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Abstract—Tensor computation has emerged as a powerful
mathematical tool for solving high-dimensional and/or extreme-
scale problems in science and engineering. The last decade has
witnessed tremendous advancement of tensor computation and
its applications in machine learning and big data. However, its
hardware optimization on resource-constrained devices remains
an (almost) unexplored field. This paper presents an hardware
accelerator for a classical tensor computation framework, Tucker
decomposition. We study three modules of this architecture:
tensor-times-matrix (TTM), matrix singular value decomposition
(SVD), and tensor permutation, and implemented them on Xilinx
FPGA for prototyping. In order to further reduce the computing
time, a warm-start algorithm for the Jacobi iterations in SVD
is proposed. A fixed-point simulator is used to evaluate the
performance of our design. Some synthetic data sets and a
real MRI data set are used to validate the design and evaluate
its performance. We compare our work with state-of-the-art
software toolboxes running on both CPU and GPU, and our
work shows 2.16− 30.2× speedup on the cardiac MRI data set.

I. INTRODUCTION

As a multi-dimension extension of matrices, tensors are a
natural tool to represent and process multi-way data arrays [1].
For instance, an MRI sequence with three spatial dimensions
and a time dimension can be naturally represented as a 4-
way tensor. The convolution layer in a neural network is also
a tensor. Leveraging various tensor decompositions [2]–[4],
many high-dimensional data mining [5], machine learning [6]–
[11] and EDA [12], [13] problems have been solved efficiently
without suffering from the curse of dimensionality.

Due to their superior performance in processing high-
volume data, tensors have emerged as a promising tool to
enable real-time machine learning and data analysis. Recently,
tensor algorithms have achieved great success in training and
compressing deep neural networks [6]–[11]. The resulting
tensorized models consume tremendously less memory, run-
time and power than the original deep neural network models.
Tensor algorithms have also been successfully employed to
accelerate medical image analysis [14], anomaly detection [15]
and speech recognition [16].

Despite the rapid progress of tensor algorithms, the hard-
ware/algorithm co-design of tensor computation on resource-
constrained platforms remains a new and (almost) unexplored
field. Some tensor libraries [17]–[19] have been developed for
high-performance platforms like clusters and super computers.
However, little algorithm-architecture co-design targeting on
power and cost-limited devices has been done, which has
limited the application of tensor-based data analysis and
machine learning on IoT and edge devices. Although many
hardware accelerators are available for matrix and vector com-
putations [20], [21] and have been applied to machine learning
[22]–[24] and signal processing [25], they cannot handle tensor
data, because the underlying theory and numerical procedures
are fundamentally different. It is inefficient and error-prone to
process tensor data by matrix- or vector-computation accel-
erators. Therefore, resource-constrained hardware accelerators
for tensor computation are highly desired.

This paper presents, for the first time, a hardware accelerator
for one of the most important tensor algorithms: Tucker de-
composition [3]. Tucker decomposition is a high-order gener-
alization of singular value decomposition (SVD) and principal
component analysis (PCA), and it often achieves orders-of-
magnitude higher data compression ratio than matrix com-
pression algorithms on multi-way data. This method has been
widely used in facial recognition [26], signal processing [27],
deep learning [28] and data mining [5]. Tucker decomposition
is often implemented via the high-order orthogonal iteration
(HOOI) [29]. This algorithm involves some computation-
intensive operations such as the tensor-times-matrix (TTM)
and matrix SVD. Meanwhile, handling the huge amount of
tensor data on FPGA or ASIC is a challenging task.

The contributions of our paper are summarized below:
• On the hardware side, we present an hardware architecture

for Tucker decomposition. We describe the design and
data communication of three units: TTM, SVD via Jacobi
iterations, and tensor permutation/reshaping.

• On the algorithm side, we propose a warm-start algorithm
to reduce the cost of the Jacobi iterations.

• We analyze the performance of our accelerator, implement
it on a Xilinx FPGA, and show the implementation results.

• We compare our FPGA accelerator with some state-of-the-
art algorithms on both CPU and GPU, and demonstrate its
application on an MRI compression task. Our accelerator
shows up to 30.2× speedup on the MRI data set.

II. ALGORITHM BACKGROUND

In this section, we introduce the necessary background of
tensors and Tucker decomposition.

A. Tensors and Basic Tensor Operations
Notations: We use boldface lower-case letters (e.g., x) to

denote vectors, boldface capital letters (e.g. X) to denote
matrices, and boldface Euler script letters (e.g. X ) to denote
tensors.

A tensor X ∈ RI1×I2···×Id is a multidimensional data array.
Here d is called the order or way of X . An integer k ∈ [1, d]
can be used as the index of a specific dimension or mode
with size Ik. An entry of a tensor can be specified by an
index vector. For instance, the (i1, i2, . . . id)-th entry in tensor
X is denoted by xi1,i2,...id . Clearly, a vector and a matrix are
order-1 and order-2 tensors, respectively.

