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Abstract

We consider adversarial training of deep neu-
ral networks through the lens of Bayesian learn-
ing, and present a principled framework for ad-
versarial training of Bayesian Neural Networks
(BNNs) with certifiable guarantees. We rely
on techniques from constraint relaxation of non-
convex optimisation problems and modify the
standard cross-entropy error model to enforce
posterior robustness to worst-case perturbations
in ε-balls around input points. We illustrate
how the resulting framework can be combined
with methods commonly employed for approx-
imate inference of BNNs. In an empirical inves-
tigation, we demonstrate that the presented ap-
proach enables training of certifiably robust mod-
els on MNIST, FashionMNIST and CIFAR-10
and can also be beneficial for uncertainty cali-
bration. Our method is the first to directly train
certifiable BNNs, thus facilitating their deploy-
ment in safety-critical applications.

1 INTRODUCTION

Although deep neural networks (NNs) have achieved state-
of-the-art performance in a range of learning tasks (Good-
fellow et al., 2016), they have recently been shown to be
susceptible to adversarial attacks: small, often impercepti-
ble perturbations to their inputs that can trigger a misclas-
sification (Goodfellow et al., 2014; Biggio and Roli, 2018).
While retaining the flexibility of standard (deterministic)
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NNs, Bayesian neural networks (BNNs), i.e., neural net-
works with distributions placed over their weights and bi-
ases, enable principled quantification of their predictions’
uncertainty (Neal, 2012). Intuitively, the latter can be
used to provide a natural protection against adversarial ex-
amples, making BNNs particularly appealing for safety-
critical scenarios, in which the safety of the system must
be provably guaranteed (McAllister et al., 2017). In fact,
not only have BNNs been shown to possess many favorable
robustness properties against adversarial attacks (Bekasov
and Murray, 2018; Carbone et al., 2020), but their uncer-
tainty has also been investigated as a means of flagging
out-of-distribution samples and for robust decision making
(Kahn et al., 2017).

However, while guarantees for BNNs have been provided
for the true Bayesian posterior and under idealised condi-
tions on the training data and network architecture, the nec-
essary assumptions cannot be checked in practice and exact
inference for BNNs is generally infeasible. Indeed, it has
been shown that BNNs trained with modern approximate
inference methods and on real-world datasets can be easily
fooled by adversarial attacks (Grosse et al., 2018; Atha-
lye et al., 2018). Consequently, BNN methodologies need
to be strengthened before they can be deployed in practi-
cal safety-critical scenarios. However, to the best of our
knowledge, there is no general Bayesian approach targeted
at the training of BNNs with certifiable robustness against
adversarial attacks.

In this paper, we present a principled Bayesian approach
for incorporating adversarial robustness in the posterior in-
ference procedure of BNNs. In order to do so, we formu-
late the robustness requirement as the worst-case prediction
over an adversarial input ball of radius ε ≥ 0 induced by a
user-defined probability density function pε, and extend the
standard cross-entropy likelihood model by marginalising
the network output over pε. We refer to the resulting like-
lihood model as the robust likelihood. We show how, for
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any ε > 0, certified lower bounds to the robust likelihood
can be computed by employing Interval Bound Propaga-
tion (IBP) techniques (Ehlers, 2017; Mirman et al., 2018;
Gowal et al., 2018). We further demonstrate that, based
on a differentiable modification of the likelihood model,
the adversarial training procedure we introduce adapts nat-
urally to the main approximate inference techniques em-
ployed for training of BNNs, including HMC (Neal et al.,
2011), Bayes by Backprop (BBB) (Blundell et al., 2015),
Stochastic Weight Averaging - Gaussian (SWAG) (Maddox
et al., 2019), NoisyAdam (NA) (Zhang et al., 2018a), and
Variational Online Gauss-Newton (VOGN) (Osawa et al.,
2019).

We experimentally investigate the suitability of our method
for training certifiably robust BNN models on the MNIST,
FashionMNIST and CIFAR-10 datasets. We find that train-
ing with the robust likelihood enables the first non-trivial
adversarial robustness certification on BNNs. In particu-
lar, we obtain certified bounds for the robust accuracy of
up to 75% on the MNIST test set for ε = 0.1, up to 73%
on the FashionMNIST test set for ε = 0.1, and up to 50%
on the CIFAR-10 test set for ε = 1/255. We find the max-
imum certified safe radius when training with the robust
likelihood to be double that obtained when training with
the standard likelihood model, which suggests that the ro-
bust likelihood pushes the BNN posterior distribution to-
ward more robust regions of the parameter space. Further-
more, we analyse the effect that the robust likelihood has on
the predictive uncertainty. We qualitatively observe better
calibrated uncertainty when predicting out-of-distribution
samples compared with standard training.

In summary, this paper makes the following main contribu-
tions:

• We introduce a robust likelihood function based on
an adversarial generalisation of the cross-entropy er-
ror model for the training of certifiably robust BNNs.

• We demonstrate how IBP techniques can be employed
to compute a certified lower bound to the robust likeli-
hood for commonly employed approximate Bayesian
inference techniques.

• We show how our methods allow us to train, for the
first time, certified BNNs on MNIST, FashionMNIST
and CIFAR-10 with non-trivial robustness. We em-
pirically find that it also leads to improvements in the
calibration of uncertainty.1

Related Works Robustness to adversarial examples has
been a central topic for both machine learning theorists

1All of the source code to repro-
duce the experiments can be found at
https://github.com/matthewwicker/CertifiableBayesianInference.
All the experiments were run on a single NVIDIA 2080Ti GPU
with a 20-core Intel Core Xeon 6230.

and practitioners since the seminal work of Szegedy et al.
(2013). Since their popularization (Biggio and Roli, 2018),
many methods have been developed to generate adversar-
ial attacks for neural networks (Goodfellow et al., 2014;
Madry et al., 2017; Carlini and Wagner, 2016) and also
specifically for BNNs (Carbone et al., 2020; Yuan et al.,
2021). In addition to this, several other methods have been
proposed for computing guarantees on the absence of ad-
versarial attacks in the neighbourhood of a given test point
(Katz et al., 2017; Boopathy et al., 2019), including works
that focus on quantifying the robustness to adversarial per-
turbations of BNNs (Cardelli et al., 2019a; Wicker et al.,
2020) and Gaussian processes (Cardelli et al., 2019b; Blaas
et al., 2020).

