
DeepOHeat: Operator Learning-based Ultra-fast
Thermal Simulation in 3D-IC Design

Ziyue Liu1, Yixing Li2, Jing Hu3, Xinling Yu1, Shinyu Shiau3, Xin Ai3, Zhiyu Zeng2 and Zheng Zhang1
1University of California at Santa Barbara, Santa Barbara, CA. Email: {ziyueliu, xyu644, zzhang01}@ucsb.edu

2 Cadence Design Systems, Austin, TX. Email: {yixingli, zzeng}@cadence.com
3 Cadence Design Systems, San Jose, CA. Email: {jinghu, shinyu,nathanai}@cadence.com

Abstract—Thermal issue is a major concern in 3D integrated
circuit (IC) design. Thermal optimization of 3D IC often re-
quires massive expensive PDE simulations. Neural network-based
thermal prediction models can perform real-time prediction for
many unseen new designs. However, existing works either solve
2D temperature fields only or do not generalize well to new
designs with unseen design configurations (e.g., heat sources and
boundary conditions). In this paper, for the first time, we propose
DeepOHeat, a physics-aware operator learning framework to
predict the temperature field of a family of heat equations with
multiple parametric or non-parametric design configurations.
This framework learns a functional map from the function space
of multiple key PDE configurations (e.g., boundary conditions,
power maps, heat transfer coefficients) to the function space
of the corresponding solution (i.e., temperature fields), enabling
fast thermal analysis and optimization by changing key design
configurations (rather than just some parameters). We test
DeepOHeat on some industrial design cases and compare it
against Celsius 3D from Cadence Design Systems. Our results
show that, for the unseen testing cases, a well-trained DeepOHeat
can produce accurate results with 1000× to 300000× speedup.

Index Terms—3D IC, thermal simulation, operator learning,
deep learning

I. INTRODUCTION AND RELATED WORK

The increasing transistor density on a silicon chip has led to
high power and heat density. The excessive heat can affect the
normal performance, reliability, and lifespan of semiconductor
chips. Due to the multiple stacked active silicon layers, 3D
IC design suffers from much higher power density [1]–[3].
Meanwhile, the increased complexity of 3D chips introduces
extra design configurations and system parameters and hence
prolongs the design cycle. Consequently, chip thermal opti-
mization, which provides the optimal thermal-aware floorplan
at an early stage, has become an important step in the 3D IC
design flow. Detailed and fast thermal simulators are needed
in various thermal-aware design optimization tools.

Discretization-based PDE solvers, such as finite-element
and finite-difference methods, have been widely used for
3D chip thermal analysis. The finite-element method (FEM),
though computationally expensive, provides the best accuracy
and flexibility [3], and is mostly used in commercial solvers
such as Celsius, ANSYS, and COMSOL. The finite-difference
methods (FDM) are simpler to implement and are widely
used in open-source solvers [4]–[6]. These thermal simulators
provide accurate temperature estimations but cost extensive
computational resources. Once a new design is generated,

designers need to re-run many simulations to optimize the
design case, which can be unaffordable for complicated tasks.
Some surrogate models have been developed to reduce the cost
of thermal prediction. For instance, model-order reduction [7],
[8] can accelerate each time-domain simulation via reducing
the number of state variables in a dynamic system. Data-driven
regression methods [9], [10] can model the dependence on
certain design parameters in a specified range, but the training
step often needs massive high-resolution PDE simulation
data. Neither technique can capture the dependence of the
temperature field on key PDE configurations (e.g., boundary
conditions, non-parametric heat source configurations).

Neural network-based methods can perform real-time pre-
dictions for unseen data. Several data-driven [11]–[13] and
physics-informed neural network-based (PINN) methods [14],
[15] have been proposed. However, these existing works either
fail to solve 3D full-chip temperature fields, lack generaliza-
tion to different PDE configurations, or need to be combined
with traditional solvers or additional computations. For exam-
ple, the data-driven method in [11] needs to be combined with
a coarse thermal profile obtained by a traditional FEM-based
method. The ML-based transient thermal solver in [12] needs
to be combined with convolution operations. The autoencoder-
decoder-based methods in [13], [14] are not applicable to 3D
volumetric power maps. The PINN-based approach in [15]
only takes input from geometric parameters rather than general
configurations, such as boundary conditions and power maps.

