2N elements and perform 4N operations. The size of the
resulting matrix is similar to the input matrices. In contrast,
when calculating an outer product of two vectors, the size of
the resulting matrix is much larger than the combined size of
the input vectors; each element requires two reads and only
one floating-point operation.

To mitigate this limitation, we develop an approach for
increasing the arithmetic intensity, which we call merged

indices. The essence of the approach is to combine several
buckets and contract their corresponding indices at once, thus
having smaller output size and larger arithmetic intensity. We
have a group of circuit contraction backends that all use this
approach.

For the merged backend group, we order the buckets first
and then find the mergeable indices before performing the
contraction. We list the set of indices of tensors in each bucket
and then merge the buckets if the set of indices of one bucket
is a subset of the other. We benchmark the sum of the total
time needed for the merged indices contraction and compare
it with the unmerged baseline results. We call this group the
“merged” group and the baseline the “unmerged” group.

D. CPU-GPU Hybrid Backend

The initial tensor network contains only very small tensors
of at most 16 elements (4 dimensions of size 2). We observe
that the contraction sequence obtained by our ordering al-
gorithm results in buckets of small width for first 80% of
contraction steps. Only after all small buckets are contracted,
sequence we start to contract large buckets. The GPUs usually
perform much better when processing large amount of data.
We observe this behaviour in our benchmarks on Figure 1.
We therefore implement a mix backend which uses both CPU
and GPU. It combines a CPU backend and a GPU backend by
dispatching the contraction procedure to appropriate backend.

The mix or the hybrid backend uses the bucket width, which
is determined by the number of unique indices in a bucket, to
allocate the correct device for such a bucket to be computed.
The threshold between the CPU backend and the GPU backend
is determined by a trial program. This program runs a small
circuit, which is used for all backends for testing, separately
on a GPU backend and a CPU backend. After the testing
is complete, it iterates through all bucket widths and checks
whether at this bucket width the GPU takes less time or not.
If it finds the bucket width at which the GPU is faster, it
will output that bucket width, and the user can use this width
when creating the hybrid backend in the actual simulation. In
the actual simulation, if the bucket width is smaller than the
threshold, the hybrid backend will allocate this bucket to the
CPU and will allocate it to the GPU if the width is greater.

Since we don’t contract buckets of large width on CPU,
the resulting tensors are rather small, on the order of 1,000s
of bytes. The time for data transfer in this case is considered
negligible and is not measured in our code. The large tensors
start to appear from contractions that combine these small
tensors after all the data is moved to GPU.

E. Datasets for Synthetic Benchmarks

Tensor network contraction is a complex procedure that
involves many inhomogeneous operations. Since we are in-
terested in achieving the maximum performance of the sim-
ulations, it is beneficial to compare the FLOPs performance
to several more relevant benchmarking problems. We select
several problems for this task:

1) Square matrix multiplication, the simplest benchmark
problem which serves as an upper bound for our FLOP
performance;

2) Pairwise tensor contractions with a small number of
large dimensions and fixed contraction structure;

3) Pairwise tensor contractions with a large number of
dimensions of size 2 and permuted indices;

4) Bucket contraction of buckets that are produced by
actual expectation value calculation;

5) Full circuit contraction which takes into account buckets
of large and small width.

By gradually adding complexity levels to the benchmark
problems and evaluating the performance on each level, we
look for the largest reduction in FLOPs. The corresponding
level of complexity will be at the focus of our future efforts for
optimisation of performance. The results for these benchmarks
are shown in Section III-E and Figures 6 and 7.

