
TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing

Ziyue Liu * 1 Xinling Yu * 2 Zheng Zhang 2

Abstract
Physics-informed neural networks (PINNs) have
been increasingly employed due to their capability
of modeling complex physics systems. To achieve
better expressiveness, increasingly larger network
sizes are required in many problems. This has
caused challenges when we need to train PINNs
on edge devices with limited memory, computing
and energy resources. To enable training PINNs
on edge devices, this paper proposes an end-to-
end compressed PINN based on Tensor-Train de-
composition. In solving a Helmholtz equation,
our proposed model significantly outperforms the
original PINNs with few parameters and achieves
satisfactory prediction with up to 15× overall pa-
rameter reduction.

1. Introduction
Physics-informed neural networks (PINNs) are increasingly
used to solve a wide range of forward and inverse problems
involving partial differential equations (PDEs), including
fluids mechanics (Raissi et al., 2020), materials modeling
(Liu & Wang, 2019), safety verification (Bansal & Tomlin,
2021) and control (Onken et al., 2021) of autonomous sys-
tems. Despite their success of learning complex systems
using the simple multilayer perception (MLP) architecture,
large neural networks are often required to achieve high
expressive power. This has significantly increased the mem-
ory and computing cost of training a PINN. Furthermore, a
PINN often has to be trained many times in practice once
the problem setting (e.g., boundary condition, measurement
data, safety specification) changes.

It is increasingly important to enable PINN training on

*Equal contribution 1Department of Statistics and Ap-
plied Probability, University of California, Santa Barbara,
CA, United States 2Department of Electrical and Com-
puter Engineering, University of California, Santa Bar-
bara, CA, United States. Correspondence to: Ziyue Liu
<ziyueliu@ucsb.edu>, Xinling Yu <xyu644@ucsb.edu>, Zheng
Zhang <zhengzhang@ece.ucsb.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

resource-constraint edge devices. On one side, safety-aware
learning-based verification and control (Bansal & Tomlin,
2021; Onken et al., 2021) often require the PINN to be
trained on a tiny embedded processor of an autonomous
agent. On the other side, the emerging digital twin and
smart manufacturing need AI-assistant design with IP pro-
tection (Stevens et al., 2020), where federated learning with
many edge devices allows users to design shared AI models
without disclosing their private data. In both cases, training
has to be done on edge devices with very limited memory,
computing and energy budget.

This paper proposes TT-PINN, an end-to-end tensor-
compressed method for training PINNs. This method
achieves huge parameter and memory reduction in the train-
ing process, by combining Tensor-Train compressed model
representation and a physics-informed network to approx-
imate the solutions of PDEs. We use this method to solve
a Helmholtz equation and compare it with standard PINNs.
With only thousands of parameters, our models significantly
outperform the original PINNs of similar or larger sizes.

2. Background: PINN
We consider the problem of solving a PDE

ut +Nx[u] = 0, x ∈ Ω, t ∈ [0, T ]

u(x, 0) = h(x), x ∈ Ω,

u(x, t) = g(x, t), t ∈ [0, T ], x ∈ ∂Ω

(1)

where x and t are the spatial and temporal coordinates
respectively, Ω and ∂Ω denote the computational domain
and its boundary; Nx is a general linear or nonlinear oper-
ator; u(x, t) is the solution of the above PDE with the
initial condition h(x) and the boundary condition. In
PINNs (Raissi et al., 2019), a neural network approximation
u(x, t) ≈ fθ(x, t) parameterized by θ is substituted into
the PDE (1) and yields a residual defined as

rθ(x, t) :=
∂

∂t
fθ(x, t) +Nx [fθ(x, t)] . (2)

We train parameters θ by minimizing the loss function

L = Lr + Lb + L0. (3)



TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing

Figure 1. The proposed TT-PINN framework. The Left part is a
tensorized MLP neural network with one tensorized hidden layer,
in which the trainable parameters are stored as multiple TT-cores.
The right part is the embedded governing physical laws that are
used to identify the PDE and to force the neural network approxi-
mating the solution. During the training, the TT-cores are directly
updated by its gradients calculated via auto-differentiation.

Here

Lr =
1

Nr

Nr∑
i=1

∣∣∣rθ(x
i
r, t

i
r)
∣∣∣2 ,Lb =

1

Nb

Nb∑
i=1

∣∣∣fθ (xi
b, t

i
b

)
− gib)

∣∣∣2 ,
L0 =

1

N0

N0∑
i=1

∣∣∣fθ (xi
0, 0

)
− hi

0)
∣∣∣2

(4)
penalize the residual of the PDE, the boundary conditions
and the initial conditions respectively; Nr, Nb, and N0 are
the numbers of data points for corresponding loss terms.