Paper Contributions. We propose the DeepOHeat frame-
work, which leverages recent advances in operator learning,
as an end-to-end thermal solver for ultra-fast 3D chip thermal
prediction under various (both parametric and non-parametric)
PDE configurations. Our contributions are as follows:

• For the first time, an end-to-end operator learning-based 3D
IC thermal simulator is proposed to solve a family of heat
equations under various PDE configurations.

• We propose a modular approach that encodes the PDE con-
figurations of 3D IC designs, including arbitrarily stacked
cuboidal geometry, individually defined boundary condi-
tions, 2D/3D power maps, and full-chip flexible material
conductivity distribution.

• The proposed DeepOHeat achieves 1000× to 300000×
speed up with satisfactory accuracy when compared against
Celsius 3D, a FEM-based commercial solver.



II. BACKGROUND: THERMAL SIMULATION IN 3D IC

Here we provide a brief overview of thermal simulation
in the context of 3D IC design. Thermal simulation aims to
predict the temperature field of a given object (chip) S by
solving the heat conduction PDE globally. The 3D governing
PDE is written as

∂

∂y1

(
k
∂T

∂y1

)
+

∂

∂y2

(
k
∂T

∂y2

)
+

∂

∂y3

(
k
∂T

∂y3

)
+qV = ρcp

∂T

∂t
,

(1)
where T and qV represent the temperature and the rate of inter-
nally generated energy per unit volume at any spatial-temporal
location (y1, y2, y3, t) ≡ (y, t). Here k, ρ, cp are material-
specific properties of S denoting material conductivity, mass
density, and heat capacity, respectively.

We focus on the static temperature field for isotropic materi-
als (i.e., ky1

=ky2
=ky3

=k), and simplify (1) by setting dT
dt = 0:

k · ∇2T + qV = 0, (2)

in which ∇2 stands for the laplacian operator. We then solve
(2), with appropriately defined boundary conditions in the
context of 3D IC design, for various chip designs to find the
optimal design by thresholding the temperature field.

III. MODULAR CHIP CONFIGURATIONS FOR THERMAL
ANALYSIS

Without loss of generality, we model the geometry of a chip
as single or multiple stacked rectangular cuboid(s) as shown in
Fig. 1. For each cuboid, its temperature field depends on some
key design configurations which include, but are not limited
to, material/geometric parameters.

The first family of design configurations is the boundary
condition (BC) for each individual surface that is exposed to
the environment. We consider the following types of BCs:
• Dirichlet: the temperature field on a surface is fixed as qd:

T = qd. (3)

• Neumann: the temperature flux on a surface is fixed

−k
∂T

∂yi
= qn, (4)

where qn represents the local heat flux density at the surface.
• Adiabatic: a special case of Neumann BC when qn is 0

everywhere. This indicates a perfectly insulated surface.
• Convection: also known as Newton BC. This BC corre-

sponds to a balance between heat conduction and convection
in the same direction at the surface:

−k · ∂T
∂yi

= h(T − Tamb). (5)

Here h and Tamb stand for the heat transfer coefficient at
the surface and the ambient temperature.
The second family of key design configurations are the

locations and intensity of external/internal heat sources. This
work considers the following two types of heat sources:

Fig. 1: Schematic figures of chip designs in thermal simulation.
The left one shows a general single cuboid chip model, of
which the right one is a concrete implementation.

• Surface/2D power: defined by the Neumann BC (4) when
qn is positive somewhere. Such qn is referred to as a
surface/2D power map.

• Volumetric/3D power: defined by the heat equation (2)
when qV is positive somewhere. Such qV is referred to as
a volumetric/3D power map.
We now present the thermal chip designs by several in-

dependent modular configurations as shown in Fig. 1. The
left figure shows a general single cuboid chip with different
BCs defined on each surface. The BC for the top surface also
defines a 2D power map. The uniform blue color for the dots
inside the cuboid indicates homogeneously distributed conduc-
tivity without any internal heat source. As a comparison, the
right figure indicates a concrete implementation. In this model,
we have volumetric power shown as the red dots in the middle
layer of the bottom cuboid with adiabatic BCs on all side
surfaces and convection BCs on the top and bottom surfaces.
The different colors applied to the convection surfaces and the
internal blue dots indicate different heat transfer coefficients
and inhomogeneously distributed conductivity.