Adversarial training, on the other hand, seeks to directly
train neural networks that are robust to them (Madry et al.,
2017). Most of the adversarial training methods have been
developed for deterministic (i.e., non-Bayesian) neural net-
works, where the common approach is that of solving
a min-max optimization problem obtained by modifying
the loss. Based on a similar approach, (Liu et al., 2018)
have developed a method for adversarial training of BNNs
trained with Gaussian Variational Inference (VI). However,
this method cannot be directly extended to other approx-
imate inference algorithms and relies on gradient-based
attacks (i.e., PGD (Madry et al., 2017)) to approximate
worst-case perturbations in the neighbourhood of each data
point, which, as we show in Section 5, may fail to general-
ize to other attacks. Similarly, Ye and Zhu (2018), assumes
a prior distribution around each data point, which is then
used to sample adversarial examples. However, by assum-
ing a distribution over the adversarial examples, the result-
ing approach is not worst-case. In contrast, the framework
presented in this paper is based on a principled Bayesian
foundation (i.e., we modify the standard likelihood model
to account for adversarial examples). As a consequence, it
can be formulated directly for any approximate inference
method. Furthermore, by explicitly maximizing a lower
bound of the robust likelihood instead of an approximation
obtained by employing gradient-based attacks, it allows us
to obtain non-trivial certifiable worst-case guarantees for
BNNs as illustrated in Section 5.

2 BAYESIAN INFERENCE WITH
NEURAL NETWORKS

We consider a generic neural network (NN) architecture,
fw : Rn 7→ RC , parameterised by a vector of weights
w ∈ Rnw , where C is the number of classes.2 In a
Bayesian setting, one assumes a prior distribution over the
weights, p(w), that induces a distribution over the network
outputs. Given a dataset D = {(xi, yi)}nDi=1 our belief

2We discuss how to generalise to the regression case in Re-
mark 1
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over the weight distribution is updated through Bayes’ the-
orem, so as to obtain the posterior weight distribution as
p(w|D) ∝ p(D|w)p(w). In the latter equation, p(D|w) is
the data likelihood and, under the assumption that data in
D are drawn independently from the same distribution, we
have p(D|w) =

∏nD
i=1 p(yi|xi, w). In the standard clas-

sification model, the likelihood for a point (xi, yi), i.e.,
p(yi|xi, w), is defined as the multinoulli distribution with
the probability for each class given as the softmax of the
neural network final logits (Bishop et al., 1995). In what
follows, we will refer to thus defined p(yi|xi, w) as the
standard likelihood. In Section 3 we will discuss how the
standard likelihood can be modified in order to model ad-
versarial perturbations. Given the posterior, p(D|w), the
predictive distribution over a test point x∗ is computed as
the expected value over the softmax output. In practice, this
is computed via an empirical estimator:

Ew∼p(w|D)[σ(fw(x))] ≈

ÊN (x) :=
1

N

N∑
i=1

σ (fwi(x)) , (1)

where w1, . . . , wN are N random samples from p(w|D)
and σ(·) is the softmax function. The output class for a test
point x∗ is then computed as arg maxc∈{1,...,C} ÊN (x∗).

Given the predictor, a local adversarial example for the
BNN at a given test point x∗ with associated class label
c∗ is defined as a point x̄ ∈ Rn such that |x∗ − x̄| ≤ ε and
arg maxc∈{1,...,C} ÊN (x̄) 6= c∗, where | · | is a given norm,
that is, a point in the neighborhood of x∗ that gets mis-
classified by the BNN predictor. Given a set of test points
{x∗i }i=1,...,m, we define the robust accuracy (denoted Rε)
for ε > 0 as the ratio between the number of points x∗i for
which no adversarial example exists within ε radius, and
the total number of test points, that is:

Rε =
1

m

m∑
i=1

I
[
∀x̄ s.t. |x∗i − x̄| ≤ ε,

arg max
c∈{1,...,C}

ÊN (x̄) = c∗i

]
, (2)

where I[·] evaluates to 1 if the expression inside the brack-
ets is true, and to zero otherwise.

Note that the computation of the predictive distribution re-
lies on the computation of the posterior distribution over
the weights, p(w|D). Exact computation of the latter for
BNNs is infeasible and approximate methods are employed
for its estimation. In the following, we briefly describe
those employed in this paper.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo
(HMC) approximates the posterior by defining a Markov
chain whose stationary distribution is p(w|D), and relies on

Hamiltonian dynamics to improve efficiency of the explo-
ration. This is achieved by alternating between sampling
from the potential function U(w) = − log(p(w)), and
moving around the weight space by following the dynamics
described by a kinetic function, K(v) =

∑nw
i=1 v

2
i /(2mi),

given over the auxiliary variable v. The hyper-parameters
mi trade-off exploration with exploitation of the weight
space (Neal et al., 2011).

Despite its scalability issues, HMC is considered to be the
gold standard of Bayesian inference for neural networks.
This is due to the fact that, in the limit of the number of
simulations of the Markov chain, the HMC approximation
converges to the true posterior distribution.

Variational Inference (VI) Variational methods assume
that the posterior can be approximated by a distribution be-
longing to a given parametric family, that is: p(w|D) ≈
q(w|θ). The inference problem then boils down to the
that of computing a parameterisation θ that minimises a
given variational objective. While finding the optimal θ
does not guarantee convergence to the true posterior of the
BNN, variational methods have significant scalability ad-
vantages (Osawa et al., 2019). A number of variational
methods were developed in the literature. We briefly re-
view the ones that we employ in this paper below. Blun-
dell et al. (2015) introduced Bayes by Backprop (BBB),
a stochastic gradient method to update the parameters of
the variational distribution using KL divergence. VI meth-
ods with improved scalability have been obtained by re-
lying on the natural gradient (i.e. the gradient w.r.t. sam-
pled weights) in order to update the variational parameters.
This, in conjunction with momentum, has been shown in
many instances to be an efficient method for performing VI
at scale, as implemented by VOGN (Lin et al., 2020) and
NA (Zhang et al., 2018a). A method presented by Maddox
et al. (2019) (SWAG) generates a variational distribution
by moment matching a Gaussian distribution to stochastic
gradient descent iterates.

3 A BAYESIAN APPROACH FOR
ADVERSARIAL TRAINING

In this section we present a method for the adversarial train-
ing of BNNs that relies on embedding adversarial robust-
ness in the standard cross-entropy error model. We first
introduce the following notation. Given a data point (x, y),
with x ∈ Rn and y an associated class label, an ε > 0, and
a fixed weight w ∈ Rnw , we define fw,εmin(x) to be the vec-
tor of logits corresponding to the minimizer of the softmax
of class y for any input point in an ε−ball around x:

σy(fw,εmin(x)) = min
x′:|x−x′|≤ε

σy(fw(x′)), (3)

where σy(·) is the softmax relative to class y. In the robust
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training scenario we would like the likelihood p(y|x,w) to
be influenced not only by the accuracy of the prediction, but
also by the robustness of the BNN in the neighbourhood of
a point. We model this by assuming that the likelihood of
a prediction, given an input point and a weight vector, also
depends on the worst-case perturbation in an ε−ball around
the input point. In particular, we assume that ε is sampled
from a non-negative random variable with distribution pε,
and for each ε in the support of pε we consider the softmax
likelihood computed for fw,εmin(x). Then, by marginalizing
over pε, we obtain the following likelihood function, which
we call robust likelihood:

p(y|x,w) =

∫
R≥0

σy(fw,εmin(x))pε(ε)dε

=Eε∼pε [σy(fw,εmin(x))]. (4)

That is, in the robust likelihood for each ε we consider the
worst-case of the standard likelihood for all the points in
an ε-ball around x (note that σy(fw,εmin(x) is a monotoni-
cally decreasing function of ε) and then compute the aver-
age with respect to pε. We should stress that Eqn. (4) de-
fines a marginal probability, and hence is a well defined
probability. Furthermore, we also note that for pε = δ0, the
delta function centered in the origin, we recover the stan-
dard cross-entropy likelihood model.