3. The TT-PINN Method
3.1. TT-PINN Architecture

In this work, we consider tensor-compressed training of
PINN based on a multilayer perception (MLP) network. A
standard MLP uses an L-layer cascaded function

zk = σ (Wkzk−1 + bk) , k = 1, 2, · · · , L (5)

with z0 = [x, t] and u = zL to approximate the solu-
tion. The weight matrix Wk can consume lots of memory,
making the training unaffordable on edge devices. This
challenge becomes more significant when the PDE opera-
tor involves highly inhomogeneous material properties or
strongly scattered waves. In these cases, large neural net-
works are often needed to obtain high expressive powers.

As shown in the Figure 1, the TT-PINN replaces the weight
matrix of an MLP layer by a series of TT-cores in the
training process. For simplicity, we drop the layer in-
dex, and let W ∈ RM×N denote a generic weight ma-
trix in an MLP layer. We factorize its dimension sizes as

M =
d∏

i=1

mi and N =
d∏

j=1

nj , fold W into a 2d-way ten-

sor W ∈ Rm1×m2×···×md×n1×n2×···×nd , and approximate
W with the TT-decomposition (Oseledets, 2011):

Ŵ(i1, i2, . . . , id, j1, j2, . . . , jd)

= G1(i1) . . .Gd(id)Gd+1(j1) . . .G2d(jd).
(6)

Here Gk(ik) ∈ Rrk−1×rk is the ik-th slice of the TT-core
Gk ∈ Rrk−1×mk×rkby fixing its 2nd index as ik. The vector
(r0, r1, . . . , r2d) is called TT-ranks with the constraint r0 =
r2d = 1. This TT representation reduces the number of

unknown variables in a weight matrix from
d∏

k=1

mknk to

d∑
k=1

rk−1mkrk+rd+k−1nkrd+1. The compression ratio can

be controlled by the TT-ranks. Recent approaches can learn
proper TT-ranks automatically in the training process via a
Bayesian formulation (Hawkins & Zhang, 2021; Hawkins
et al., 2022).

In most existing works of TT-layer (Novikov et al., 2015),
a Tensor-Train-Matrix (TTM) decomposition is used, in
which the weight matrix is represented by d 4-way TT-cores
instead of 2d 3-way TT-cores as we described above. Here
we adopt TT instead of TTM, because the TT format allows
easy tensor-network contraction (shown in Section 3.2),
which can greatly reduce the memory and computational
cost in both forward and backward propagation.

3.2. Forward & Backward Propagation of TT-PINN

Compared to techniques that compress a well-trained model
for inference, TT-PINNs are directly trained in the com-
pressed format. Specifically, the TT-cores that approximate
a weight matrix are directly used in the forward propagation
and updated in the backward propagation.

Memory-Efficient Forward Propagation. As shown in
(5), the main cost in a forward pass is computing a matrix
vector product like Wz. Instead of reconstructing W from
its TT-cores, we directly use its low-rank TT-cores to obtain
the result. Specifically, let Z ∈ Rn1×n2···×nd be the folding
of z into a d-way tensor, then TT-PINN computes a series
of tensor-network contractions between tensor Z and the
TT-cores {Gi}2di=1 as shown in Fig. 2.

We use the tensor-network notation (Orús, 2014; Cichocki,
2014) to show the computation process. A generic N -way
tensor is represented by circle and N edges; a shared edge
among two tensors mean production (i.e., contraction) along
that dimension. Before the computation starts, TT-cores are
neither connected to each other nor connected to the tensor
Z . We now explain the whole process by three steps. 1
Firstly, the tensor Z contracts with the last TT-core G2d as
shown by the red dashed rectangle in Fig. 2 (a), produc-
ing an intermediate tensor Z1, in which the size of the d-th



TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing

Figure 2. Matrix-vector product in the forward propagation using low-rank TT-cores only.

dimension changes from nd to r2d−1 and all the other dimen-
sions remains unchanged. 2 In the second step, the rest
of the red TT-cores are contracted in sequence, from G2d−1

to Gd+1. Fig. 2 (b) shows the contraction between the first
intermediate tensor Z1 and G2d−1 on two dimensions, pro-
ducing a (d− 1)-way tensor Z2 ∈ Rn1×n2×···×nd−2×r2d−2 .
Similarly, each time the k-th intermediate tensor Zk con-
tracts with the (2d− k)-th TT-core G2d−k, and the resulting
tensor Zk+1 will have one dimension eliminated. After
Zd−1 contracts with the last red TT-core Gd+1, the result-
ing tensor Zd will only have one dimension of size rd, as
shown in Part (c) and (d) of Fig. 2. 3 Finally, we contract
Zd with Gd and connect all the other TT-cores together
by sequentially contracting Gd with Gd−1, Gd−2, and all
the way to G1, obtaining the final result as a vector of size
m1m2 · · ·md.