The above design configurations can change the PDE struc-
ture and temperature field of a 3D IC significantly. Many of
them are described as functions instead of parameters, and they
cannot be handled by traditional machine learning techniques.

IV. THE DEEPOHEAT FRAMEWORK

Now we present DeepOHeat: a self-supervised operator
learning-based neural thermal solver enabling ultra-fast ther-
mal prediction. DeepOHeat takes functions that characterize
key design configurations (e.g., power maps, boundary condi-
tions, domain of interest) rather than just material or geometric
parameters as inputs to predict temperature fields in real time.
The key ideas of DeepOHeat are shown in Fig. 2.

A. Learning the Solution Dependence on Multiple PDE Con-
figurations via a Multi-input DeepONet

For succinct notations, we denote the heat equation of
interest (2) in the following general format

N (s(u1,u2, . . . ,uk)(y)) = 0. (6)

Here N is a symbolic representation of the simplified heat
equation (2). We denote the temperature field, i.e., the solution



Fig. 2: The proposed DeepOHeat framework.

function of this PDE, as s. A concrete temperature field is de-
termined by a certain chip design specified by various config-
urations such as a power map and BCs. We present in general
k design configurations of interest (i.e., PDE configurations),
both parametric and non-parametric, as u1,u2, . . . ,uk. Given
specific PDE configurations {ui}ki=1, the temperature field on
the domain of interest is then evaluated on the corresponding
spatial coordinates y, yielding the final formal representation
as s(u1,u2, . . . ,uk)(y).

To avoid any potential confusion, we emphasize that each
ui, i = 1, 2, . . . , k, no matter which representation form it
uses, is represented as a function instead of a parameter
in DeepOHeat. Therefore, DeepOHeat is designed to learn a
functional map Gθ (θ denote all the neural network parameters
in DeepOHeat, i.e., weights and bias) that maps the function
space spanned by the PDE configurations {ui}ki=1, denoted by
U : U1 × U2 × · · · × Uk, to the corresponding function space
S spanned by its temperature field s(u1,u2, . . . ,uk)(y), i.e.,

Gθ : U → S. (7)

Such a map means that, a well-trained DeepOHeat is capable
of accurately predicting the temperature field given any unseen
design drawn from the same PDE configurations space U . To
learn this functional map, we leverage recent works in operator
learning, DeepONets [16] and multi-input DeepONets [17].

Encoding Design Configurations as Input Functions
of DeepOHeat. We consider the general case that k PDE
configurations are considered. Correspondingly, we will have k
different input functions. For the ith configuration, we consider
a random sample u

(j)
i drawn from its function space Ui. This

function (e.g., a 2D power map) is identified by its values
on fixed locations (x1,x2, . . . ,xm) (e.g., some grid points of
a surface), and is then fed as an m-dimensional vector into
the ith sub-network block, namely the ith “branch net” [16].
Repeating this process for all k design configurations, we
then have k different input functions and the corresponding

branch nets. All these configurations are from a certain design
thus share the same domain of interest. we then input all the
coordinates sampled from this simulation domain into another
sub-network, namely the ”trunk net”. To effectively learn the
high-frequency information of the temperature field, we also
apply a Fourier features mapping [18] to the first layer of the
trunk net, which is shown inside the dashed red box in the
trunk net part of Fig. 2.

Example. We consider the example shown in the left part
of Fig. 2. We see that for this single-cuboid chip, we define
a 2D power map on the top surface. The power map that can
have an arbitrary layout of heat sources, is with no doubt a
non-parametric function. We identify this 2D power map by its
values on equispaced grid points, which naturally form a two-
dimensional matrix as shown in Fig. 2. We then flatten this
matrix to a vector and feed it into the first branch net. If we
consider a 3D power map, everything will be exactly the same
except it will be identified by its values on three-dimensional
equispaced grid points. Meanwhile, we define a convection
BC on the bottom surface of the chip with a uniform HTC
distribution of value hb. In this case, the HTC on the bottom
surface can be seen as a constant function therefore only one
grid point is needed to identify this configuration. We then
input hb into the second branch net. Note that hb should still
be regarded as a function that has a parametric format instead
of a parameter. If the surface has an inhomogeneous HTC
distribution, one can simply encode it similarly as we encode a
2D power map. For the side surfaces of the chip, other BCs are
defined accordingly and encoded as other DeepOHeat inputs
or just fixed invariant configurations.