In the particular case of deterministic NNs, adversarial
training is generally implemented by balancing between
adversarial robustness at a fixed ε > 0 and accuracy (that
is, at ε = 0) (Goodfellow et al., 2014; Lakshminarayanan
et al., 2017). For 0 ≤ λ ≤ 1 and η > 0, this can be ob-
tained in our setting by considering the following discrete
distribution for ε:

pε(ε) =

{
λ if ε = 0

1− λ if ε = η
. (5)

This leads to the following form for the robust likelihood:

p(y|x,w) = λ · σy(fw(x)) + (1− λ) · σy(fw,ηmin(x)),

which is a weighted sum of two softmax functions, one
given by the standard likelihood and the other accounting
for adversarial robustness.

By assuming the statistical independence of the training
labels given input and weights (which is the standard as-
sumption for classification (Bishop et al., 1995)), we obtain
the following negative log-likelihood for our model:

E = −
nD∑
i=1

log
(
Eε∼pε [σy(i)(f

w,ε
min(x(i)))]

)
. (6)

Notice that this has a trivial absolute minimum when
Eε∼pε [σy(i)(f

w,ε
min(x(i)))] = 1 for all (x(i), y(i)) ∈

D. Hence, the absolute minimum of the negative log-
likelihood (which would correspond to the maximum like-
lihood estimation) is reached for the set of weights w∗, if

it exists, such that for any (x(i), y(i)) ∈ D almost surely
fw
∗
(x(i)) has no adversarial examples in an ε−ball around

x(i), for any ε in the support of pε.

Therefore, in order to evaluate our robust likelihood model
we need to be able to compute σy(fw,εmin(x)) as defined by
Eqn. (3). This is discussed in the next section. First, we
briefly discuss the case of regression models.

Remark 1. The above analysis concerns a classification
framework. For a regression problem everything follows
similarly except that the likelihood is a Gaussian distri-
bution with variance Σ (Bishop et al., 1995). In par-
ticular, assuming for simplicity and without lost of gen-
erality that C = 1 – i.e., single output regression –
call fw,εmax(x) = maxx′:|x−x′|≤ε f

w(x′) and fw,εmin(x) =
minx′:|x−x′|≤ε f

w(x′). That is, fw,εmax(x) and fw,εmin(x) are
the maximum and minimum of fw for all the points in an
ε−ball centered around x. Then, in the regression case, for
x ∈ Rn, y ∈ R the robust likelihood is:

p(y|x,w) =
1√
2πΣ

exp
(
− 1

2Σ
max{

(Eε∼pε [fw,εmax(x)]− y)2, (Eε∼pε [f
w,ε
min(x)]− y)2}

)
.

4 ADVERSARIAL TRAINING THROUGH
INTERVAL BOUND PROPAGATION

We now describe our implementation of the robust likeli-
hood introduced in Section 3. For a data point (x, y), we
need to compute σy(fw,εmin(x)), that is, the minimum of the
softmax of class y for all the points in an ε−ball around
x. Notice that, the likelihood function, p(y|x,w), is de-
fined over given values of the weight vector w (and input
point x), so that, even in the Bayesian settings, we need
to deal with a single deterministic NN (sampled from the
BNN) at a time. Unfortunately still, the computation of
this quantity poses an NP-complete problem for determin-
istic NNs (Katz et al., 2017). In this section, we review how
Interval Bound Propagation (IBP) can be used to compute
a safe lower bound on σy(fw,εmin(x)) (Ehlers, 2017; Mirman
et al., 2018; Gowal et al., 2018) and then discuss extensions
needed to provide certification for BNN posterior predic-
tions.

Interval Bound Propagation IBP works by propagat-
ing bounding boxes through the network’s layers. Given
a weight vector w, the computation through the network
layers on an input point x is denoted by:

fw(k) = Ww
k−1φ

w
(k−1) + bwk−1 k = 1, . . . ,K

φw(k) = h(fw(k)) k = 1, . . . ,K − 1,

with φw0 = x, where K is the number of layers, Ww
k and

bwk are the weight matrix and bias vector corresponding
to the weight vector w for the kth layer of the network,
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h is the activation function, fw(k) is the kth pre-activation
and φw(k) is the kth activation vector. Notice that fw(K) is
the network latent vector, whose softmax provides the final
output of the network. Following the procedure discussed
by Gowal et al. (2018), we consider an `∞−ball of radius
ε in the input space that we denote as [φw,L0 , φw,U0 ]. We
then iteratively propagate the latter through each layer, for
k = 1, . . . ,K. This can be done efficiently by the intro-
duction of the auxiliary variables, µ̂k, µk, r̂k and rk, as it
follows:

µ̂k =
φw,U(k−1) + φw,L(k−1)

2
, r̂k =

φw,U(k−1) − φ
w,L
(k−1)

2
µk = Ww

k−1µ̂k + bwk−1, rk = |Ww
k−1|r̂k

fw,U(k) = µk + rk, fw,L(k) = µk − rk

φw,U(k) = h(fw,U(k) ), φw,L(k) = h(fw,L(k) ).

The resulting latent values for k = K, i.e., fw,U,ε :=
fw,U(K) and fw,L,ε := fw,L(K) , yield a valid bounding box for
the network output, that is, they are such that fw(x) ∈
[fw,L,ε, fw,U,ε] for every x in the considered ε−ball
(Gowal et al., 2018).

Bounding the Robust Likelihood Consider a generic in-
put point x with associated class y, and an ε > 0 from the
support of pε. Let fw,L,ε and fw,U,ε be the extrema of the
bounding box computed by IBP as described in the pre-
vious paragraph. For j = 1, . . . , C, we define the vector
fw,εLB (x) as follows:

fw,εLB,j(x) =

{
fw,U,εj if j 6= y

fw,L,εj if j = y.
(7)

Since the softmax function for the class y is monoton-
ically increasing along the y coordinate and monotoni-
cally decreasing along any other direction, we have that
σy(fw,εLB (x)) ≤ σy(fw,εmin(x)). That is, σy(fw,εLB (x)) pro-
vides a lower bound for σy(fw,εmin(x)). By propagating this
bound through the computation of the robust likelihood, we
obtain the following proposition

Proposition 1. Consider a point x with class y, and a dis-
tribution over ε, pε. Given a weight vector w we have that:

p(y|x,w) ≥ Eε∼pε [σy(fw,εLB (x))] := pIBP(y|x,w).