1) Matrix Multiplication: We perform the matrix multipli-
cations for the square matrices of the same size and record
the time for the operation for the CPU backend Numpy and
the GPU backends PyTorch and CuPy. We use the built-in
random() function of each backend to randomly generate
two square matrices of equal size as our input, and we use the
built-in matmul() function to produce the output matrix. The
size of the input matrices ranges from 10×10 to 8192×8192,
and the test is done repeatedly on four different data types:
float, double, complex64, and complex128. For the
multiplication of two n × n matrices, we define the number
of complex operations to be n3, and we calculate the number
of FLOPs for complex numbers as 8× number of operations

operation time .
2) Tensor Network Contraction: We have two experiment

groups in benchmarking the tensor contraction performance:
tensor contractions with a fixed contraction expression and
tensor contractions with many indices where each index has a
small size. We call the former group “tncontract fixed” because
we fix the contraction expression as “abcd,bcdf−→acf,” and we
call the latter one “tncontract random” because we randomly
generate the contraction expression. In a general contraction
expression, we sum over the indices not contained in the
result indices. In this fixed contraction expression, we sum
over the common index “b” and “d” and keep the rest in our
result indices. We generate two square input tensors of shape
n×n×n×n and output a tensor of shape n×n×n, where n
is a size ranging from 10 to 100. For the “tncontract random”
group, we randomly generate the number of contracted indices
and the number of indices in the results first and then fill in the
shape array with size 2. For example, a contraction formula
“dacb,ad−→bcd” (index “a” is contracted) needs two input
tensors: the first one with shape 2×2×2×2 and the second one
with shape 2 × 2. We use the formula 2number of different indices

to calculate the number of operations, and we record the
contraction time and compute the FLOPs value based on the
formula used in matrix multiplication. Following the same
procedure in matrix multiplication, we use the backends’ built-
in functions to randomly generate the input tensors based on
the required size and the four data types.

0 5 10 15 20 25 30
bucket width

10 5

10 4

10 3

10 2

10 1

100

101

m
ea

n
of

 o
pe

ra
tio

n
tim

e

cupy
einsum
torch_gpu

Fig. 1: Breakdown of mean time to contract a single bucket
by bucket width. The test is performed for expectation value
as described in III-A. CPU backends are faster for buckets of
width ≤ 13−16, and GPU faster are better for larger buckets.
This picture also demonstrates that every contraction operation
spends some time on overhead which doesn’t depend on
bucket width, and actual calculation that scales exponentially
with bucket width.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

bucket width

100

101

102

103

co
un

t o
f b

uc
ke

ts

Fig. 2: Distribution of bucket width in the contraction of
QAOA full circuit simulation. The y-axis is log scale; 82% of
buckets have width ≤ 6, which have relatively large overhead
time.

3) Circuit Simulation: For numerical evaluations, we
benchmark the full expectation value simulation of the QAOA
MaxCut problem for a 3-regular graph of size 30 and QAOA
depth p = 4. We have two properties for evaluating the circuit
simulation performance: unmerged vs. merged backend and
single vs. mixed backend.

III. RESULTS

The experiment is performed on an NVIDIA DGX-2 server
(provided by NVIDIA corporation) with a V100 accelerator
using the CUDA version 11.0. The baseline NumPy backend
is executed only on a CPU and labeled “einsum” in our

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Fig. 3: Breakdown of total time spent on bucket of each size
in full QAOA expectation value simulation. The y-value on
this plot is effectively one in Figure 1 multiplied by one
in Figure 2. This figure is very useful for analyzing the
bottlenecks of the simulation. It shows that most of the time for
CPU backend is spent on large buckets, but for GPU backends
the large number of small buckets results in a slowdown.

experiment since we use numpy.einsum() for the tensor
computation. We also benchmark the GPU library CuPy (on
the GPU only) and PyTorch (on both the CPU and GPU).

A. Single CPU-GPU Backends

We benchmark the performance of the full expectation value
simulation of the QAOA MaxCut problem on a 3-regular graph
of size 30 with depth p = 4, as shown in in Figures 1, 2, and
3. This corresponds to contraction of 20 tensor networks, one
network per each lightcone. Our GPU implementation of the
simulator using PyTorch (labeled “torch gpu”) achieves 70.3×
speedup over the CPU baseline and 1.92× speedup over CuPy.

