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Abstract— Magnetic resonance imaging (MRI) is a powerful
imaging modality that revolutionizes medicine and biology.
The imaging speed of high-dimensional MRI is often limited,
which constrains its practical utility. Recently, low-rank tensor
models have been exploited to enable fast MR imaging with
sparse sampling. Most existing methods use some pre-defined
sampling design, and active sensing has not been explored
for low-rank tensor imaging. In this paper, we introduce an
active low-rank tensor model for fast MR imaging. We propose
an active sampling method based on a Query-by-Committee
model, making use of the benefits of low-rank tensor structure.
Numerical experiments on a 3-D MRI data set with Cartesian
sampling designs demonstrate the effectiveness of the proposed
method.

Index Terms— Magnetic resonance imaging, active sens-
ing/learning, sparse sampling, low-rank tensor

I. INTRODUCTION

Magnetic resonance imaging is a major medical imaging
modality, which is widely used in clinical diagnosis and
neuroscience. Due to the limited imaging speed, it is often
highly desirable to speed up its imaging process. A lot of
image models have been proposed to accelerate MR imaging,
including sparsity-constrained [1], low-rank-constrained [2]–
[4], data-driven, learning-based approaches, etc [5]. Most of
these methods recover MRI data with matrix computational
techniques. They either focus on 2-D MRI problems or
reshape the high-dimensional MRI data into a matrix and
then solve the problem using matrix-based techniques.

As a multi-dimensional generalization of matrix computa-
tion, tensor computation has been recently employed in MRI
due to its capability of handling high-dimensional data [6],
[7]. In many applications, MRI data sets naturally have a
higher physical dimension. In these cases, tensors often better
capture the hidden high-dimensional data pattern, achieving
better reconstruction performance [8], [9].

The quality and efficiency of an MRI reconstruction also
highly depend on the sampling method. Practical samples
are measured in the spatial frequency domain of an MR
image, often known as k-space. Some adaptive sampling
techniques have been proposed for matrix-format MR imag-
ing based on compressive sensing or low-rank models [10],
[11]. The experimental design methodologies include the
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Bayesian model [12], learning-based framework [13], [14],
and so forth. Adaptive samplings may also be considered for
streaming data [15].

However, for fast MR imaging with low-rank tensor
models, active sampling has been less explored. Beyond the
application of MR imaging, there are also limited works of
adaptive sampling for tensor-structured data. Existing works
mainly rely on the matrix coherence property [16]–[18] or
model-agnostic methods [19]. One application of matrix
coherence for the experimental design of MR imaging is
discussed in [20]. They need to reshape the tensor to a matrix
or can only apply on a 3-D tensor. Additionally, the practical
MRI sampling is usually subject to some pattern constraints,
like a Cartesian line sampling. Few papers have considered
the pattern constraints caused by the practical MRI sampling.
Therefore, designing an active sampling method for tensor-
structured data under certain pattern constraints is an impor-
tant and open problem.

Paper contributions. This paper presents an active sam-
pling method for accelerating high-dimensional MR Imaging
with low-rank tensors. Our specific contributions include:

• Novel active sampling methods for low-rank tensor-
structured MRI data. A Query-by-Committee method is
used to search for the most informative sample adap-
tively. Making use of the special tensor structure, the
approximations towards the unfolding matrices naturally
forms a committee. The sample quality is measured by
the predictive variance, averaged leverage scores, or their
combinations.

• Extending the sampling method to handle some pat-
tern constraints in MR imaging. Our proposed sampling
method itself can be applied broadly beyond MRI recon-
struction.

• Numerical validation on an MRI example with Cartesian
sampling. Numerical results show that the proposed meth-
ods outperform the existing tensor sampling methods.

II. BACKGROUND

A. Notation

Throughout this paper, a scalar is represented by a low-
ercase letter, e.g., x; a vector or matrix is represented by a
boldface lowercase or capital letter respectively, e.g., x and
X. A tensor, which describes a multidimensional data array,
is represented by a calligraphic letter. For instance, a N -
dimensional tensor is denoted as X ∈ RI1×I2...×IN , where
In is the mode size of the n-th mode (or dimension). An
element indexed by (i1, i2 . . . , iN ) in tensor X is denoted as
xi1i2...iN . A tensor Frobenius norm is defined as ∥X∥F :=



√ ∑
i1,i2,...,iN

(xi1i2···iN )2. A tensor X ∈ RI1×I2···×IN can

be unfolded into a matrix along the n-th mode/dimension,
denoted as Unfoldn(X ) := X(n) ∈ RIn×I1···In−1In+1···IN .
Conversely, folding the n-mode matrization back to the
original tensor is denoted as Foldn(X(n)) := X .