Proof Sketch. For any ε in the support of pε we have,
by the construction described above, that σy(fw,εmin(x)) ≥
σy(fw,εLB (x)). Hence, since expected values respect in-
equalities, we have that:

p(y|x,w) = Eε∼pε [σy(fw,εmin(x))] ≥ Eε∼pε [σy(fw,εLB (x))]

= pIBP(y|x,w).

Proposition 1 guarantees that the robust likelihood function
can be lower bounded by using IBP computations. This
provides us with a worst-case analysis for adversarial at-
tacks, in the sense that if the network is safe according to
IBP then it is necessarily safe (while the converse is not
true). In fact, while p(y|x,w) could be approximated by
means of adversarial attack methods (e.g., FGSM or PGD),
the resulting approximation would not have any guarantees
with respect to the actual values of the p(y|x,w). Since
pIBP(y|x,w) is non-negative and a formal lower bound
to p(y|x,w), by employing it we obtain a (non-negative)
lower bound to Equation (6) as well, so that the property
of absence of adversarial examples at the optimal value
of p(y|x,w) is maintained by pIBP(y|x,w). However, the
same does not hold for an approximation of p(y|x,w) given
by adversarial attacks, similarly to how maximising a lower
bound yields guarantees on the final result, whereas noth-
ing can be said about the maximisation of an upper bound.
In Section 5 we empirically compare IBP with PGD and
find these observations to be confirmed in practice.

Certification of BNNs After training, we can employ
IBP to compute the certified robust accuracy of the BNN
on a test set. In order to do so, instead of performing IBP
on the single extracted network from the BNN, we have
to propagate the input bounding box through the posterior
predictor. To see that, consider a predictor for the BNN
output ÊN defined as in Eqn. (1). Let w1, . . . , wN be the
sampled weights related to the latter, consider a given test
point x with true label y, and let ε > 0 be the adversarial
perturbation strength that we want to provide certification
against. By performing IBP N times we obtain a family of
lower bounds such that σy(fwi,εLB (x)) ≤ σy(fwi,εmin (x)), for
i = 1, . . . , N . By averaging these out we obtain a lower
bound on the given empirical predictor for class y in x,
which we denote as ÊN,εy,LB := 1

N

∑
σy(fwi,εLB (x)). Sim-

ilarly, we can proceed to compute an upper bound on the
predictor for classes c′ 6= y. For this purpose we define:

fw,ε,c
′

UB,j (x) =

{
fw,L,εj if j 6= c′

fw,U,εj if j = c′,

which we average out to obtain an upper bound on
the predictive probability for class c′ as ÊN,εc′,UB :=
1
N

∑
σc′(f

wi,ε,c
′

UB (x)). By defining the worst-case predic-
tor for the true class y according to IBP for x as the vector
ÊNIBP,ε(x) ∈ RC such that its y−th entry is equal to ÊN,εy,LB ,
while the other entries for c′ 6= y are set to ÊN,εc′,UB , we ob-
tain the following theorem.

Theorem 1. Consider a point x∗ with associated class y∗.
Assume that arg maxc∈{1,...,C} ÊNIBP,ε(x∗) = y∗, then:

arg max
c∈{1,...,C}

ÊN (x̄) = y∗ ∀x̄ s.t. |x∗ − x̄| ≤ ε.
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As a consequence, given a set of test points x∗i with as-
sociated class labels y∗i , for i = 1, . . . ,m, we have the
following certified bound for the robust accuracy at ε > 0:

Rε ≥
1

m

m∑
i=1

I

[
arg max
c∈{1,...,C}

ÊNIBP,ε(x∗i ) = y∗i

]
:= RIBPε .

Proof Sketch. By construction we have that, ∀x̄ s.t. |x∗−
x̄| ≤ ε it holds that:

ÊNIBP,ε(x∗)y∗ ≤ ÊNε (x̄)y∗ , ÊNIBP,ε(x∗)c ≥ ÊNε (x̄)c,

for c 6= y∗, c ∈ {1, . . . , C}. Hence, if the arg max of
ÊNIBP,ε(x∗) is y∗, then necessary the arg max of ÊNε (x̄)
will be y∗ as well (of course, the converse is not necessarily
true). This can be re-stated as:

I
[
∀x̄ s.t. |x∗i − x̄| ≤ ε, arg max

c∈{1,...,C}
ÊN (x̄) = c∗i

]

≥I

[
arg max
c∈{1,...,C}

ÊNIBP,ε(x∗i ) = y∗i

]
.

The theorem statement then follows by the definitions of
Rε andRIBPε .

Theorem 1 ensures that a lower bound on the certified ro-
bust accuracy of the BNN can be computed by employing
IBP on a given predictor. Observe that, while the guaran-
tees when computing the likelihood in Proposition 1 are
given for a single weight realisation, so that robust training
has the effect of penalising at inference time the weights
which are not robust, the certified robust accuracy is com-
puted for an empirical average of predictions over weights
sampled from the posterior. We remark that, while in this
paper we only considered training with IBP, linear bound
propagation techniques (LBP) (Zhang et al., 2018b) could
be similarly employed. LBP could potentially yield better
bounds at the price of a less efficient training process.

Remark 2. The certified bounds are provided for a given
empirical predictor, and as shown in Theorem 1, if the em-
pirical predictor is known, the bounds are exact. In the
case in which the set of weights w1, . . . , wN changes at ev-
ery prediction, one can rely on standard concentration in-
equalities, such as Chernoff’s bound, to obtain confidence
intervals over the certified behaviour (Vapnik, 2013).

4.1 APPROXIMATE INFERENCE WITH IBP

As mentioned in Section 2, unfortunately, training BNNs
is an intractable problem, and remains so when the ro-
bust likelihood is used, so that the exact posterior cannot
be computed. Hence, even if a model that perfectly min-
imises Equation (6) were to exist, we would not be guar-
anteed to find it (similarly to why no optimality can be

claimed when training with the standard likelihood). Cru-
cially, however, the likelihood bound computed by IBP is
differentiable. This allows us to adapt commonly used ap-
proximate Bayesian inference methods to the robust likeli-
hood settings. We now give the details for selected varia-
tional and Monte Carlo methods. We remark that, when
computing the certified robust accuracy, we assume that
the model has already been trained, so that the inference
method does not introduce any error in the certification that
we provide.