Tensor Fiber and Slice: A fiber is a one-dimensional
fragment of a tensor, obtained by fixing all indices but one.
Tensor fibers are higher-order extension of matrix rows and
columns. A third-order tensor has fibers that can be denoted
by x:jk, xi:k or xij: correspondingly. A tensor slice is a
two-dimensional fragment of a tensor, obtained by fixing all
indices but two. For instance, Xi::, X:j: and X::k denote
the horizontal, lateral, and frontal slices of a 3-way tensor,
respectively. Fig. 1 shows the slices and fibers of a tensor.
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Fig. 1: Left to right: a tensor, slices, and fibers.

Fig. 2: Tensor unfolding.

Tensor permutation: Tensor permutation changes the
mode order of a tensor. It is a high-order extension of
the matrix transpose. For instance, given X ∈ R5×10×3,
permute(X , [2, 3, 1]) generates a new tensor Y ∈ R10×3×5

with yi2,i3,i1 = xi1,i2,i3 .

Unfolding: Unfolding (or matricization) as shown in Fig. 2,
is the process of transforming a tensor into a matrix. Unfolding
reorders the elements of an d-way data array into a matrix. For
instance, the mode-k unfolding of a tensor X ∈ RI1×I2···×Id

is denoted as X(k) ∈ R
Ik×

∏
m 6=k

Im
. The mapping from the

(i1, . . . , id)-th element X to the (ik, j)-th element of X(k) is
given as follows

j = 1 +

d∑
m=1,m 6=k

(im − 1)

m−1∏
n=1,n6=k

In

 . (1)

TTM: Tensor-times-matrix (TTM) in short, is a high-
dimensional expansion of matrix multiplication. Given a tensor
X ∈ RI1×I2···×Id and a matrix A ∈ RJ×Ik , their k-mode
product is a new tensor

Y = X ×k A ∈ RI1×···Ik−1×J×Ik+1···×Id . (2)

It can be expressed as matrix-matrix multiplication

Y(k) = AX(k) (3)

However, implementing it in this way directly can be ineffi-
cient on hardware because tensor permutation will be needed.
This needs to move almost all the data in a tensor.

Tensor Norms: The norm of a tensor is a function which
maps any tensor to a non-negative scalar. A widely used norm
of tensors is the Frobenius norm, defined as

||X ||F =

√ ∑
i1,i2,...id

x2i1,i2,...id . (4)

B. Tenser Tucker Decomposition
Given an d-way tensor X ∈ RI1×I2×···×Id , we may

compress it by the Tucker decomposition [30]. As shown in
Fig. 3, the Tucker decomposition approximates a large-size

Fig. 3: Tucker decomposition.

tensor with a small-size core tensor G ∈ RR1×R2···×Rd and d
factor matrices {Ak ∈ RIk×Rk}dk=1 as follows:

X ≈ G ×1 A1 ×2 A2 × · · · ×d Ad, (5)

where all columns are orthonormal inside each factor matrix
Ak. We call R = [R1, R2, · · · , Rd] as the multilinear rank
of X . When Rk � Ik, X can be represented with the above
Tucker format at a much lower cost. Once all factor matrices
are obtained, the core tensor can be computed as

G = X ×1 A
T
1 ×2 A

T
2 × · · · ×d AT

d . (6)

Two popular methods can be used to compute a Tucker
decomposition. The first well-known method is the high-order
SVD (HOSVD) [3]. The idea of HOSVD is simple:
• One first unfolds X along mode k to get X(k);
• Then, perform a singular value decomposition (SVD)

X(k) = UkSkV
T
k . (7)

• Finally, pick Ak as the first Rk columns of Uk.
This method is easy to implement, however it is not optimal
in fitting the data. Alternatively, an alternative least-square
method called HOOI is widely used to get a better solution.

HOOI: The High Order Orthogonal Iteration (HOOI) [29],
[31], [32] method aims to minimize the approximation error

min
{Ak}dk=1

||X − G ×1 A1 ×2 A2 × · · · ×d Ad||F (8)

through the iterative process as shown in Alg. 1. Each iteration
of the HOOI consists of two steps for every mode index k:
(1) obtain a tensor B via a power iteration (TTM along all
modes except k), which can be done from mode d, then d−1,
... until mode 1. (2) an SVD of the mode-k unfolded matrix
of B to extract a mode-k factor matrix Ak.