With k defined PDE configuration inputs and the domain
coordinates, we have in total k branch nets and one trunk net,
each of which outputs a q-dimensional feature vector. We then
follow the ideas in [17] to combine all these output features
via Hadamard (element-wise) product and then sum up the



resulting vector to a scalar output that represents the predicted
temperature field, denoted as T = Gθ(u1,u2, . . . ,uk)(y).

B. Training DeepOHeat via Physics-Informed Loss
Now we explain how to train the DeepOHeat network.

According to [16], a DeepONet is generally trained via a data-
driven approach, in which data triplets (y, {ui}ki=1, s) need
to be collected via massive runs of numerical simulation. For
relatively complicated chip designs, a single FEM simulation
might cost hours or even days to complete. Therefore, large-
scale data collection is practically prohibitive in this context.
Instead, we follow the idea from a recent approach [19], which
leveraged the ideas from physics-informed neural networks
(PINNs) [20] to train a single-input DeepONet for solving
parametric PDEs. We extend their work to handle multi-input
scenarios as shown on the right of Fig. 2.

Again we consider the aforementioned general case where
k chip design configurations are considered. For the ith

configuration ui, we first index all the coordinates that are
located in its designated regions, such as a boundary surface,
denoted as yi. Then on yi, we impose a physics constraint
Li. If ui represents a power map, we denote Li as

Li = ∥P (Gθ(u1,u2, . . . ,uk)(yi))∥ . (8)

For a 2D power map, P is a symbolic representation of the
Neumann BC (4). For a 3D power map, P will represent the
heat equation (2) with non-zero qV . If ui represents a general
BC, such as convection or Dirichlet BC, we denote Li as

Li = ∥Bi (Gθ(u1,u2, . . . ,uk)(yi))∥ , (9)

where Bi denotes the formulation of the corresponding BC.
For the entire domain of interest, we impose the PDE con-
straint, except for the region where a 3D power map is
imposed, as

Lr = ∥N (Gθ(u1,u2, . . . ,uk)(y))∥ . (10)

We then obtain the total loss as

Ltotal = Lr +

k∑
i=1

Li. (11)

We train DeepOHeat by minimizing the total loss via gradient
descent based on automatic differentiation algorithms [21].

V. EXPERIMENTS

In this section, we present two implementations of the pro-
posed DeepOHeat and compare our results with Celsius 3D, a
state-of-the-art numerical solver for 3D chip thermal analysis
from Cadence Design Systems. Our results demonstrate that,
for any unseen designs, a well-trained DeepOHeat is capable
of producing satisfactory results with at least 1000× speedup.

A. 2D Power Map Configuration on The Top Surface
As the power map controls the heat generation in a certain

chip design, the prediction performance of DeepOHeat on
unseen new power maps are of major interest. For illustration,
here we focus solely on optimizing a 2D power map by
training a single-input DeepOHeat.

1) Problem setup: We consider a 21 × 21 × 11 mesh
grid-based single-cuboid geometry which represents a 1mm×
1mm × 0.5mm chip in practice. This geometry is similar to
the one shown in the left of Fig. 1 and has in total of 4851
grid points. We define a 2D power map on the top surface,
in which a one-unit power corresponds to a 0.00625(mW )
power in real-world settings. We define Adiabatic BC on all
side surfaces and convection BC on the bottom surface with
HTC = 500W/(m2K) and Tamb = 298.15(K). A homoge-
neous thermal conductivity k = 0.1W/(mK) is assigned to
the entire domain and no volumetric power is applied.