ROBUST VI In Algorithm 1 we highlight the changes
needed for the implementation of the robust likelihood in
the case of natural gradient variational inference. We main-
tain the standard form of VI (Lin et al., 2020), except for
lines 6-9, highlighted in red, that emphasize the changes
needed in the case in which pε takes the form of Eqn. (8).
The case of a general pε can be tackled by iteratively sam-
pling from the distribution (i.e., by adding a for loop around
lines 6-9), the cost of this will, however, be an increased
computational time. Notice, that since the IBP bound is
differentiable, so is l defined in line 9 of the algorithm. We
remark that, by changing the parameter update on line 10
with approximations to the Hessian, computing the gradi-
ent wrt µ, s, or by introducing momentum parameters, this
algorithm can be converted to any of the gradient and natu-
ral gradient variational inference methods which have been
proposed in recent years, including those of Graves (2011);
Blundell et al. (2015); Khan et al. (2018) and Osawa et al.
(2019).

Algorithm 1 Robust Natural Grad. Variational Inference
Input: Prior mean and precision: µprior, sprior, NN archi-
tecture: f , Dataset: D, Learning rate: α, Iterations: T ,
Mini-batch Size: m, ε and λ parameters of pε.
Output: Mean and precision of Gaussian approximate pos-
terior.

1: s← sprior; µ← µprior
2: for t = 1, . . . , T do
3: {X,Y } ← {xi, yi}mi=0 {Sample Batch}
4: w = µ+ ((nDs)

−1/2N (0, I))
5: Yclean ← σ(fw(X))
6: fw,L,ε(X), fw,U,ε(X)← IBP(f, w,X)
7: fw,εLB (x)← Eqn. (7) for fw,L,ε(X), fw,U,ε(X)
8: Yworst ← σ(fw,εLB (x))
9: l← −Y log(λYclean + (1− λ)Yworst)

+DKL(N (µprior, 1/sprior) | N (µ, 1/s))
10: s← (1− α)s+ α∇2

wl; µ← µ− αs−1∇wl
11: end for
12: return (µ, s)

ROBUST HMC A similar modification needs to be
made in the case of Hamiltonian Monte Carlo inference.
When computing the potential energy function the same
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Figure 1: Accuracy (plotted as star points), an empirical estimation of Rε obtained using PGD (upper bound of each
bar), RLBPε (lower bound of each bar), and RIBPε (shaded lower bound of each bar) obtained for ε = 0.1 on the MNIST
dataset (top row) and FMNIST (middle row) as well as for ε = 1/255 on the CIFAR-10 dataset (bottom row). Each bar
refers to a different approximate Bayesian inference technique. Left Column: results for the standard likelihood. Centre
Column: results for approximation of robust likelihood using PGD. Right Column: results for training with formal IBP
lower bound of robust likelihood (Eq (6)). With our method we obtain up to 75% certified robust accuracy on MNIST and
up to 50% on CIFAR-10.

procedure outlined in lines 6-9 is employed. Namely, we
have U(w) = −log(p(w))− log(λYclean + (1− λ)Yworst),
where the vectors Yclean and Yworst are defined as in Algo-
rithm 1. Observe that the kinetic function given in Section
2 remains unaltered, as it is not related to the weight distri-
bution.

5 EXPERIMENTS

We conduct an empirical evaluation of our framework con-
sidering various approximate inference methods for BNNs,
including SWAG (Maddox et al., 2019), NoisyAdam (NA)
(Zhang et al., 2018a), Variational Online Gauss Newton
(VOGN) (Khan et al., 2018), Bayes by Backprop (BBB)
(Blundell et al., 2015), and Hamiltonian Monte Carlo
(HMC) (Neal et al., 2011).

We first evaluate the robust accuracy of networks trained
with our robust likelihood compared to standard training
on the MNIST benchmark (LeCun et al., 1998). We then
perform analogous analyses on the CIFAR-10 (Krizhevsky
et al., 2009) dataset, and, finally, we empirically study the
effect of our robust likelihood on the predictive uncertainty.
Further, training parameters, including prior distribution
and architecture for each of the BNNs, can be found in the

Supplementary Material.

For HMC, we set the initial weight to be a sample from
the prior when performing standard training and set the ini-
tial weight to a pre-trained SGD iterate when performing
inference with robust likelihood; this is to enforce that the
starting point of the algorithm is closer to the target distri-
bution.

EVALUATION ON MNIST We use pε introduced in
Eqn (8) with η = 0.1 and λ = 0.25 (an empirical eval-
uation of the effect of changing these parameters, as well
as using different forms for pε, is reported in the Supple-
mentary Material). We train a single hidden layer BNN
with 512 neurons on the full MNIST dataset (further train-
ing parameters are given in the Supplementary Material).

In Figure 1 (top row) we analyze how different training
methods affect the accuracy, robustness to PGD attacks
(RPGD0.1 ), as well as the certified lower bounds using IBP
(RIBP0.1 ) and LBP (RLBP0.1 ). We use both IBP as well as
the more computationally expensive but tighter LBP in or-
der to study the effect of training with our robust likeli-
hood without the bias of training and evaluating with the
same certification method. Moreover, in Figure 2 we ana-
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lyze the maximum certifiable radius (via the methodology
in (Boopathy et al., 2019)) in order to further compare the
effects of each likelihood.

In Figure 1, we find that, while all BNNs trained with the
standard likelihood (left plot) perform comparably well in
terms of accuracy, there is a marked difference in their ro-
bustness against PGD. This is in line with what was ob-
served by Carbone et al. (2020), where the more fidelity
an inference method has to the true Bayesian posterior, the
greater is its robustness to gradient-based attacks. How-
ever, the certified robust accuracy obtained using standard
likelihood is identically zero, that is, we obtain no certifi-
cation in these settings. This implies, for example, that al-
though HMC is resistant to PGD attacks, we cannot guar-
antee that a different, successful attack method does not
exist. Similarly, for training with the PGD approximation
of the robust likelihood (central plot), we obtain that, while
the robustness against PGD of each model is now around
80%, the certified robustness is still at 0%. Similar be-
haviour has also been observed for adversarial training with
gradient-based attacks for deterministic neural networks
(Gowal et al., 2018). By using IBP during training to lower
bound the robust likelihood (right plot in the figure), we
find that, not only do we obtain similar levels of accuracy
and PGD robustness as before, but we are also able to pro-
vide non-trivial certification on the robust accuracy, Rε, of
the networks, that is, against any possible adversarial per-
turbation of magnitude up to ε = 0.1. For example, using
SWAG we obtain R0.1 ≈ 75%, that is, the BNN trained
with SWAG with our robust likelihood is provably adver-
sarially robust on 75% of the points included in the MNIST
dataset.