Figure 1 shows the mean contraction time of various bucket
widths in different backends. In comparison with ”cupy”
backend, the ”einsum” backend spends less total time for
bucket width less than 16, and the threshold value changes to
around 13 when being compared to ”torch gpu” backend. Both
GPU backends have similar and better performance for larger
bucket widths. However, this threshold value can fluctuate
when comparing the same pair of CPU and GPU backends.
This is likely due to the fact that the benchmarking platform
are under different usage loads.

Figure 3 provides a breakdown of the contraction times of
buckets by bucket width. This distribution is multimodal: A
large portion of time is spent on buckets of width 4. For
CPU backends the bulk of the simulation time is spent on
contracting large buckets. Figure 2 shows the distribution of
bucket widths, where 82% of buckets have width less than 7.
This signifies that simulation has an overhead from contracting
a large number of small buckets.

This situation is particularly noticeable when looking at
the total contraction time of different bucket widths. Figure
3 shows that the distribution of time vs bucket width has two

0 5 10 15 20 25 30
bucket width

10 3

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum
torch_gpu

Fig. 4: Breakdown of total contraction time by bucket width
in full expectation value simulation of problem size 30. Lines
with the same color use the same type of backends. The solid
lines represent the merged version of backends, and the dashed
lines denote the baseline backends. The merged GPU backends
are better for buckets of width ≥ 20.

Backend Name Device Time (second) Speedup
Torch CPU CPU 347 0.71×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
Torch GPU GPU 3.5 70.3×
Torch CPU + Torch GPU Mixed 2.6 94.8×
NumPy + CuPy Mixed 2.1 117×

TABLE I: Time for full QAOA expectation value simulation using
backend that utilize GPUs or CPUs. The expectation value is MaxCut
on a 3-regular graph of size 30 and QAOA depth p = 4. Speedup
shows the overall runtime improvement compared with the baseline
CPU backend “NumPy”. “Mixed” device means the backend uses
both CPU and GPU devices.

modes: for large buckets that dominate the contraction time
for CPU backends and for small buckets where most of the
time is spent on I/O and other code overhead.

B. Merged Backend Results

The “merged” groups merge the indices before performing
contractions. In Fig. 4, the three unmerged (baseline) backends
are denoted by dashed lines, while the merged backends
are shown by solid lines. For the GPU backends CuPy and
PyTorch, the merged group performs significantly better for
buckets of width ≥ 20. The CuPy merged backend always
has a similar or better performance compared with the CuPy
unmerged group and has much better performance for buckets
of larger width. For buckets of width 28, the total operation
time of the unmerged GPU backends is about 0.28 seconds,
compared with 32 ms (8.75× speedup) for the CuPy merged
group and 8.8 ms (31.82× speedup) for the PyTorch backend.
But we do not observe much improvement for the merged
CPU backend.

Backend Name Device Time (seconds) Speedup
NumPy Merged CPU 383 0.64×
NumPy (baseline) CPU 246 1.00×
CuPy GPU 6.7 36.7×
CuPy Merged GPU 5.6 43.9×
NumPy + CuPy Mixed 2.1 117×
NumPy Merged + CuPy Merged Mixed 1.4 176×

TABLE II: Time for full QAOA expectation value simulation using
different Merged backends, as described in Section II-C. The expecta-
tion value is MaxCut on a 3-regular graph of size 30 and QAOA depth
p = 4. Speedup shows the overall runtime improvement compared
with the baseline CPU backend “NumPy”.

C. Mix CPU-GPU Backend Results

From Figure 1 one can see that GPU backends perform
much better for buckets of large width, while CPU backends
are better for smaller buckets. We thus implemented a mixed
backend approach, which dynamically selects a device (CPU
or GPU) on which the bucket should be contracted. We select
a threshold value of 15 for the bucket width; any bucket that
has a width larger than 15 will be contracted on the GPU.
Figure 3 shows that for GPU backends small buckets occupy
approximately 90% of the total simulation time. The results
for this approach are shown in Table I under backend names
“Torch CPU + Torch GPU” and “NumPy + CuPy.” Using a
CPU backend in combination with Torch GPU improves the
performance by 1.2×, and for CuPy the improvement is 3×.
These results suggest that using a combination of NumPy +
Torch GPU has the potential to give the best results.