2) Generating training power maps: We sample all the
training power maps from a two-dimensional standard Gaus-
sian random field (GRF) with the length scale parameter equal
to 0.3. The length scale controls the smoothness of the sampled
functions. We choose 0.3 in this example to generate relatively
smooth power maps as shown on the left of Fig. 4. One
can also tune this parameter to generate training power maps
similar to those in specific optimization tasks. Corresponding
to our 21×21 mesh grids on the top surface, we identify each
power map by its values on these coordinates formatted as
a matrix of the same size. We then flatten these matrices to
vectors of length 441 as the input of the branch net.

3) DeepOHeat settings: In this example, we use a 9-layer
branch net with 256 neurons per layer combined with a 6-
layer trunk net with 128 neurons per layer. The first layer
of the trunk net is a Fourier features mapping [18] where
its coefficients are sampled from a normal distribution with
zero mean and 2π standard deviation. The input dimensions
of the branch net and the trunk net are 441 and 3, which
correspond to the dimensions of the encoded power map and
the 3D spatial coordinates, respectively. The output dimensions
of the two sub-networks are both 128. We set all the activation
functions as the ”Swish” function proposed by Ramachandra
et al. [22]. We find in experiments that Swish yields relatively
better results compared to other popular activation functions
used in PINNs, such as Sine and Tanh.

4) Training settings: We train this DeepOHeat by 10000
iterations to guarantee convergence, which takes 10 hours on
a single Tesla V100 GPU. In each iteration, 50 input functions
are sampled from the given GRF and fed into the branch net.
For each function, the 4851 mesh grid points of the entire
simulation domain are fed into the trunk net. We therefore
have a 242550×441 input for the branch net and a 242550×3
input for the trunk net. We choose the initial learning rate as
1e-3 and decay the learning rate by 0.9× every 500 iterations.

5) Test settings: We aim to compare the predicted temper-
ature fields with Celsius 3D element-wisely on unseen new
power maps. There exists a minor discrepancy between the
power maps of Celsius 3D and DeepOHeat. As shown in
the middle of Fig. 4, the power maps in Celsius 3D are tile-
based, different from the grid-based ones in DeepOHeat. To
accommodate these realistic power maps used in Celsius 3D,
we interpolate the 20× 20 tile-based power maps to 21× 21
grid-based power maps, as shown in the middle and right of
Fig. 4. Such a transformation not only enables DeepOHeat



Fig. 3: Predicted temperature fields for different 2D power maps defined on the top surface.

Fig. 4: Left: a power map for training; Middle and right: test
power maps for Celsius 3D and for DeepOHeat, respectively.

TABLE I: Mean and peak errors for all power maps

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

MAPE (%) 0.03 0.03 0.02 0.05 0.14 0.04 0.13 0.07 0.16 0.08

PAPE (%) 0.10 0.20 0.24 0.38 0.52 0.49 0.71 0.66 1.00 0.40

to accept almost the same realistic power maps as in Celsius
3D but also smooths out these discretely defined power maps.
As the ones we used for training are all continuous functions,
using the smoothed rather than discrete power maps for testing,
in a heuristics sense, would have lower generalization errors.

6) Results: All the results of this example are shown in
Fig. 3. From the left to the right, we gradually increase the
complexity of the unseen test power maps. We simply refer
them to as p1, p2, . . . , p10 and report their mean absolute
percentage errors (MAPEs) and peak absolute percentage
errors (PAPEs) in Table. I. We see that DeepOHeat is capable
of predicting the temperature fields for all these unseen test
power maps with satisfactory accuracy. Moreover, we want
to highlight the strong generalization power of DeepOHeat.
All these power maps, though most of which are composed
of heat blocks, are quite different from the training power
maps. Specifically, the last power map p10 can be seen as
a very wiggly function in this context. We see that p10 has
multiple small-sized heat sources and one of them is also given
a relatively large power. For such a complicated power map,
DeepOHeat still yields satisfactory predictions at the most part
of the domain, except for mildly overestimated temperatures

Fig. 5: Temperature fields under different HTC configurations.

at the regions between those small-sized heat sources.
7) Speedup: In this example, Celsius 3D costs approxi-

mately 5min for a single simulation on an Intel Xeon Gold
6148 CPU. The post-training prediction time for DeepOHeat is
0.1s on the same CPU and 0.001s on a Tesla V100 GPU, which
correspond to a 3000× and 300000× speedup, respectively.
For a larger-scale or more complicated design, the com-
putational cost for FEM-based solvers will rapidly increase
while remaining unchanged for DeepOHeat. We expect more
significant speed-up in realistic thermal optimization tasks.