Evaluation on FashionMNIST In the center row of Fig-
ure 1, we use the same networks, pε distribution (with
η = 0.1 and λ = 0.25) and evaluation methods stated for
MNIST, but applied to the FashionMNIST dataset (Xiao
et al., 2017). Despite being a harder dataset than MNIST,
as evidenced by the reduced accuracy of the approximate
posteriors, we find the robustness trends to be qualitatively
similar to those on MNIST and CIFAR10. We do note,
however, that PGD training was much more effective at in-
creasing the certified bound when the bound is computed
with LBP. Our hypothesis about this difference is that be-
cause the networks are less accurate they are also poten-
tially less robust to gradient-based attacks (following the
logic of (Carbone et al., 2020)) and thus, PGD is able to
find strong adversarial examples which can increase the ro-
bustness of the posterior.

EVALUATION ON CIFAR-10 We now evaluate the
effect of the robust likelihood on BNNs trained on the
CIFAR-10 dataset. The CIFAR-10 is more challenging
compared to MNIST, and hence not all the training meth-
ods considered for MNIST can be used to train reasonably

Figure 2: We plot the average certified radius for images
from MNIST (right), and CIFAR-10 (left) using the meth-
ods of Boopathy et al. (2019). We observe that robust train-
ing with IBP roughly doubles the maximum verifiable ra-
dius compared with standard training and that obtained by
training on PGD adversarial examples.

accurate BNNs on this dataset (Blier and Ollivier, 2018).
Consequently, for CIFAR-10 we provide results only for
SWAG, NA and VOGN. In particular, we train a Bayesian
convolutional neural network (CNN) with 2 convolutional
layers (each with 32, 4 by 4 filters) followed by a max pool-
ing layer and 2 fully connected layers (one with 512 hidden
neurons and the other with 10). For the robust likelihood,
we consider Eqn (8) with η = 1/255 and λ = 0.25. Fi-
nally, we introduce the standard exponential decay on the
learning rate to ensure stable convergence (results for ad-
ditional parameter values are given in the Supplementary
Material).

We perform a similar evaluation to that discussed for
MNIST, the results of which are plotted in the bottom
row of Figure 1. Consistently with what we observed for
MNIST, we obtain that BNNs trained by using the standard
likelihood (left plot) and PGD attacks (central plot) do not
allow for the computation of certified guarantees (the lower
bound of the bars is close to zero for all the inference meth-
ods). In contrast, for the BNN trained with our robust likeli-
hood and IBP we find that, even for CIFAR-10, we are able
to compute non-trivial lower bounds on Rε. For instance,
on SWAG we obtain RIBPε ≈ 50%, which is comparable
to state-of-the-art results with adversarial training of deter-
ministic NNs on CIFAR-10 (Boopathy et al., 2019). We
analyse the effect that robust training at a specific ε has on
the robustness of the network at other values of ε. In or-
der to do so, we employ the method developed by Boopa-
thy et al. (2019), which, for each test image, computes the
maximal adversarial perturbation, ε, such that the image
is provably safe in the related ε−ball. The results of this
analysis are given in Figure 2, where we report the average
maximum adversarially safe radius over 100 test CIFAR-10
images. We find that, while PGD training does not increase
the robustness of the model compared to standard training,
our training procedure is able to roughly double the robust-
ness for the three training methods explored here (further
results on MNIST are in the Supplementary Material).
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Figure 3: We plot the in-distribution (blue) and out-of-distribution (orange) predictive uncertainty. Each pair of plots
corresponds to an inference method where the left plot represents the entropy distribution for standard training and the
right plot represents robust IBP training. For both MNIST (top row) and CIFAR-10 (bottom row) we find that robust
training improves the uncertainty calibration of the network w.r.t. out-of-distribution samples.

EVALUATION ON OUT-OF-DISTRIBUTION UN-
CERTAINTY One of the main features of BNNs, which
distinguishes them from DNNs, is their ability to model
their prediction’s uncertainty (Neal, 2012). We investigate
how training with our robust likelihood influences uncer-
tainty calibration when testing on data that are outside of
the training data distribution. As is common in the lit-
erature (Maddox et al., 2019; Lakshminarayanan et al.,
2017), we evaluate uncertainty on in-distribution and out-
of-distribution images using the entropy of the posterior
predictive distribution. For x ∈ Rn the latter is defined as
Ew∼p(w|D)[−

∑C
c=1 σc(f

w(x)) log(σc(f
w(x)))]. In par-

ticular, we expect that the maximal class probabilities on
out-of-distribution images will have high entropy, reflect-
ing the model’s uncertainty in its predictions, and consid-
erably lower entropy on images that are similar to those on
which the network was trained (in-distribution). In the top
row of Figure 3, we plot the entropy of the posterior pre-
dictive distributions on in-distribution test samples (in blue)
and on FashionMNIST samples (in orange), which are out-
of-distribution data for networks trained on the MNIST
dataset. For CIFAR-10 (bottom row in the figure) we use
the SVHN (Goodfellow et al., 2013) dataset as the source of
meaningful, but out-of-distribution, data. We hypothesize
that if the robust likelihood introduces meaningful infor-
mation about invariances in the data, then the uncertainty
of the resulting posterior would be improved. On MNIST,
we find that, in each case, robust training with IBP signifi-
cantly improves uncertainty by making more uncertain pre-
dictions on out-of-distributions data, while still being con-
fident on in-distribution data. For CIFAR-10, surprisingly,
we find that BNNs trained with the standard likelihood are

more confident on the out-of-distribution data than on in-
distributions data, a behaviour that, with the exception of
SWAG, is always reversed by performing robust training
with IBP. In all the cases, training with IBP on CIFAR-
10 increases the entropy of the predictions, which may be
indicative of better calibrated uncertainty compared to the
normally inferred models (note that on CIFAR-10 accu-
racy is of the order of 60%, and hence we do not expect
the model to be very confident even on in-distribution im-
ages). In the Supplementary Materials, to further confirm
our empirical results, we evaluate the entropy on adversar-
ial examples and also analyze the likelihood ratio between
in-distribution and out-distribution data.

6 CONCLUSION

We presented a framework for robust training of certifi-
ably robust deep neural networks based on a principled
Bayesian foundation. We developed an algorithmic imple-
mentation of our framework that employs constraint relax-
ation and can be integrated with existing approximate infer-
ence methods for BNNs. On the MNIST, FashionMNIST
and CIFAR-10 datasets we showed that, not only does our
framework allow us to train BNNs that are guaranteed to be
robust to adversarial examples, it can also have a positive
effect on uncertainty calibration.
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Supplementary Materials: Bayesian Inference with Certifiable Adversarial
Robustness

In these supplementary materials we provide the details to aid in the reproducibility of our results and re-
port on further experiments to deepen our understanding of the presented method. For the code to reproduce
both the experiments found in the main text and in these extended materials see the github code repository at:
https://github.com/matthewwicker/CertifiableBayesianInference, and if anything proves to be unclear or broken please
email Matthew Wicker at: matthew.wicker@cs.ox.ac.uk.