We have evaluated the GPU performance of tensor network
contraction for the energy calculation of QAOA. The problem
is largely inhomogeneous with a lot of small buckets and
a few very large buckets. Most of the improvement comes
from using GPUs on large buckets, with up to 300× speed
improvement. On the other hand, the contraction of smaller
tensors is faster on CPUs. In general, if the maximum bucket
width of a lightcone is less than ∼ 17, the improvement from
using GPUs is marginal. In addition, large buckets require a
lot of memory. For example, a bucket of width 27 produces
a tensor with 27 dimensions of size 2, and the memory
requirement for complex128 data type is 2 GB. In practice,
these calculations are feasible up to width ∼ 29.

D. Mixed Merged Backend Results

Since the performance of the NumPy-CuPy hybrid backend
is the best among all implemented hybrid backends, cross-
testing between merged backends and hybrid backends focuses
on the combination of the NumPy backend and CuPy backend.
Because of the API constraint, the hybrid of a regular NumPy
backend and a merged CuPy backend was not implemented.

In Table II, merging buckets provide a performance boost
for the CuPy backend and Numpy + CuPy hybrid backend but
not the NumPy backend. CuPy Merged is 20% faster than
CuPy, and NumPy Merged + CuPy Merged is 50% faster
than its regular counterpart. However, NumPy Merged has
an significant slowdown compared with the baseline NumPy,
suggesting that combining the regular NumPy backend with

5 10 15 20 25 30
bucket width

10 2

10 1

100

101

102

su
m

 o
f o

pe
ra

tio
n

tim
e

cupy
einsum-cupy
einsum

Fig. 5: Breakdown of sum contraction time by bucket width
for merged backends. CPU backends are better for buckets of
width ≤ 15, and GPU backends are better for larger buckets.
The hybrid backend’s GPU backend spends outperforms the
regular GPU backend for buckets of width ≥ 15.

the merged CuPy backend can provide more speedup for the
future.

In Fig. 5, CPU performance is better than GPU performance
when the bucket width is approximately less than 15. After 15,
GPU performance scales with width much better than that of
CPU performance, providing a significant speed boost over
the CPU in the end. GPU performance of the hybrid backend
is better than that of pure GPU backend for buckets of width
≥ 15. This speedup of the hybrid backend is likely caused by
less garbage handling for the GPU since most buckets aren’t
stored on GPU memory.

E. Synthetic Benchmarks

We also benchmark the time required for the basic opera-
tions: matrix multiplication, tensor network contraction with
fixed contraction indices, and tensor network contraction with
random indices, as well as circuit contractions.

The summary of the results is shown in Table III, which
compares FLOPs count for similar-sized problems of different
types. Figures 6 and 7 show dependence of FLOPs vs problem
size for different problems. We observe 80% of theoretical
peak performance on GPU for matrix multiplication. Switch-
ing to pairwise tensor network contraction shows similar
FLOPs for GPU, while for CPU, it results in 10× FLOPs
decrease. A significant reduction in performance comes from
switching from pairwise tensor network contractions of a
tensor with few dimensions of large size to tensors with
many permuted dimensions and small size. This reduction in
performance is about 10× for both CPU and GPU. This obser-
vation suggests that further improvement can be achieved by
reformulating the tensor network operations in a smaller tensor
by transposing and merging the dimensions of participating
tensors. It is partially addressed in using the merged indices
approach, where the contraction dimension is increased. The
“Bucket Contraction Merged” task shows 45% of theoretical

Task CPU FLOPs GPU FLOPs
Matrix Multiplication 50.1G 2.38T
Tensor Network Fixed Contraction 5.53G 1.36T
Tensor Network Random Contraction 640M 97.5G
Bucket Contraction Unmerged 241M 61.9G
Bucket Contraction Merged 542M 1.14T
Lightcone Contraction Unmerged 326M 4.92G
Lightcone Contraction Merged 177M 3.1G
Circuit Contraction Mixed 30.7G

TABLE III: Summary of GPU and CPU FLOPs for different tasks
at around 100 million operations. Matrix Multiplication and Tensor
Contraction tasks are described in Section III-E. “Bucket Contrac-
tion” groups record the maximum number of FLOPs for a single
bucket. “Lightcone Contraction” groups contain the FLOPs data on
a single lightcone where the sum of operations is approximately 100
millions, small and large buckets combined.

peak performance, which significantly improves compared to
the unmerged counterpart.