Backward Propagation. After the forward propagation,
our proposed TT-PINNs calculate the customized loss func-
tion similarly as the traditional PINNs, then the backward
propagation begins, in which the auto-differentiation (AD)
algorithm (Baydin et al., 2018) is applied. Since the AD au-
tomatically records each computation step and the evolved
objects during the forward pass to generate a so-called com-
putational graph that is used to calculate the gradient of the
loss w.r.t each object through the chain rule, we are able to
obtain the gradient for each TT-core thus directly updating
each TT-core using stochastic gradient descent.

Through the whole process of the forward and backward
propagations in the proposed TT-PINNs, all computations
are done on the compressed parameters, i.e., TT-cores, in-
stead of a full-size weight matrix. Therefore, this end-to-end
compressed training framework can largely reduce the mem-
ory cost during the training.

4. Experiments and Results
In this section, we present a series of numerical studies to
assess the performance of the proposed TT-PINN against
a standard MLP PINN. Specifically, we consider a two-

dimensional Helmholtz PDE:

(∆ + k2)u(x, y)− g(x, y) = 0, (x, y) ∈ Ω := [0, 1]2,

u(x, y) = 0, (x, y) ∈ ∂Ω,
(7)

where ∆ is the Laplace operator and k = 4π is the wave
number. The exact solution to this problem takes the form
u(x, y) = sin (kx) sin (ky), corresponding to a source term

g(x, y) = k2 sin (kx) sin (ky) . (8)

The PINN approximation uθ(x, y) to solving (7) can be
constructed by parametrizing its solution with a deep neural
network fθ(x, y)

uθ(x, y) = x(x− 1)y(y − 1)fθ(x, y). (9)

The above transformation is applied to the neural network
to exactly meet the Dirichlet boundary condition (Lu et al.,
2021). Then the parameters θ can be identified by minimiz-
ing the total residual at Nr = 1200 collocation points that
are randomly placed inside the domain Ω.

We use this benchmark problem to compare the perfor-
mances of TT-PINNs against PINNs in terms of the total
number of parameters. Specifically, we consider a set of
neural networks with 3 hidden layers, and we control the
number of parameters by varying the number of neurons
per layer for PINNs and the choice of TT-ranks for TT-
PINNs. In TT-PINNs, the TT-ranks were determined by
the desired compression ratio for each hidden layer. For
example, to compress a 256× 256 weight matrix Wh in a
fully-connected layer with 40× compression, the TT-ranks
are determined as (1, 8, 8, 8, 8, 8, 8, 8, 1) when factorizing
each dimension of Wh as 256 = 44. It is also possible
to automatically determine the TT-ranks via the Bayesian
tensor rank determination in (Hawkins et al., 2022; Hawkins
& Zhang, 2021). To guarantee convergence, all models are
trained with 40,000 iterations. As for the training settings,
we use the Adam optimizer (Kingma & Ba, 2014) with an
initial learning rate 10−3 decayed by the factor of 0.9 after
each 1000 iterations. The neural networks are initialized by



TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing

Figure 3. Comparison of PINNs and TT-PINNs in solving the Helmholtz equation (7). The first row contains the prediction results
compared to the ground-truth solution. The second row shows the corresponding absolute errors. Our approach achieves similarly accurate
prediction while using 15× less parameters than the original PINN.

Table 1. The performance of PINNs in solving Helmholtz equation
for different model sizes. Here Wh represents the weight matrix
of each hidden layer and nθ is the total number of parameters. The
mean squared errors and relative ℓ2 errors are reported.

Wh nθ MSE Rel. ℓ2 error

32× 32 3297 1.32e-1 7.34e-1
64× 64 12737 1.56e-2 2.52e-1
128× 128 50049 2.60e-5 1.04e-2
256× 256 198401 1.00e-6 2.07e-3

the Xavier initialization scheme (Glorot & Bengio, 2010),
and a Sine activation function is applied to each neuron.

Table 1 and Table 2 summarize our results. Clearly, the
expressive power of both standard PINNs and the proposed
TT-PINN scales with its model size: larger models provide
better approximation to the ground-truth solution. However,
our proposed TT-PINNs achieves satisfactory prediction
while using much less parameters than a fully connected
3-layer PINN with 256 neurons per layer. To avoid any
confusion, the compression ratios reported in Table 2 are for
tensorized hidden layers, not for the whole model because
so far we only tensorize the hidden layers and leave the
input layer and the output layer uncompressed.