7 APPROXIMATE INFERENCE PARAMETERS

In this section of the Supplementary Material, we list the training parameters that we used for the training of each of the
networks discussed in the main text.

7.1 MNIST and FashionMNIST Parameters

SWAG NoisyAdam VOGN BBB HMC

Learning Rate 0.1 0.001 0.35 0.45 0.075
Prior Scaling N/A 10 10 20 500
Batch Size 128 128 128 128 60k
Epochs/Samples 20/250 20/(N/A) 20/(N/A) 20/(N/A) (N/A)/25
PGD Iterations 10 10 10 10 10

Each network trained on MNIST is a single hidden layer fully-connected architecture with 512 neurons in the hidden layer.
The parameters used for the 5 training methods are listed in the table above. Prior scaling refers to a multiplicative constant
w.r.t. the initialisation parameters described in Sutskever et al. (2013). In fact, we often find the initial variance described
in the later to be too small for retrieving good uncertainty estimates, and, thus, we further multiply it by the values reported
in the table. Further parameters that are specific to HMC, and not included in the table, are: 3 iterations of burn-in, with
20 steps of the leapfrog numerical integrator followed by the reported 25 samples from the posterior each which explore
the chain for 25 steps with the leapfrog integrator. We again note that when we perform approximate inference with
HMC and the robust likelihood that we choose the initial network parameters to be the result of 10 epochs of stochastic
gradient descent rather than the full-data gradient descent used during normal burn-in. Finally, we note that we follow the
empirically optimal procedure stated by Gowal et al. (2018). In particular, we train with an η linearly increasing to its target
value at every epoch. Again as in Gowal et al. (2018), we set the target η value 10% larger than the ‘desired’ robustness
value.
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7.2 CIFAR10 Parameters

SWAG NoisyAdam VOGN

Learning Rate 0.015 0.00025 0.25
LR Decay 0.0 0.025 0.025
Prior Scaling N/A 5 5
Batch Size 128 128 128
Epochs/Samples 45/500 45/(N/A) 45/(N/A)
PGD Iterations 10 10 10

For CIFAR10, prior to inference we perform data augmentation which involves horizontal flipping as well as random
translations by up to 4 pixels. We randomly select an image from the train set with uniform probability and then select a
transformation (translation or horizontal flipping) until we have augmented the data size from 60k to 100k images Finally,
the network architecture is made of two convolutional layers, respectively with 16 and 32 four by four filters, followed by
a 2 by 2 max pooling layer, and a fully connected layer with 100 hidden neurons.

8 CERTIFIED ROBUST RADIUS RESULTS

Figure 4: We plot the average certified radius for images from MNIST (left), FashionMNIST (center), and CIFAR10 (right)
using the methods of Boopathy et al. (2019). We re-report the MNIST and CIFAR10 results here for ease of comparison.
We observe that robust training with IBP roughly doubles the maximum verifiable radius of compared with standard
training and that obtained by training on PGD adversarial examples.

Consistent with the analysis in the main text, we consider analyzing the robustness of the trained posteriors at varying
values of ε (reported in Figure 4). In particular, we estimate the maximal ε radius for which each image is robust. To
estimate this value, we follow the methodology of Boopathy et al. (2019): a binary search over the values of ε. We stress
that during this procedure, we use linear propagation methods: CROWN for MNIST and FMNIST networks and CNN-Cert
for CIFAR10 Networks. This is to reduce the bias of the evaluation of IBP trained networks. That is, IBP trained networks
intuitively should evaluate well against IBP but it is important to see if tighter methods still show large improvements. As
reported in the paper, we find that training with PGD does not tend to increase the certifiable radius in a significant way,
while training with IBP allows one to double the certifiable radius.

9 ADVERSARIAL TRAINING PARAMETER STUDY

In this section we analyse the choice of pε, that is, the distribution that controls the adversarial perturbation strength at
training time. Recall that the distribution used in the main text follows related work on training of deterministic neural
networks:

pε(ε) =

{
λ if ε = 0

1− λ if ε = η
. (8)

In particular, we first study the affect of changing the λ parameter in Eqn (8) which parameterizes the relative penalty
between accuracy and robustness during inference. Next, we study the effect of changing η in Eqn (8) which sets a the
maximum allowable manipulation magnitude during inference. Finally, we study the effect of changing the form of the ε
probability density function to two different continuous, non-negative distribution.
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Figure 5: Left to Right: Effect of varying (increasing) values of η on the robustness profile of resulting approximate
posteriors. Top Row: Robustness profiles of networks using the robust likelihood with PGD as an approximate worst-case
adversary. Bottom Row: Robustness profiles of networks using the robust likelihood with IBP as an approximate worst-
case adversary. Accuracy (plotted as star points), an empirical estimation ofRε obtained using PGD (upper bound of each
bar), andRIBPε (lower bound of each bar), obtained for ε = 0.1 on the MNIST dataset.

In each figure, we maintain the plotting conventions used in Figure 1 of the main text. For each posterior: accuracy is
plotted as a star point, an empirical estimation of Rε obtained using PGD (upper bound of each bar), and RIBPε (lower
bound of each bar), obtained for ε = 0.1 on the MNIST dataset. For the following analysis we only report the lower-bound
based on IBP.

9.1 The Effect of Adversarial Magnitude During Inference

When approximating the robust likelihood with PGD during inference, we find that the shift in magnitude of η on the
resulting robustness estimates is largely dependant on the method of approximate inference. Interestingly, we find that for
SWAG and BBB, that training with η = 0.15 becomes problematic as it seems that with the current training parameters
(reported in the previous section), the 1 layer, 512 neuron network may not have had enough capacity to accurately capture
good adversarial robustness. The connection between robustness of (gradient-based) adversarial trained deterministic
networks and capacity is discussed at length in Madry et al. (2017). We find that NA and HMC are relatively unaffected
by small changes to the η magnitude and enjoy similar heightened robustness for each observed value.

The effect of η is much more pronounced when we perform inference with the IBP robust likelihood. We see that having
an η smaller than ε (in Rε) results in worse lower-bound potentially indicating a less robust posterior. For parameter and
natural gradient VI, we also find that having an η that is much larger than ε can be detrimental as too strong of an adversary
can be problematic for learning.

9.2 The Effect of Trading Accuracy and Robustness

In Eqn (8) the parameter λ effectively controls the relative weighting of accuracy-error and robust-error during the inference
procedure. Specifically, we note the cases λ = 1.0 which results in the standard likelihood (a.k.a. the categorical cross-
entropy in the case of classification), and λ = 0.0 results in a framework in which give importance solely to robustness. In
Figure 6 we report the change in robustness profiles for λ ∈ {0.75, 0.5, 0.25} for training with the worst-case approximated
by PGD (top row) and IBP (bottom row).