B. Tensor-Format MRI Reconstruction

In tensor completion, one aims to predict a whole tenser
given only partial elements of the tensor, which is similar
with matrix completion. In matrix cases, one often uses the
nuclear norm ∥·∥∗ (sum of singular values) as a surrogate of a
matrix rank, and seeks for a matrix with the minimal nuclear
norm. Exactly computing the tensor rank is NP-hard [21]. A
popular heuristic surrogate of the tensor (multilinear) Tucker
rank is the generalization of matrix nuclear norms [22]:

∥X∥∗ =

N∑
n=1

∥∥X(n)

∥∥
∗, (1)

Then the tensor completion problem can be formulated as
minimizing Eq. (1) given existing observations.

The above mode-n matricization {X(n)}Nn=1 represents
the same set of data and thus are coupled to each other, which
makes it hard to solve. Therefore, we replace them with n
additional matrices {Xn}Nn=1 and introduce an additional
tensor M. The optimization problem can be reformulated
as:

min
{Xn}N

n=1,M

N∑
n=1

∥Xn∥∗

s.t. Xn = M(n), n = 1, 2, . . . , N,

MΩ = TΩ,

(2)

where M is the reconstructed k-space tensor, M(n) is the
n-th mode matricization of M, T is the fully sampled k-
space tensor, and Ω is the observation set. If the MRI data
is known to hold some additional structure, we can further
modify the imagining model, like a low-rank plus sparsity
model [23], [24]. Eq. (2) can be efficiently solved via some
alternating solvers, like the block coordinate descent and the
alternating direction method of multipliers (ADMM) [22].
Essentially, we can either model the low-rankness of the k-
space or the image space data. We choose the former one
since it enables the design of our active sampling methods
in Section III. The additional k-space mode approximations
{Xn}Nn=1 will be exploited to acquire new data.

III. ACTIVE TENSOR SAMPLING METHOD

The complete flowchart of our MRI reconstruction frame-
work is illustrated in Fig. 1. In order to design an active
sampling method for MRI reconstruction, two questions need
to be answered: (1) How can we pick informative samples?
(2) How can we guarantee that the new samples obey the
patterns of MRI scans? We will provide the details in this
section.

Fig. 1. Flowchart of the MRI reconstruction framework.

A. Query-by-Committee-based Active Sampling

We are inspired by a classical active learning approach
called Query-by-Committee [25]. The key idea is to employ
a committee of different models to predict the values at some
candidate samples respectively. With such a committee, we
can measure the quality of a candidate sample and pick
the optimal one. The two key components of the Query-
by-Committee approach are

• A committee of models. The different mode-unfolding
matrices obtained from solving Eq. (2) naturally form a
committee required by our active sampling. This model
committee enables us to define an element-wise utility
measure, denoted as u(ξ), where ξ is an element in the
tensor.

• Measure of sample quality. After constructing a commit-
tee of models, we can define a measure of sample quality
u. The sample with the maximized u will be selected and
added into the observation set: Ω ← Ω ∪ argmaxξ u (ξ).
We consider the predictive variance and leverage score
as well as their combinations as our measure of sample
quality, as detailed in the next sub-section.

B. Measure of Sample Quality

Predictive variance. The first choice is the predicted
variance from different tensor modes. Based on the solved
Xn, if we unfold it and enforcing its consistency with the
observed data, we can obtain mode-i low-rank approximation
to M:

M̃n:=Foldn(Xn), M̃n(Ω)← T (Ω). (3)

Let E
[
M̃

]
:=

∑N
n=1 wnM̃n be the reconstructed tensor, we

define the difference tensor of each approximation ∆Mn and
the predictive variance tensor V as:

∆Mn := M̃n − E
[
M̃

]
, V :=

N∑
n=1

wn(∆Mn ◦∆Mn)

(4)
where ◦ denotes a Hadamard product, and wn is the weight
associated with mode-n approximation M̃n. The value of
wn depends on the solver to Eq. (2). In our implementation,
we adopt an ADMM solver and have {wn}Nn=1 = 1

N .
Note that the predicted variance is a semi-variance that is

defined to measure the disagreement among different modes.
Since the consistency of the observed data is enforced, the



committee has zero disagreement on them. Maximizing the
predictive variance helps to identify the sample with large
prediction error. The following lemma describes the relation
between the reconstructed error and the predictive variance.