The significant reduction of performance comes when we
compare bucket contraction and full circuit contraction. It was
explained in detail in Section III-A and is caused by overhead
from small buckets. It is evident from Figure 3 that most of
the time in GPU simulation is spent on overhead from small
bucket contraction. This issue is addressed by implementing
the mixed backend approach.

It is also notable that the merged approach does not improve
the performance for CPU backends which is probably due to
an inefficient implementation of original numpy.einsum().

1) Matrix Multiplication: The multiplication of square ma-
trices of size 465 needs approximately 100 million complex
operations according to our calculation of operations value.
The average operation time for the multiplication of two
randomly generated complex128 square matrices of size
465 is 0.3 ms on the GPU, which achieves 50× speedup
compared with the operation time of 16 ms on the CPU;
NumPy produces 50G FLOPs on CPU, and the GPU backend
CuPy reaches 2.38T FLOPs for this operation. We observe
that the CPU backend has an advantage in performing small
operations: for matrices of size 10 × 10, the CPU backend
NumPy spends only 5.8 µs for the multiplication, while the
best GPU backend PyTorch spends 27 µs on the operation.
When the matrix size is less than 2000 × 2000 for the GPU
backends, PyTorch outperforms CuPy, and CuPy is slightly
better for much larger operations. Moreover, the operation time
for both CPU and GPU backends decreases slightly when the
size of matrices increases from 1000 to 1024 and from 4090
to 4096.

2) Fixed Tensor Network Contraction: We use the fixed
contraction formula “abcd,bcdf−→acf” and control the size of
the tensor indices from 10 to 100. Even for the smallest case
when the number of operations is 100,000 with indices of
size 10, the slowest GPU backend is faster than the CPU
backend Numpy, which spends 0.3 ms on the contraction. For
the GPU backends, we achieve 1.36T FLOPs for this fixed
contraction, which is 57% of the recorded peak performance.
In accordance with the matrix multiplication results, the CuPy

101 103 105 107 109 1011

Operations

106

108

1010

1012

FL
OP

s
CuPy on different tasks

circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Fig. 6: FLOPs vs. the number of operations for all tasks on
the CuPy backend. “circuit unmerged” and “circuit merged”
are results of expectation value of the full circuit simulation
of QAOA MaxCut problem on a 3-regular graph of size 30
with depth p = 4. “tncontract random” tests on tensors of
many indices where each index has a small size. “tncontract
fixed” uses the contraction sequence “abcd,bcdf−→acf” for
all contractions. “matmul” performs matrix multiplication on
square matrices. All groups use complex128 tensors in the
operation. We use the triangles to denote the data at ∼ 100
million operations, which is shown in Table III.

backend performs better than the PyTorch backend in the
fixed tensor network contractions only when the number of
operations is greater than 1G.

3) Random Tensor Network Contraction: We let the num-
ber of indices be any number between 4 and 25, and we
set the size of each mode to be 2. For example, we have
5 indices in total, and we randomly generate a contraction
sequence “caedb,eab−→cde,” so the sizes of the input tensors
are 25 and 23, resulting in an output tensor of size 23. We
reach 97.5 G FLOPs for the GPU backends and 640 M for the
CPU backend only when performing this random contraction.
As shown in Fig. 6, the mean FLOPs drop significantly
when we use random contraction (in green) instead of fixed
contraction (in red) on the CuPy backend. On the CPU,
the gap increases with the increasing number of operations
according to Fig. 7. Therefore, contractions on tensors with
small numbers of indices of large size have better performance
than contractions on tensors with many indices of small size.
The ”tncontract random” group is designed to break down
the circuit simulation to tensor contraction operations, so it
overlaps with the results from the ”bucket unmerged” group
in Fig. 6. From the difference in performance of the random
and the fixed tensor contraction group, we design the merged
bucket group to improve the performance of contractions. Our
goal is to make the bucket simulation curve close to the tensor
contraction fixed group (the red curve).