When approximating the robust likelihood with PGD, we find that HMC and natural gradient methods (VOGN, NA) are
not strongly affected by the choice of λ, whereas we see the most pronounced difference with SWAG which is greatly
affected by choice of λ. In particular we highlight roughly a 20% raw increase in the robustness to gradient based attacks
for each 0.25 decrease in λ. On the other hand, when training with IBP there is large shift in the resulting robustness
profiles for parameter and natural gradient VI methods (BBB, VOGN, NA). Notably, we see a large (50% raw) increase in
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Figure 6: Left to Right: Effect of varying (decreasing) values of λ on the robustness profile of resulting approximate
posteriors. Top Row: Robustness profiles of networks using the robust likelihood with PGD as an approximate worst-case
adversary. Bottom Row: Robustness profiles of networks using the robust likelihood with IBP as an approximate worst-
case adversary. Accuracy (plotted as star points), an empirical estimation ofRε obtained using PGD (upper bound of each
bar), andRIBPε (lower bound of each bar), obtained for ε = 0.1 on the MNIST dataset.

the lower-bound for BBB as the value for λ varies between 0.75 and 0.25.

9.3 On the Choice of Density Function for Adversarial Magnitude

In Figure 7 and Figure 8, we study changing the form of pε from the density given in Eqn (8) to a Rayleigh distribution and
an Exponential distribution, respectively. We have chosen these distributions in particular because they have non-negative
support and a single controlling variable. In principle, however, any distribution (with a positive support) can be chosen
for the form of pε. As noted in the main text, during the computation of the loss function, one must marginalize over the
selected pε distribution, which in this case is done via Monte Carlo with only 10 samples from pε per batch. Consistent
with the study presented in the main text, we evaluate robustness profiles with ε set to 0.1.

9.3.1 Using a Rayleigh Distribution

In Figure 7, we plot the case in which training is done by using an Rayleigh distribution with the scale set to η for pε as
follows:

pε(ε) =
ε

η2
exp
(
−ε2

2η2

)
(9)

In our experiments, we find that using a Rayleigh distribution for pε does marginally improve the robustness (Rε) when
training against a PGD adversary (≈ 4% on average). We also find that when using the altered pdf, the main result stated
in the paper, that training with robust likelihood is the only method that gives non-trivial lower bounds on robustness, still
holds. However, we find that the use of the Rayleigh distribution has an adverse affect on the overall robustness profile
compared to training with Eqn (8).

9.3.2 Using an Exponential Distribution

In Figure 8, we give the results when pε is selected as an exponential distribution with the rate set to η−1:

pε(ε) =
1

η
exp

(
−ε
η

)
(10)

When training against a PGD adversary, we found that an using an exponential distribution for pε also leads to small
increases in robustness against adversarial attacks, with an average increase of ≈ 5%. Consistent with the results for the
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Figure 7: Left: Effect of varying the scale η of the Rayleigh distribution on the density pε when training we use η = 0.1.
Right, Top Row: Robustness profiles of networks using the robust likelihood with PGD as an approximate worst-case
adversary. Right, Bottom Row: Robustness profiles of networks using the robust likelihood with IBP as an approximate
worst-case adversary. Accuracy (plotted as star points), an empirical estimation of Rε obtained using PGD (upper bound
of each bar), andRIBPε (lower bound of each bar), obtained for ε = 0.1 on the MNIST dataset.

Rayleigh distribution, the main result stated in the paper, that training with the robust likelihood is the only method that
gives non-trivial lower bounds on robustness. However, we continue to find that the use of the exponential distribution
when training with IBP, consistent with the Rayleigh distribution, has an adverse affect on the overall robustness profile
compared to training with Eqn (8).

10 Likelihood Ratios

Expanding briefly on the evaluation of uncertainty on out-of-distribution points, we also observe the affect of training
with robust likelihood on the ‘likelihood ratio’ of in and out-of-distribution (OOD) points. Similarly to how we evaluate
OOD points in the main text, we use FashionMNIST dataset as out-of-distribution points for networks trained on MNIST.
The likelihood ratio is calculated as the average softmax probability coming from out-of-distribution points divided by the
average predictive probability of in-distribution points. Thus, a likelihood ratio of 1.0 represents predictions which are
equally confident in and out of distribution. Conversely, a low likelihood ratio represents less certain predictions on out-
of-distribution points. We show that for our method of training, consistently with the often used entropy measure reported
in the main text, IBP training consistently improves the calibration of uncertainty on out-of-distribution points compared
with normal training.

10.1 Extended Out-of-Distribution Entropy Plots

In Figure 10 we extend the out of distribution MNIST plots given in the main text to the other approximate inference
techniques and find that the same result that is discussed in the main text holds for HMC and NA as well.
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Figure 8: Left: Effect of varying the scale η of the exponential distribution on the density pε when training we use η = 0.1.
Right, Top Row: Robustness profiles of networks using the robust likelihood with PGD as an approximate worst-case
adversary. Right, Bottom Row: Robustness profiles of networks using the robust likelihood with IBP as an approximate
worst-case adversary. Accuracy (plotted as star points), an empirical estimation of Rε obtained using PGD (upper bound
of each bar), andRIBPε (lower bound of each bar), obtained for ε = 0.1 on the MNIST dataset.

Figure 9: Likelihood Ratios using FashionMNIST as out-of-distribution samples for posteriors inferred on the MNIST
datset. A likelihood ratio of 1.0 represents predictions which are equally confident in and out of distribution. Conversely,
a low likelihood ratio represents less certain predictions on out-of-distribution points.
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Figure 10: We plot the in-distribution (blue) and out-of-distribution (orange) predictive uncertainty. Each pair of figures
corresponds to an inference method where the left figure represents the entropy distributions for standard training and the
right figure represents robust IBP training. We find that robust training improves the uncertainty calibration of the network
w.r.t. out-of-distribution samples.


	1 INTRODUCTION
	2 BAYESIAN INFERENCE WITH NEURAL NETWORKS
	3 A BAYESIAN APPROACH FOR ADVERSARIAL TRAINING
	4 ADVERSARIAL TRAINING THROUGH INTERVAL BOUND PROPAGATION
	4.1 APPROXIMATE INFERENCE WITH IBP

	5 EXPERIMENTS
	6 CONCLUSION
	7 APPROXIMATE INFERENCE PARAMETERS
	7.1 MNIST and FashionMNIST Parameters
	7.2 CIFAR10 Parameters

	8 CERTIFIED ROBUST RADIUS RESULTS
	9 ADVERSARIAL TRAINING PARAMETER STUDY
	9.1 The Effect of Adversarial Magnitude During Inference
	9.2 The Effect of Trading Accuracy and Robustness
	9.3 On the Choice of Density Function for Adversarial Magnitude
	9.3.1 Using a Rayleigh Distribution
	9.3.2 Using an Exponential Distribution


	10 Likelihood Ratios
	10.1 Extended Out-of-Distribution Entropy Plots