Lemma 1: Let µ be the sum of all elements of the pre-

dictive variance tensor µ := ∥vec(V)∥1 =
N∑

n=1
wn∥∆Mn∥2F,

µi be the mode-n approximation error: µn =
∥∥∥M−M̃n

∥∥∥2
F

,
and µrec be the reconstruction error of the whole data set:

µrec =
∥∥∥M− E

[
M̃

]∥∥∥2
F

, we have

µrec =

N∑
n=1

wnµn − µ. (5)

Proof: Given two tensors A and B which are of the
same size, we have ∥A−B∥2F = ∥A∥2F+∥B∥2F−2∥vec(A◦
B)∥1. Eq. (5) is obtained by applying such an expansion on
µ, µn and µrec.
The approximations of different modes gradually converge to
the same one as more samples are observed. A sample with
the maximized predictive variance help to µrec decreases
quickly. The similar idea is used to reduce generalization
error in the ensemble learning [26].

Leverage score. Our second quality measurement u is the
leverage score. It comes from the incoherence property of a
matrix [27]. Given the singular value decomposition (SVD)
of a size-(N1 ×N2), rank-R matrix A = UΣV∗, let ei be
the i-th standard basis, the left and right leverage scores of
a matrix are defined as:

ℓ(i) := N1

R

∥∥UTei
∥∥2
2
, i = 1, 2, . . . , N1,

r(j) := N2

R

∥∥VTej
∥∥2
2
, j = 1, 2, . . . , N2.

(6)

A leverage score measures the coherence of a row/column
with a coordinate direction, which generally reflect the im-
portance of the rows/columns. For the mode-n approximation
Xn, we can perform SVD and calculate its left and right
leverage scores as ℓn and rn respectively, then the element-
level leverage score of a sample (i, j) in Xn is defined as:

ln (i, j) := ℓn(i) · rn(j), n = 1, 2, . . . , N. (7)

In a tensor structure, we can average the element-level lever-
age scores over modes and treat it as the utility measurement:

L :=

N∑
n=1

wnFoldn (Ln) . (8)

Based on the above two measurements, we propose four
greedy methods for our active tensor sampling as follows.
Since the sampling performance is problem-dependent, we
can not conclude the best one for an arbitrary data set. But
they all perform well in our numerical experiments.

• Method 1 (Var): We take the utility measurement u as
the variance among different modes [Eq. (4)].

• Method 2 (Lev): We take the utility measurement u as
the (weighted) average leverage scores [Eq. (8)].

• Method 3 / 4 (Var + Lev/ Var × Lev): We take the
utility measurement u as the sum/ Hadamard product of

Algorithm 1: The comprehensive active tensor com-
pletion framework.

Step 1: Solve tensor completion problem (2) as
initialization

Step 2: Calculate element-wise utility measurement
based on adopted sampling method

Step 3: Select K patterns based on pattern-wise
utility measurement (9)

Step 4: Resolve tensor completion problem (2)
Step 5: Check convergence. If not, back to step 2

the normalized variance [Eq. (4)] and the leverage scores
[Eq. (8)].

C. Sampling under Pattern Constraint

Now we show how to pick the samples subject to some
pattern constraints. Suppose the unobserved k-space data is
partitioned into P patterns {Πi}Pi=1, we should sample a
certain pattern Πi rather than just one element. For example,
in a Cartesian sampling, the pattern Πi is a rectilinear
sampling, i.e., a full column or row in a k-space matrix (kx-
ky).

Since our utility measurements are calculated element-
wisely in the Query-by-Committee, they can be easily
applied to any sampling pattern by summing the utility
measurement over all elements included in the pattern.
Consequently, we have a pattern-wise measurement:

u (Πi) =
∑

ξ∈Πi
u (ξ), i = 1, 2, . . . , P. (9)

As a result, the observation set can be updated as Ω← Ω∪
argmaxΠi

u (Πi). Without any pattern constraints, Eq, (9)
will degenerate to an element-wise measurement.

In practical implementations, we can easily extend the
active learning algorithm to a batch version via selecting
samples with the top-K utility measurement. We can stop
the algorithm when the algorithm runs out of a sampling
budget. The complete active tensor reconstruction algorithm
is summarized in Algorithm 1. Note that beyond MRI recon-
struction, the proposed active learning method is suitable for
various tensor completion applications with different pattern
constraints. The only requirement is that the low-rank tensor
completion algorithms model the (multilinear) Tucker rank.