In practice, the initialization process via HOSVD can be
very time-consuming, because it needs d SVD operations,
and each of it works on a matrix whose size is equal to the
original tensor. Therefore, some random orthonormal matrices
are often used as the initial factor matrices. In this case, the
total number of iterations needed may increase slightly, but the
total runtime can decrease significantly. Even though, when the
size of the tensor X is large, the time and energy comsumed
to compute the Tucker decomposition can be very high.

III. PROPOSED ARCHITECTURE

In this section, we propose a new hardware architecture to
perform Tucker decomposition via HOOI.

Fig. 4 shows the system-level diagram of our architecture. In
order to load and accommodate the huge amount of tensor data
elements, our design stores the tensor in an external DRAM.
The HOOI engine consists of three parts: a tensor-times-matrix
(TTM) unit, a singular value decomposition (SVD) unit, and a
tensor permuting/reshaping unit. The data elements of the three
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Algorithm 1: HOOI for Tucker Decomposition

1: Initialize {Ak}dk=1 via HOSVD
2: while not converge do
3: for k = 1, 2, . . . , d do
4: B ← X ×1A

T
1 · · ·×k−1AT

k−1×k+1A
T
k+1 · · ·×dAT

d

5: Unfold B and perform SVD: B(k) = UkSkV
T
k

6: Ak ← the first Rk columns of Uk.
7: end for
8: end while
9: return {Ak}dk=1.
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Fig. 4: Overall structure of our Tucker decomposition.

units are stored in different memories. Because the size of a
tensor can be very large, all tensors (including the intermediate
and final results of TTM) are stored in an external DRAM. The
matrix for each SVD is stored in an on-chip memory to reduce
latency and to achieve a maximum throughput. Both parts are
parallel and pipelined to achieve the maximum performance.
The tensor permuting unit moves the data between the on-chip
memory used by the SVD unit and the external DRAM used
by the TTM unit, and it permutes the tensor accordingly.

A. Tensor-Times-Matrix (TTM) Unit
The TTM unit can be implemented as a matrix-matrix

multiplication that is available in some common computational
libraries. However, we need to permute tensors before it can be
implemented in this way. This is time- and memory-consuming

because almost all
d∏
k=1

Ik data elements of X have to be

moved. In this work, we develop a TTM unit without tensor
permutations. For simplicity, the tensors are always stored by
incrementing the mode-1 index i1, then the second index i2,
and so forth. Since the size of tensor X is often beyond the
capacity of an on-chip memory, all data elements (including
the input and output data, and the intermediate result of a TTM
operation) are stored in an external DRAM.

TTM with a 2-D PE Array. Our TTM unit is shown
in Fig. 5. In order to maximize the throughput of the TTM
module, we design a 2-D array of processing elements (PE)
with q columns and r rows. Each PE computes the product of
one scalar element of the tensor (black arrow) and one scalar
from the matrix (either from the blue line or stored in the PE)
at each clock cycle. The PEs in a single column are always
connected to the same bus so they handle the same element in
the tensor X ′ each time. Here X ′ can be either the original
tensor X or an intermediate tensor after the TTM of X with
some factor matrices. With q columns, this module can handle
up to q neighbouring elements of a tensor fiber in total at the
same time. Due to our method of storing X ′, the fibers are
always obtained by only changing the first mode index. Each
row of this array handles one column of the factor matrix Aj .
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Fig. 5: The TTM unit. The red part is used when computing
the mode-1 product and blue part is used when computing
mode-j product when j 6= 1.

We compute the mode-j TTMs in a decreasing order from
j = d to j = 1. This PE array works in different ways
dependent on the value of j, which is explained below.
• Assume that j 6= 1 and that we have done TTMs for all

modes > j except mode k. Let us ignore mode k for
simplicity, and the size of X ′ becomes I1 × I2 × . . . Ij ×
Rj+1 × · · · × Rd. To simplify the expression, we fold the
modes 1, 2, . . . j − 1 into a single mode and use î as its
index. The element-wise expression of this operation is

yî,rj ,ij+1...id
=

Ij∑
j

x′
î,ij ,ij+1...id

Aj(ij , rj). (9)

In each clock cycle, each vertical bus can carry some
neighbouring elements in a tensor fiber x′:ij ...id and each
horizontal bus can carry an element in the factor matrix.
Specifically, In the n-th cycle of the ij-th round, the l-
th vertical bus and the rj-th horizontal bus carry scalars
x′ î,ij ,...,id and Aj(ij , rj), respectively. Consequently the
(rj , l)-th PE calculates

x′ î,ij ,...,id × aij ,rj , with î = l + nq ≤ Î ′ = I1I2 · · · Ij−1.