101 103 105 107 109 1011

Operations

106

107

108

109

1010

1011

1012

FL
OP

s

NumPy on different tasks
circuit unmerged
circuit merged
tncontract random
tncontract fixed
matmul

Fig. 7: FLOPs vs. the number of operations for all tasks on
NumPy backend. Same problem setting as Fig. 6. “tncontract
random” outperforms “tncontract fixed” as the ops value
increases. Merged backend does not have an advantage on
CPU compared to the unmerged backend. We use the triangles
to denote the data at ∼ 100 million operations, which is shown
in Table III.

IV. CONCLUSIONS

This work has demonstrated that GPUs can significantly
speed up quantum circuit simulations using tensor network
contractions. We demonstrate that GPUs are best for contract-
ing large tensors, while CPUs are slightly better for small
tensors. Moving the computation onto GPUs can dramatically
speed up the computation. We propose to use a contraction
backend that dynamically assigns the CPU or GPU device
to tensors based on their size. This mixed backend approach
demonstrated a 176× improvement in time to solution.

We observe up to 300× speedup on GPU compared to
CPU for individual large buckets. In general, if the maximum
bucketwidth of a lightcone is less than ∼ 17, the improvement
from using GPUs is marginal. It underlines the importance of
using a mixed CPU/GPU backend for tensor contraction and
using device selection for the tensor at runtime to achieve the
maximum performance. On NVIDIA DGX-2 server we found
out that the threshold is ∼ 15, but it may change for other
computing systems.

We also demonstrated the performance of the merged
indices approach, which improves the arithmetic intensity
and provides a significant FLOP improvement. Our synthetic
benchmarks for various tensor contraction tasks suggest that
additional improvement can be obtained by transposing and
reshaping tensors in pairwise contractions.

The main conclusion of this paper is that we found that
GPUs can dramatically increase the speed of tensor con-
tractions for large tensors. The smaller tensors need to be
computed on a CPU only because of overhead to move on
and off data to a GPU. We show that the approach of merged
indices allows to speed up large tensors contraction, but it
does not solve the problem completely. Where to compute

tensors leads to the problem of optimal load balancing between
CPU and GPU. This potential issue will be the subject of
our future work, as well as testing of the performance of the
code on new NVidia DGX systems and GPU supercomputers
using cuTensor and cuQuantum software packages developed
by NVidia.

ACKNOWLEDGMENTS

Danylo Lykov and Yuri Alexeev are supported by the
Defense Advanced Research Projects Agency (DARPA) grant.
Yuri Alexeev and Angela Chen are also supported in a part
by the Exascale Computing Project (17-SC-20-SC), a joint
project of the U.S. Department of Energy’s Office of Science
and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s
exascale computing imperative. Huaxuan Chen is supported
in part by the U.S. Department of Energy, Office of Science,
Office of Workforce Development for Teachers and Scientists
(WDTS) under the Science Undergraduate Laboratory Intern-
ships Program (SULI). This work used the resources of the
Argonne Leadership Computing Facility, which is DOE Office
of Science User Facility supported under Contract DE-AC02-
06CH11357.

REFERENCES

[1] Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T.
Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman, A. Gor-
shkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S. Lloyd, M. Lukin,
D. Maslov, P. Maunz, C. Monroe, J. Preskill, M. Roetteler, M. Savage,
and J. Thompson, “Quantum computer systems for scientific discovery,”
PRX Quantum, vol. 2, no. 1, p. 017001, 2021.