B. HTC Configurations on Both Top and Bottom Surfaces

DeepOHeat can predict the thermal behaviors influenced by
multiple design configurations. To demonstrate this, we build
a dual-input DeepOHeat to predict the temperature field of a
3D IC influenced by the HTCs on two surfaces simultaneously.
In this example, we avoid introducing detailed settings instead
focus on those that are different from the previous example.

We consider a similar cuboid chip geometry with the size
of 1mm × 1mm × 0.55mm but all 7000 points are randomly



sampled inside (on) the entire domain. We don’t use mesh
because we don’t have mesh-based encoding for this example.
We define convection BCs for both top and bottom surfaces
and assume HTCs are constantly distributed. We define a
single-layer uniform volumetric power with a thickness of
0.05mm and the value of 0.000625(W ). The settings for side
surfaces and thermal conductivity are the same as before.

In each iteration, we sample 20 i.i.d samples uniformly from
a squared area [333.33, 1000] × [333.33, 1000] (W/m2K),
corresponding to 20 different HTCs for both two surfaces.
For each sampled HTC tuple, we randomly draw a new set
of coordinates from the simulation domain. Combining these,
we have two 140000× 1 inputs for the two branch nets and a
140000× 3 input for the trunk net.

In this example, we use relatively simpler networks for the
two branch nets, each of which contains 5 fully-connected
layers with only 20 neurons per layer. The trunk net still has
6 layers with 128 neurons per layer and a Fourier features
mapping defined in the first layer with a π standard deviation
this time. The output dimensions for all sub-networks are 50.

After training DeepOHeat for 5000 iterations (about 2
hours), we evaluate its performance on some unseen values
sampled from the same 2D region. For example, we pick
two sets of HTCs, (1000, 333.33) and (500, 500), as the test
cases and show the corresponding results in each row of
Fig. 5. Although different HTCs make only slight differences,
DeepOHeat still yields accurate predictions in both cases. As
shown by the color bars in Fig. 5, the differences in the
predicted maximal and minimal temperatures between Celsius
3D and DeepOHeat are within 0.1(K). In the first case where
HTC = 1000 on the top surface and HTC = 333.33 on the
bottom surface (first row in Fig. 5), the MAPE and PAPE of
DeepOHeat are 0.032% and 0.043%. In the second case where
HTC = 500 on both two surfaces (second row in Fig. 5), the
MAPE and PAPE of DeepOHeat are 0.011% and 0.025%.

Celsius 3D costs around 2min for a single simulation on
the aforementioned CPU. The runtime for DeepOHeat remains
unchanged. Therefore the speed up in this example is 1200×
and 120000× on CPU and GPU, respectively.

VI. CONCLUSION

In this work, for the first time, we have introduced a physics-
aware operator learning framework, named DeepOHeat, to
perform ultra-fast 3D chip thermal prediction under multiple
chip design configurations. We have proposed a modular chip
thermal model to encode various chip geometries, power maps,
and boundary conditions. We have applied a physics-informed
multi-input DeepONet to seamlessly solve a family of heat
equations that take multiple BCs and the power map as
input configurations with no data supervision required. The
experiments on two specific tasks show that a well-trained
DeepOHeat can predict the temperature fields on unseen
new chip designs with high accuracy while no noticeable
simulation time is required. In the future, we will further
investigate how DeepOHeat performs in more complicated
geometries and in optimizing 3D power maps.

REFERENCES

[1] H. Delaram, A. Dastfan, and M. Norouzi, “Optimal thermal placement
and loss estimation for power electronic modules,” IEEE Trans. Comp.,
Packag. and Manufacturing Tech., vol. 8, no. 2, pp. 236–243, 2018.

[2] K. Cao, J. Zhou, T. Wei, M. Chen, S. Hu, and K. Li, “A survey of
optimization techniques for thermal-aware 3D processors,” Journal of
Systems Architecture, vol. 97, pp. 397–415, 2019.