Finally yî,rj ,ij+1,...,d
is obtained by summing the above

product terms over ij (in each round). Note that the index
of matrix elements in Aj used at each PE does not depend
on l. Therefore, we can multiply the whole fiber x′:ij ...id
with the same matrix element, and all PEs in the same
row share the same data elements of Aj by connecting
them to the same horizontal bus. Because the size the new
dimension, Î = I1I2 . . . Ik−1, is very large, we divide the
partly-folded tensor X ′ into some small sub-tensors of size
m×Ij×Rj+1 · · ·×Rd, and the resulting tensor Y into some
sub-tensors of size m×Rj×Rj+1 · · ·×Rd. We can compute
the sub-tensors of Y one by one to reduce the buffer size.

• When computing X ′ ×1 A
T
1 , the element-wise result is

yr1,i2,...,id =

I1∑
i1=1

x′i1,i2,...,idA1(i1, r1). (10)

The r1-th row of the PE array computes q product terms
of (10). Because q is usually smaller than the fiber length,
we need to compute all product terms by several cycles. In
the n-th cycle, the (r1, l)-th PE calculates

x′i1,i2,...,id × ai1,r1 , with i1 = l + nq ≤ I1.
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1: for j=1 to log(n) do
2: for i=1 to n/2 do
3: ai ← a2i−1 + a2i

4: end for
5: for j=n/2+1 to n do
6: ai ← 0
7: end for
8: end for

(b)

Fig. 6: (a) The details of a PE. The red part is used only for
mode-1 TTM, and blue part is only for mode-j TTM with
j 6= 1. (b) An in-pace adder tree for a ∈ Rn.

Note that in mode-1 TTM, the RAM inside the (r1, l)-th
PE stores all ai1,r1 ’s for all i1 = l + nq ≤ I1. The TTM
element yr1,i2,...id is obtained by accumulating all products
terms in the r1-th row during all cycles.

Processing Element (PE). As shown in Fig. 6, each PE
consists of a multiplier, a small RAM, and another memory
used as an output buffer storing the result before writing it to
a DRAM. The RAM (marked in red) is only used to store A1

when computing the mode-1 TTM. Otherwise, the bus at each
row imports data elements of Aj when j 6= 1. Therefore, a
mutiplexer (MUX) is used to select the correct data to perform
product operations. After computing one batch of the data (a
tensor fiber if j = 1 and a tensor slice if j 6= 1), the result
is written to the DRAM and then reset to zero. The buffer
temporarily holds the intermediate results, and keeps updating
during the multiplication and sum operations. The buffer stops
updating when its data is written into an external memory.
In order to avoid timing conflicts and to increase throughput,
another buffer is used (not shown in the figure) for transferring
data to an external memory. These two buffers switch their
roles after processing each batch of data.

In-place Adder Tree. As mentioned above, we need an
adder tree for the mode-1 TTM. If the adder tree is imple-
mented as a pipeline, a lot of adders and registers will be
used. Given that the product terms need to be summed up
only once per batch of data instead of per clock cycle, we only
need an in-place adder tree. We split a adder tree into multiple
stages. After each stage, each two elements are summed up
so the total number of data elements is reduced by 50%. The
registers and adders are shared among different stages. The
data elements are read from and write back to the same group
of registers after each clock cycle. This is why we call it an
“in-place” adder tree. This treatment can reduce the number
of adders and registers by 50%.

B. Singular Value Decomposition (SVD) Unit
Our SVD unit employs the Jacobi iterations [33]–[37]. Both

single-side and double-side Jacobi iterations are widely used.
We use the single-side version because of its higher accurate,
ease to parallelize and less data dependency. The whole
framework is summarized in Alg. 2. Given a matrix B, this
algorithms computes its left singular vectors by orthogonizing
every two rows (i.e., bi,: and bj,:) of the matrix iteratively.

Algorithm 2: SVD via single-side Jacobi iteration

1: Input: B = B(k), initial guess U = I.
2: while Not converge do
3: for any (i, j), 1 ≤ i < j ≤ n, i 6= j do
4: α = ‖bi,:‖22, β = ‖bj:‖22, γ = 〈bi:,bj:〉
5: θ = arctan( 2γ

β−α )
6: bi: = bi: cos θ − bj: sin θ,

bj: = bi: sin θ + bj: cos θ
7: ui: = ui: cos θ − uj: sin θ,

uj: = ui: sin θ + uj: cos θ
8: end for
9: end while

10: return U, with its i-th row being ui:.

The iterative process involves the norms and inner products of
the row vectors and performing some rotations.