Figure 3 shows a visualized comparison of the prediction
performance between TT-PINNs and PINNs. As can be
seen, the PINN with nθ = 12737 model parameters, which
corresponds to 64 neurons per layer, produces the worst
prediction among the 4 models. Meanwhile, the proposed
TT-PINN with only nθ = 3713 parameters, which corre-
sponds to compressing a 256× 256 weight matrix by 100×
in the training, achieves a significantly improved prediction.
Also, the TT-PINN with nθ = 3713 parameters yields an

Table 2. The performance of TT-PINNs in solving Helmholtz equa-
tion for different model sizes. Here Ŵh represents the weight
matrix approximated by the TT-cores in each tensorized hidden
layer. nθ is the total number of parameters in the TT-PINN. The
mean squared errors and relative ℓ2 errors are reported.

Ŵh Compression nθ MSE Rel. ℓ2 error

128× 128 40× 2169 2.42e-4 3.14e-2
128× 128 20× 3597 3.08e-4 3.55e-2
256× 256 100× 3713 2.25e-4 3.03e-2
256× 256 40× 6593 1.50e-5 7.75e-3
256× 256 20× 12449 4.00e-6 4.26e-3

equally accurate prediction as the PINN with 50049 model
parameters. These results show that, by approximating a
more complicated neural network with the low rank struc-
ture (i.e., TT-cores), our proposed TT-PINNs are capable of,
in some level, preserving the expressive power of a larger
PINN. This will greatly reduce the requirement of hardware
resources in edge computing.

5. Conclusion and Discussions
In this paper, we have proposed an end-to-end compressed
architecture for training PINNs with less computing re-
sources. It is the first time that a low-rank structure is
applied to achieve memory efficiency while maintaining
satisfactory performance in training PINNs. This work is a
promising solution for training PINNs on edge devices.

This work, however, is still at the early stage thus very lim-
ited. Firstly, the PDE we considered in this work is relatively
simple and does not have stiffness issue that frequently oc-
curs in many engineering problems. Secondly, the current



TT-PINN: A Tensor-Compressed Neural PDE Solver for Edge Computing

network size we have considered is still relatively small,
the performance of TT-PINN needs to be demonstrated on
larger PINNs. Finally, deploying this framework on edge
computing platforms (e.g., embedded GPU or FPGA) re-
quires further algorithm/hardware co-design.

Acknowledgement
This work was supported by NSF # 1817037 and NSF #
2107321.

References
Bansal, S. and Tomlin, C. J. Deepreach: A deep learning

approach to high-dimensional reachability. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 1817–1824. IEEE, 2021.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. Journal of Marchine Learning Research, 18:1–43,
2018.

Cichocki, A. Tensor networks for big data analytics
and large-scale optimization problems. arXiv preprint
arXiv:1407.3124, 2014.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Hawkins, C. and Zhang, Z. Bayesian tensorized neural
networks with automatic rank selection. Neurocomputing,
453:172–180, 2021.

Hawkins, C., Liu, X., and Zhang, Z. Towards compact
neural networks via end-to-end training: A Bayesian
tensor approach with automatic rank determination. SIAM
Journal on Mathematics of Data Science, 4(1):46–71,
2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Liu, D. and Wang, Y. Multi-fidelity physics-constrained
neural network and its application in materials modeling.
Journal of Mechanical Design, 141(12), 2019.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and
Johnson, S. G. Physics-informed neural networks with
hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P.
Tensorizing neural networks. Advances in neural infor-
mation processing systems, 28, 2015.

Onken, D., Nurbekyan, L., Li, X., Fung, S. W., Osher, S.,
and Ruthotto, L. A neural network approach applied
to multi-agent optimal control. In European Control
Conference (ECC), pp. 1036–1041, 2021.

Orús, R. A practical introduction to tensor networks: Matrix
product states and projected entangled pair states. Annals
of physics, 349:117–158, 2014.

Oseledets, I. V. Tensor-train decomposition. SIAM Journal
on Scientific Computing, 33(5):2295–2317, 2011.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Raissi, M., Yazdani, A., and Karniadakis, G. E. Hidden
fluid mechanics: Learning velocity and pressure fields
from flow visualizations. Science, 367(6481):1026–1030,
2020.

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick,
K., and Brown, D. AI for science. Technical report, Ar-
gonne National Lab.(ANL), Argonne, IL (United States),
2020.