Remark. The solved sampling patterns of a tensor highly
depend on its previous reconstruction steps, but not gener-
alize well for an unseen tensor. The main idea is to design
a case-specific sampling pattern for a tensor by utilizing its
low-rank tensor structure. The cost of our active sampling
process is dominated by calculating the utility measurement
and sorting over a tensor. Both of them have low computa-
tional cost compared with solving the image reconstruction
model or some learning-based and optimization-based active
learning algorithms [13], [28], [29]. However, the proposed
method requires us to re-run the image reconstruction al-
gorithm after selecting some new informative samples. This
will increase the computational cost. One possible solution in
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Fig. 2. Reconstruction results of different adaptive sampling methods. The proposed methods all outperform the existing Ada Coh and random methods.
Method 1 (Var) is the most suitable one in this example.
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Fig. 3. One slice of the reconstructed data.

the future is to incrementally update the MRI reconstruction
results on the fly.

The proposed active tensor completion can be employed to
various high-dimensional MRI problems beyond 3D-spatial
MRI, such as dynamic MRI, functional MRI, parallel MRI,
multi-contrast MRI and so forth. As shown before, our
sampling methods can handle various pattern constraints in
MRI scans. The pattern shape is flexible due to the element-
wise quality measurement. Besides MRI applications, our
active sampling method can also be applied to other generic
tensor completion problems with the structure of mode
approximation.

IV. NUMERICAL RESULTS

In this section, we validate our active sampling methods
on a low-rank tensor-format brain data set with the size 256×
256×256. Our codes are implemented in MATLAB and run
on a computer with 2.3GHz CPU and 16GB memory.

Baselines for Comparisons. We reconstruct the tensor-
structured data via adopting the proposed active learning
methods, a matrix-coherence-based adaptive tensor sampling
method (denoted as Ada Coh) [16], and a random sampling
method.

Aiming to set the baseline as a tensor-format sampling
method, we compared with Ada Coh [16], which is one
classical tensor adaptive sampling method, to demonstrate
the key advantages of the proposed method. In Ada Coh,

TABLE I
EVALUATIONS ON THE WHOLE DATA SET

Sampling method k-test (%) SER (dB) PSNR (dB)

Random 3.85 14.56 29.36
Ada Coh [16] 1.52 18.56 33.67

Proposed 1 20.6 35.59

the sampling is driven by the coherence of one mode
matricization of a tensor. Our Method 2 (Lev) can be seen as
its generalization via taking consideration of the interactions
among different modes. The comprehensive comparisons
with other application-dependent MRI acquisition methods
will be investigated in the future extended work.

Sampling Patterns. In this example, the k-space data is
scanned continuously as a fiber in the Cartesian coordinate.
In each spatial slice, we initialize with a fully sampled center
and randomly sampled non-central regions. The sample
pattern of the candidate samples is a fiber in the k-space,
which is obtained via fixing all but one index of the tensor.

Evaluation metrics. Our methods sample and predict k-
space data, and the final reconstruction needs to be visualized
in the image space. Therefore, we choose the evaluation
metrics from both spaces. In the k-space, the accuracy is
measured by the relative mean square error evaluated over
the fully-sampled k-space data (denoted as k-test). In the
image space, we use the signal to error ratio (SER) and peak
signal to noise ratio (PSNR) as our metrics.

Results Summmary. The initial sampling mask is gener-
ated with a sampling ratio of 23.14%, including a 14.45%
fully sampled center. In active sampling, each sampling batch
includes 1000 fibers, and we select a total of 10 batches
sequentially. Fig. 2 plots the k-test, SER and PSNR as
the sampling ratio increases. All proposed active sampling
methods can significantly improve the evaluation metrics and
outperform the existing Ada Coh and random samplings.
We choose Method 1 (Var) for the further comparison.
Fig. 3 shows one slice of the reconstructed MRI data. The
evaluations of the whole data set are shown in Table I, where
the proposed method has a higher reconstruction accuracy.



V. CONCLUSION

In this paper, we have presented a tensor-format active
sampling model for reconstructing high-dimensional low-
rank MR images. The proposed k-space active sampling
approach is based on the Query-by-Committee method. It
can easily handle various pattern constraints in practical MRI
scans. Numerical results have shown that the proposed active
sampling methods outperform the existing matrix-coherence-
based adaptive sampling method. In the future, we will
extend the reconstruction to an online setting and verify it
on more realistic MRI data.
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