We can select the order of (i, j) in different ways. A natural
choice is to increment j in the inner loop and increment
i in the outer loop, or vice versa. However, because of
the data dependency between two adjacent operations, this
choice makes it impossible to implement parallel or pipe-lined
design. In order to overcome this issue, we employ the round-
robin ordering suggested in [38], which eliminates the data
dependency between adjacent iterations. This method starts by
dividing all indices into n/2 pairs (1, 2), (3, 4), . . . (n− 1, n)
where n is the total number of rows. After orthogonalizing all
the pair of rows specified above, we generate new index pairs
in this way: suppose the pair in the previous round is (p, q),
this pair index is updated in the next round as

(p+ 1, q − 1) if q − p > 2,
(1, p+ q) if q − p ≤ 2 and p+ q ≤ n,
(p+ q + 1− n, n) if q − p ≤ 2 and n < p+ q < 2n− 1,
(1, 2) if q = n and p = n− 1.

Fig. 7 shows the block diagram of our SVD unit. In each
step, two vectors are orthogonalized. The on-chip memory
provides two ports to operate independently. In this part, one
port takes the two vectors from the memory, and another
port writes the orthogonalized vectors back into the memory.
Because we use only one port to input data and the other
for output, the two vectors have to be fetched through the
same port alternatively. Three sum-of-products are needed to
calculate the rotation angle θ. Given that the two vectors
are fetched alliteratively, the multiplier and adder to get
‖bi:‖2 and ‖bj:‖2 can be shared. Therefore, only two sets
of multipliers and adders are used. In order to get θ, sin θ
and cos θ, we employ the CORDIC algorithm [39], which
uses the rotations of some fixed angles to approximate the
rotation of any angle. This algorithm is efficient to calculate
the trigonometric functions on hardware, and an FPGA IP
core is available. After these two vectors are fetched from
the memory, they are stored in a local buffer until sin θ and
cos θ are calculated, then they are rotated accordingly. In this
way, it is guaranteed each vector is read from the memory
only once when orthogonalizing each pair of rows.

Besides the input matrix B, the orthogonal matrix U also
needs to be rotated in the same way. We store U and B in
the same memory and handle them in the same way, except
that U is not used for calculating α, β and γ. Since U has a
much smaller size than B, such a design only causes negligible
run-time overhead but saves half of the area and power.
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C. Tensor Permutation and Reshaping
Once B = X ×1A

T
1 · · ·×k−1AT

k−1×k+1A
T
k+1 · · ·×dAT

d
is computed, we need to permute and reshape the tensor B
into B(k) before performing an SVD. Since B is stored in an
external DRAM and the matrix B(k) is stored in an on-chip
memory, we need an extra module to move the data between
the DRAM and the on-chip memory and re-organize the data
elements to match B(k). After SVD, the factor matrix need to
be transposed and moved from the on-chip memory to DRAM,
which is done by this module as well.

When moving the data from on-chip memory and external
DRAM, the data is first read from the its original memory,
written to a local buffer with size p′ × q′, then written to the
destination memory. The size of the buffer determines the size
of data set that can be moved in every batch.

IV. IMPLEMENTATION DETAILS

A. Fixed Point Number
Floating-point numbers usually cause higher hardware cost

and longer latency. Therefore, we use a fixed-point number
system based on the trade-off between accuracy and hardware
complexity.

We decide the fixed-point precision based on some hardware
constrains. Because the data width at the interface of a DRAM
controller is fixed as 512 bits, the memory is most efficient if
the data width is a factor of 512 (i.e., 2n with integer n ≤ 9).
Meanwhile, each DSP our FPGA can perform an multiplica-
tion with data sizes up to 27 bits × 18 bits. Considering these
constraints, we use 16-bit numbers to represent all tensor data
elements, and store them in an external DRAM. On the other
hand, we use 27-bit numbers to represent the matrix data in
both TTM and SVD in order to achieve higher accuracy and to
avoid excessive use of multipliers. Note that we use a smaller
data width for tensor data in order to save some memory space
when processing the huge amount of data in a tensor. In this
case, each multiplier in the TTM unit requires one DSP block,
and each multiplier in the SVD unit requires two DSP blocks.

There are many sum-of-product operations in both TTM and
SVD. The small error in the product terms will accumulate
when calculating the sum. In order to address this issue, we
use 48-bit numbers to represent the product terms. We use
27-bit numbers to represent most of the intermediate results,
except for the 32-bit α, β, γ, θ in the SVD unit.

B. HOOI with A Warm-start Algorithm
We observe that the SVD B(k) = UkSkVk via the Jacoboi

iterations is the most time-consuming part of HOOI. There-
fore, we employ a warm-start strategy to reduce the number of
Jacobi iterations. In the standard Jacobi iterations, the initial

Algorithm 3: HOOI with warm-start Jacobi iterations
1: Initialize Ak as any orthonormal matrix.
2: while Not converge do
3: for k = 1, 2, . . . , d do
4: B ← X ×1A

T
1 · · ·×k−1AT

k−1×k+1A
T
k+1 · · ·×dAT

d

5: Unfold B into B(k)

6: SVD: run Jacobi iterations (i.e., Alg. 2) with input
B = UT

kB
(k) and initial guess U = Uk.