[2] K. De Raedt, K. Michielsen, H. De Raedt, B. Trieu, G. Arnold,
M. Richter, T. Lippert, H. Watanabe, and N. Ito, “Massively parallel
quantum computer simulator,” Computer Physics Communications, vol.
176, no. 2, pp. 121–136, 2007.

[3] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, “qHiPSTER: the
quantum high performance software testing environment,” arXiv preprint
arXiv:1601.07195, 2016.

[4] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit quan-
tum circuit,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2017, p. 33.

[5] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society, 2019, pp. 1–24.

[6] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[7] (2020) QuaC (quantum in c) is a parallel time dependent open quantum
systems solver. [Online]. Available: https://github.com/0tt3r/QuaC

[8] I. L. Markov and Y. Shi, “Simulating quantum computation by contract-
ing tensor networks,” SIAM Journal on Computing, vol. 38, no. 3, pp.
963–981, 2008.

[9] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein,
E. Solomonik, and R. Wisnieff, “Breaking the 49-qubit barrier in the
simulation of quantum circuits,” arXiv preprint arXiv:1710.05867, 2017.

[10] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, “Simulation
of low-depth quantum circuits as complex undirected graphical models,”
arXiv preprint arXiv:1712.05384, 2017.

[11] E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum
approximate optimization algorithm,” arXiv preprint arXiv:1602.07674,
2016.

[12] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[13] D. J. Egger, J. Mareček, and S. Woerner, “Warm-starting quantum
optimization,” Quantum, vol. 5, p. 479, 2021.

[14] R. Shaydulin, I. Safro, and J. Larson, “Multistart methods for quantum
approximate optimization,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2019, pp. 1–8.

[15] R. Shaydulin, H. Ushijima-Mwesigwa, C. F. Negre, I. Safro, S. M.
Mniszewski, and Y. Alexeev, “A hybrid approach for solving optimiza-
tion problems on small quantum computers,” Computer, vol. 52, no. 6,
pp. 18–26, 2019.

[16] R. Shaydulin, S. Hadfield, T. Hogg, and I. Safro, “Classical symmetries
and QAOA,” arXiv preprint arXiv:2012.04713, 2020.

[17] S. Khairy, R. Shaydulin, L. Cincio, Y. Alexeev, and P. Balaprakash,
“Learning to optimize variational quantum circuits to solve combina-
torial problems,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 03, 2020, pp. 2367–2375.

[18] R. Schutski, D. Lykov, and I. Oseledets, “Adaptive algorithm for
quantum circuit simulation,” Physical Review A, vol. 101, no. 4, p.
042335, 2020.

[19] D. Lykov, R. Schutski, A. Galda, V. Vinokur, and Y. Alexeev, “Tensor
network quantum simulator with step-dependent parallelization,” arXiv
preprint arXiv:2012.02430, 2020.

[20] D. Lykov and Y. Alexeev, “Importance of diagonal gates in tensor
network simulations,” arXiv preprint 2106.15740, 2021.

[21] D. Lykov, R. Schutski, A. Galda, V. Vinokur, and Y. Alexeev, “Tensor
network quantum simulator with step-dependent parallelization,” arXiv
preprint arXiv:2012.02430, 2020.

[22] R. Schutski, D. Lykov, and I. Oseledets, “Adaptive algorithm for
quantum circuit simulation,” Phys. Rev. A, vol. 101, p. 042335, Apr
2020.

https://github.com/0tt3r/QuaC

	Introduction
	Methodology
	QAOA Overview
	Tensor Network Contractions
	Merged Indices Contraction
	CPU-GPU Hybrid Backend
	Datasets for Synthetic Benchmarks
	Matrix Multiplication
	Tensor Network Contraction
	Circuit Simulation

	Results
	Single CPU-GPU Backends
	Merged Backend Results
	Mix CPU-GPU Backend Results
	Mixed Merged Backend Results
	Synthetic Benchmarks
	Matrix Multiplication
	Fixed Tensor Network Contraction
	Random Tensor Network Contraction

	Conclusions
	References