[3] H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-level
thermal simulators,” ACM Comput. Surv., vol. 52, no. 2, pp. 1–35, 2019.

[4] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: Fast compact transient thermal modeling for 3D ICs with
inter-tier liquid cooling,” in Proc. ICCAD, 2010, pp. 463–470.

[5] P. Li, L. T. Pileggi, M. Asheghi, and R. Chandra, “Efficient full-chip
thermal modeling and analysis,” in ICCAD, 2004, pp. 319–326.

[6] ——, “IC thermal simulation and modeling via efficient multigrid-based
approaches,” IEEE Trans. CAD Integr. Circuits Syst., vol. 25, no. 9, pp.
1763–1776, 2006.

[7] T.-Y. Wang and C. C.-P. Chen, “SPICE-compatible thermal simulation
with lumped circuit modeling for thermal reliability analysis based
on modeling order reduction,” in International Symposium on Signals,
Circuits and Systems, 2004, pp. 357–362.

[8] J. Xie and M. Swaminathan, “System-level thermal modeling using
nonconformal domain decomposition and model-order reduction,” IEEE
Trans. CPMT, vol. 4, no. 1, pp. 66–76, 2013.

[9] S. K. Samal, S. Panth, K. Samadi, M. Saeidi, Y. Du, and S. K.
Lim, “Adaptive regression-based thermal modeling and optimization for
monolithic 3-D ICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 10, pp. 1707–1720, 2016.

[10] S. K. Samal, S. Panth, K. Samadi, M. Saedi, Y. Du, and S. K. Lim,
“Fast and accurate thermal modeling and optimization for monolithic
3D ICs,” in Proc. Design Automation Conference, 2014, pp. 1–6.

[11] J. Wen, S. Pan, N. Chang, W.-T. Chuang, W. Xia, D. Zhu, A. Kumar,
E.-C. Yang, K. Srinivasan, and Y.-S. Li, “Dnn-based fast static on-chip
thermal solver,” in Semiconductor Thermal Measurement, Modeling &
Management Symposium, 2020, pp. 65–75.

[12] A. Kumar, N. Chang, D. Geb, H. He, S. Pan, J. Wen, S. Asgari,
M. Abarham, and C. Ortiz, “Ml-based fast on-chip transient thermal
simulation for heterogeneous 2.5 d/3D IC designs,” in International
Symposium on VLSI Design, Automation and Test, 2022, pp. 1–8.

[13] R. Ranade, H. He, J. Pathak, N. Chang, A. Kumar, and J. Wen, “A
thermal machine learning solver for chip simulation,” in ACM/IEEE
Workshop on Machine Learning for CAD, 2022, pp. 111–117.

[14] H. He and J. Pathak, “An unsupervised learning approach to solving heat
equations on chip based on auto encoder and image gradient,” arXiv
preprint arXiv:2007.09684, 2020.

[15] O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam,
K. Tangsali, Z. Fang, M. Rietmann, W. Byeon, and S. Choudhry, “Nvidia
simnet™: An ai-accelerated multi-physics simulation framework,” in Int.
Conf. Computational Science. Springer, 2021, pp. 447–461.

[16] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning
nonlinear operators via deeponet based on the universal approximation
theorem of operators,” Nature Machine Intelligence, vol. 3, no. 3, pp.
218–229, 2021.

[17] P. Jin, S. Meng, and L. Lu, “Mionet: Learning multiple-input operators
via tensor product,” arXiv preprint arXiv:2202.06137, 2022.

[18] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan,
U. Singhal, R. Ramamoorthi, J. Barron, and R. Ng, “Fourier features let
networks learn high frequency functions in low dimensional domains,”
Advances in Neural Information Processing Systems, vol. 33, pp. 7537–
7547, 2020.

[19] S. Wang, H. Wang, and P. Perdikaris, “Learning the solution operator
of parametric partial differential equations with physics-informed deep-
onets,” Science advances, vol. 7, no. 40, p. eabi8605.

[20] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational physics, vol. 378, pp. 686–707, 2019.

[21] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
Marchine Learning Research, vol. 18, pp. 1–43, 2018.

[22] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.