7: Ak ← the first Rk columns of U.
8: end for
9: end while
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Fig. 8: Convergence speed (measured as the total number of
Jacobi iterations) of a standard HOOI and the optimized HOOI
with the warm-start inside SVD.

guess is chosen as an identity matrix. In our implementation,
we use the orthonormal matrix Uk obtained from the previous
iteration of HOOI as the initial guess of the Jacobi iteration.
Thanks to the good initial guess, we only need to perform one
or two rounds of Jacobi iterations inside each SVD, and the
whole HOOI still converges after an enough number of power
iterations. The optimized algorithm is shown in Alg. 3.

Fig. 8 shows the convergence curves of the standard HOOI
and our proposed warm-start HOOI, respectively. We consider
a tensor of size 128 × 128 × 128 and with a multi-linear
rank R = [32, 32, 32], which is generated by a Gaussian
distribution and corrupted with some Gaussian noise. The
noise variance is half of that of the tensor element. The
standard method converges after only two HOOI iterations,
but the SVD of each mode requires about 10 rounds of Jacobi
iterations. Our optimized HOOI converges after 7 iterations,
but each SVD requires only one round of Jacobi iterations,
leading to a significant reduction of the total cost.

V. PERFORMANCE ANALYSIS

This section analyzes the hardware performance of our
FPGA-accelerated Tucker decomposition.

A. Run-time Analysis
The total runtime is the sum of each part: TTM, SVD, and

tensor permuting. For a d-way tensor, each HOOI iteration
requires d(d− 1) TTMs, d SVDs and 2d tensor permuting/re-
shaping operations. Some intermediate results can be reused.
For instance, after computing X ×3 A3 ×2 A2 for a 3-way
X , the result of X ×3 A3 can be reused when computing
X ×3 A3 ×1 A1. By considering the TTM data reuse, the
actual total number of TTMs is reduced to (d− 1)(1 + d/2).
When applying the warm-start algorithm for Jacobi iteration,
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the unfolded matrix B(k) need to be multiplied with Uk first,
and this is done by TTM as well, causing additional d TTM
operations. The total run-time is given by

Ttotal =

d∑
k=1

(

k∑
j=1

TTTM,k,j + TSVD,k +

2∑
i=1

Tpermute,i,k). (11)

The details of each term are provided below.
TTM Part: The run-time of TTM depends on the size of

its multiplier matrix. Suppose that we have a multiplier matrix
of size q × r. In this case, the multiplier takes in q elements
of X ′ per clock cycle, and each element is multiplied with
r elements of the factor matrix Aj . At most qr product and
sum operations can be done per clock cycle. Therefore, the
number of clock cycles is

TTTM,k,j =



Ij
d∏

j′=j+1

Rj′ × d

j−1∏
j′=1

Ij′

q
e × dRj

r
e j > k

IjIk
d∏

j′=j+1,j′ 6=k

Rj′ × d

j−1∏
j′=1

Ij′

q
e × dRj

r
e 1 < j < k

Ik
d∏

j′=2,j′ 6=k

Rj′ × d I1q e × d
R1
r
e j = 1.

Similarly, the clock cycles required for U(k)Bk is

TTTM,k,k =


Ik

d∏
j′=k+1

Rj′ × d

k−1∏
j′=1

Rj′

q
e × d Ik

r
e k 6= 1

d∏
j′=2

Rj′ × d I1q e × d
I1
r
e k = 1.

Some extra clock cycles are caused by the latency of the
pipeline and ping-pong buffer, but they are often less than
1% of the total run-time and thus negligible. When the TTM
is applied over the first mode, the data need to be copied to
the local memory of each PE in advance. This causes extra
O(IkdJkr e) clock cycles, which is negligible again and can be
done in parallel with other operations.

SVD Part: When updating the k-th factor matrix, we
need to do SVD to a matrix with size Ik × R/k, with
R/k =

∏
i6=k Ri. In each Jacobi iteration, Ik(Ik − 1)/2 pairs

of matrices will be orthogonalized. Each orthogonalization
handles 2(Ik + R/k) numbers, therefore it takes 2d Ik+R/k

p e
clock cycles, where p is the degree of parallelism. As a result,
each Jacobi iteration takes approximately

TSVD,k = Ik(Ik − 1)d
Ik +R/k

p
e (12)

clock cycles. Similar to the case in TTM, the extra time cased
by the latency of pipeline is negligible.

Tensor Permutation: Suppose that the size of the buffer is
p′ × q′. In each clock cycle, this buffer can either exchange
(read or write) p′ numbers with the internal memory or q′
numbers with the DRAM. Note that p′ and q′ are not neces-
sarily equal to p and q, respectively, as long as the memory
supports writing p′ or q′ elements each time. However, setting
p′ = p, q′ = q can simplify our design and maximize
the hardware efficiency. Each tensor permutation requires
O
(
Ikd

R/k

q′ e+R/kd Ikp′ e
)

clock cycles, with R/k =
∏
i 6=k Ri.

Our simulation shows that the practical run-time is

Tpermute,1,k ≈ 5(Ikd
R/k

q′
e+R/kd

Ik
p′
e) (13)

q r LUTs Registers DSPs
Clock
rate Power

16 16 46,056 24,556 256 212MHz 2.008W
16 32 99,384 48,357 512 200MHz 2.395W
32 16 99,505 48,189 512 203MHz 2.503W
32 32 198,269 95,743 1,024 187MHz 3.141W

TABLE I: Performance of the TTM unit.

p LUTs Registers DSPs Clock rate Power
16 8,711 12,284 128 209MHz 0.477W
32 11,134 13,965 256 207MHz 0.683W
64 16,127 17,532 512 208MHz 1.095W

128 25,360 24,631 1,024 203MHz 1.871W

TABLE II: Performance of the SVD unit (fixed point).

q p LUTs Registers
Clock
rate Power

16 64 29,929 27,718 241MHz 1.342W
32 64 59,308 55,366 209MHz 1.961W
32 128 115,749 110,662 205MHz 2.981W

TABLE III: Performance of the tensor permute/reshape unit.

clock cycles when we move B from a DRAM to an on-chip
memory and permute it. We need

Tpermute,2,k ≈ 5Ik(d
Ik
q′
e+ dIk

p′
e) (14)

clock cycles to move Uk to DRAM and transpose it.

B. Area and Power
The area and power depends on the design parameters p,

q and r. The higher the degree of parallelism is, the more
PEs, hardware area and power will be required. In the TTM
unit, the total number of multipliers, adders, accumulators and
buffers are proportional to the size of multiplier matrix, q× r.
Therefore, the area of TTM is approximately O(q × r). Sim-
ilarly, the area of the tensor permutation unit is proportional
to the buffer size p × q. The power also increases when the
area increases.

The area of the SVD unit is independent of its input
matrix size, but depends on the degree of parallelism p.
Additionally, one arctan module and one sin/cos module are
required. Therefore, the area of the SVD unit is estimated as
c1p + c2, where c1 represents the area (multipliers, adders,
accumulators, etc.) required for each matrix element, and c2
represents the area of arctan and sin/cos blocks.

VI. RESULTS

A. FPGA Performance Validation
We implement all parts of the optimized HOOI with dif-

ferent design parameters on FPGA. All the results below are
based on Xilinx XCVU9P-L2FSGD2104E FPGA, which is
available on a Xilinx VCU1525 acceleration board. The power
is estimated with a 200-MHz clock rate. The results for differ-
ent units are shown in Tables I-III. The hardware complexity,
including the number of lookup tables (LUTs), registers and
DSP blocks, is determined by the design parameters. The area
of the TTM unit is approximately proportional to q × r. The
area of the SVD unit is approximately proportional to p. In
tensor permute unit, its area is approximately proportional to
p′ × q′. The power consumption increases as we increase the
design parameters but the relationship is not strictly linear,
since the power consumption of some parts (e.g., the clock
generator) is independent of our design parameters.



7

2.5 5.0 7.5 10.0
Iterations

0.2

0.4

0.6

0.8
Re

la
tiv

e 
er
ro
r

size=128, rank=16
size=256, rank=16
size=256, rank=32

(a)

100 200 300 400 500
Size of tensor along each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e(
s)

(b)

100 200 300 400 500
Size of tensor along each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e(
s)

(c)

100 200 300 400 500
Size of tensor along each dimension

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e(
s)

TensorLy@numpy
TensorLy@PyTorch_CPU
TensorLy@PyTorch_GPU
MATLAB
FPGA(proposed)

(d)

Fig. 9: Runtime and convergence of HOOI on some randomly generated 3-way tensors with size I1 = I2 = I3 and R1 =
16, R2 = 24, R3 = 32. (a) Convergence of proposed FPGA-based HOOI on a 3-way tensor, in the number of HOOI iterations.
(b)-(d) Runtime of HOOI for various sizes of tensors. TensorLy uses the standard HOOI which uses SVD for initialization
and for updating Ak; the MATLAB implementation uses random initialization and eigenvalue decomposition to update Ak;
our proposed FPGA implementation uses random initialization and SVD Jacobi method with warmstart to update Ak.
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Fig. 10: Runtime of HOOI on some 4-way tensors with the
same size along each dimension, and rank R = [16, 16, 16, 16]
and R = [32, 32, 32, 32], respectively.

B. Performance Comparisons

We compare our FPGA accelerator with other two com-
monly used toolboxes on different platforms: the Tensor
toolbox [40], [41] in MATLAB on CPU, and the TensorLy
toolbox [42] in Python on both CPU and GPU. The TensorLy
can select NumPy, PyTorch or MXNet as its backend, and the
latter two allow high-performance GPU computation. In our
experiment, we use NumPy and PyTorch for comparison. The
runtime on CPU is measured on a Linux desktop with Intel i5-
8400 6-core CPU and 32 GB memory. The GPU experiments
are conducted on a Titan V GPU. Since the accuracy and
convergence of our Tucker decomposition depends on the
fixed-point number system, we develop a fixed-point simulator
with the Xilinx fixed-point number library to simulate the
truncation error and overflow in our FPGA accelerator.

We perform the comparison by using some randomly gener-
ated low-rank tensors. For each tensor, both the core tensor and
the factor matrices are generated by Gaussian distributions,
and the tensor is then corrupted by some Gaussian random
noise. The relative error is evaluated as

‖X − G ×1 A1 ×2 A2 × · · · ×d Ad‖F
‖A‖F

× 100%. (15)

Fig. 9 shows the results on a set of 3-way tensors with size
I1 = I2 = I3. Our architecture can get 1.41− 9.90× speedup
compared with MATLAB tensor toolbox on CPU, and even

more compared with the TensorLy toolbox on both CPU and
GPU.The convergence behavior of our FPGA-based Tucker
decomposition is shown in Fig. 9(a). It is shown that our
method always converges after 6-8 HOOI iterations. Therefore,
we assume 8 HOOI iterations to estimate the runtime of our
FPGA architecture.

We further perform comparisons using some 4-way tensors
and show the results in Fig. 10. Our PC with 32GB RAM
can no longer accommodate such 4-way tensor data, therefore
the results on CPU are obtained by running our experiments
on Amazon AWS r4.4x large instance with 16 virtual CPUs
(vCPU) and 122GB memory. Since large 4-way tensors exceed
the memory of GPU, and TensorLy with the NumPy backend
consumes extremely long time, their runtimes are not shown in
Fig. 10. When the size along each dimension is 256, MATLAB
run out of memory when computing. On these 4-way tensor
data, our FPGA design can get 3.18−8.22× speedup compared
with the MATLAB tensor toolbox on the AWS CPU.

Remark: Our FPGA accelerator uses the Jacobi iteration
to perform SVD, whereas the MATLAB tensor toolbox and
TensorLy use more powerful advanced SVD algorithms. If the
same SVD algorithms are used in all implementations, our
FPGA design may achieve more significant speedup.

C. Application: MRI Compression

The accelerated Tucker decomposition can be applied to
multiple application domains. Here we demonstrate its ap-
plication in compressing multi-way MRI data. This dataset
is a single-channel, first-pass myocardial perfusion real-time
MRI sequence (nx = 190, ny = 90, nt = 70). We use the
pre-processed data available in [43], [44], and set rank to
Rx = 40, Ry = 32, Rt = 28 in HOOI. The estimated runtime
with our architecture is 0.0447s at a clock rate of 185MHz.
In comparison, on a Linux PC with Intel i5-8500 CPU 6 core
CPU, the same operation takes 0.0964s with the MATLAB
tensor toolbox, 0.335s with TensorLy toolbox and NumPy
backend, 1.352s with TensorLy toolbox and Pytorch backend.
on a PC with NVIDIA TITAN V GPU, this operation takes
0.217s. Therefore, our method provides 2.16-30.2× speedup
compared with existing frameworks on CPU, and 4.85×
speedup compared with GPU. Fig. 11 shows the original
MRI data and the data approximated by our low-rank Tucker
decomposition on FPGA.
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Fig. 11: Decomposition result of MRI dataset. Top: original
190 × 90 × 70 data at t = 15, 30, 45, 60. Bottom: approx-
imated data by Tucker decomposition on FPGA, with rank
R = [40, 32, 28]. The data compression ratio is 24.8×.

VII. CONCLUSION

This paper has presented an algorithm-architecture co-
design to perform tensor Tucker decomposition. We have
implemented Tensor-Times-Matrix, matrix SVD with single
side Jacobi iteration, and tensor permuting on FPGA. We have
also proposed a warm-start algorithm for the Jacobi iterations
to reduce its computation time. We have done simulations on
both synthetic data sets and an MRI data set. Our method is
significantly faster than existing computation frameworks on
both CPU and GPU. This accelerator can be employed in a
broad range of applications including data mining, scientific
computing, computer vision, and deep learning.
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