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Prediction of Multi-Dimensional Spatial Variation
Data via Bayesian Tensor Completion

Jiali Luan and Zheng Zhang

Abstract—This paper presents a multi-dimensional computa-
tional method to predict the spatial variation data inside and
across multiple dies of a wafer. This technique is based on
tensor computation. A tensor is a high-dimensional generalization
of a matrix or a vector. By exploiting the hidden low-rank
property of a high-dimensional data array, the large amount () matrix (b) 3-D tensor
of unknown variation testing data may be predicted from a
few random measurement samples. The tensor rank, which
decides the complexity of a tensor representation, is decided
by an available variational Bayesian approach. Our approach is
validated by a practical chip testing data set, and it can be easily
generalized to characterize the process variations of multiple
gr%fgés'te%lﬁ;i%ﬂ%??r?hté?nqqsog‘ ?rf’f'ecr:fgrtytg‘"’r‘%tggrﬁgeu‘{g)#sn‘a{'lrtggét of samples. A representative example is the “Virtual Probe”
when handling high-dimensional chip testing data. technique [20], [2;[] and its varllants [22], [23], which el

. - compressed sensing [24] to estimate all performance data fr

Index Terms—Data analytics, process variation, tensor, tensor 5 few measurement samples. In order to estimate all data on

completion, Bayesian statistics, variation modeling. a die with ann; x no array of circuits, these techniques
approximate the variation data by the linear combination of
. INTRODUCTION ning basis functions [e.g., 2-D discrete cosine transformation

Today’s nano-scale semiconductor manufacturing is subjéPCtT) bases] of spatial ar>]<_|sre]>$ andy. V\Illhetn the approx-
to significant process variations (e.g., uncertain gedmetfnation is very sparse (which is generally true in practice)

and material parameters caused by imperfect lithography® ™172 coefﬁmentts canlbe estlmatﬁdbleve_lr]hﬁ ori:g/ ﬁ .
chemical-mechanical polishing and other steps) [1]. Thega"2 Measurément sampies areé available. 1hese techniques

e o ave proved to be more efficient than traditional approaches
process variations can propagate to circuit and systents|ev ygh as Kriging prediction [25] and-LSE estimation [26].

and cause remarkable performance uncertainties and -y%ompressed sensing is effective for processing 2-D data, bu
degradation. Therefore, extensive numerical modelingusi {t has some shortcomings: 1) it is inefficient to exploit the

lation and optimization techniques have been developelden truct £ multi-di onal data: 2) it invol | |
past decades to predict and control performance unceesintt ucture of multi-dimensional data; 2) it involves largeale

of analog, digital and mixed-signal design [2]-[13]. Thes@Ptimization to compute all DCT coefficients. More detailed
numerical tools typically require a given detailed statet anaysis will be given in Section III-C and Section V.

model (e.g., a probability density function or a set of statal This paper presents an alternative tensor approach toeeduc
moments) of the process variatioie statistical models of 1€ €ost of modeling variations across multiple dies or veafe
process variations are typically obtained by measuring apgnSOr computation [27] can reveal more information that

analyzing the performance data of a huge number of testi? nnot be captured by matrix- or vector-based computations
chips. The testing data can also be used for post-silicdd yiE-9-» COmPressed sensing). By stacking all 2-D chip dae as

analysis and performance tuning [14] multi-dimensional data array, we estimate them simultaso

It is non-trivial to design and measure testing chips. Kirst With & small number of random samples. The full unknown
one needs to carefully design and fabricate specialized ulti-dimensional data set is characterized by severairbnk
cuits (e.g., ADC or ring oscillators) to measure or monitdf"SOr factors, and the unknown tensor factors are adaptive
the variation of certain parameters (€M) [15]—[17]. For computed by employing the recently developed variational

instance, a micro-processor may have hundreds of ring-os&fYesian approach [28] with an automatic rank determinatio
lators to monitor parametric variations, leading to lardgépc process. We demonstrate the effectiveness of our apprgach b

area overhead [18]. Secondly, one usually needs to meas?]rré"a"s’tic data set witli17, 030 data samples describing the
many testing circuits on each die in order to extract stesist cONtact resistivity of20 dies, which is beyond the computa-

distributions or to characterize intra-diefinter-die tiglacor- t1onal capability of Virtual Probe [20]-{23].

relations. Testing these circuits can consume a large amoun

of time. Finally, hardware measurement may also permanentl [I. BASICS OFTENSOR

damage the chips due to mechanical stress [19]. _ We first describe a few key definitions related to tensor,
_Instead of measuring all circuits, virtual testing techi@ig \yhich are necessary to understand this manusadnet.refer

aim to reduce the cost by measuring only a small numbgye readers to [27] for a detailed introduction of tensor (28]

This work was supported by NSF-CCF 1763699, NSF-CCF 18120@7 for tensor computation In electronic de5|gn automation.
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Fig. 1. (a) a 2-D data array (e.g., one slice of MRI data) is arimat) a
3-D data array (e.g., multiple slices of images) is a 3rd-otdesor.
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B. Low-Rank Tensor Completion

The problem in (4) has an infinite number of solutions, since
we do not have any information about the un-given samples.
Therefore, some constraints should be added. For instance,
¢y regularization is used in Virtual Probe [20], [21] because
heuristic experience shows that a 2-D DCT transform of the
data on each die has very sparse coefficients.

In this work, we estimate the unknown variation data based
on a different heuristic: we find thaX in the chip testing prob-

Fig. 2. Tensor completion for chip data testing. Each dieds & no slice  lem usually has a low-rank property in the high-dimensional
(i.e., a matrix) of a tensor. The small green squares repressmiall number - space. Intuitively, this is because two reasons. Firstly, there
of available measurement results. . . . ..
exist strong spatial correlations. Secondly, the fabiocatlata
samples depend on the same fabrication process, and some

Fig. 1 shows a matrix and @rd-order tensor, respectively. faprication process have much stronger influence in causing
In this paper, we denote scalars by lowercase letters (8).g., Process variationsSimilar to matrices, a low-rank tensor can
vectors (tensors of order one) by boldface lowercase tett&le Written as the sum of some rank-1 tensors:

(e.g.,x), matrices (tensors of order two) by boldface capital L ,
letters (e.gX), and higher-order tensors (order three or higher) X = Z ujo---oul. (%)
by boldface calligraphic letters (e.gX), respectively. j=1

Definition 2: Given any two tensor&’ and) of the same
size, theirinner product is defined as

This factorization is called the CANDECOMP/PARAFAC
(CP) factorization, which is one of several popular facari
(x,y) = Z Tirooi Ui i (1) tion formats [27]. Having a few samples &, we attempt
, praT to compute the factors in (5) and to determine the rank
1d . .
o _ ~ Many tensor completion methods were introduced, but most
Definition 3: Given n tensors_{X("”} of the same size, approaches tend to have an inaccurate tensor rank and latent

their generalized inner productis defined as factors estimation, and eventually lead to the problem of
n over-fitting or weak predictive performance. In this papes,
(XM o xm)y = Z H 2™ (2) choose to employ the variational Bayesian CP factorization
I ) i100ig

model [28] to solve our problem. We will introduce the key

. o _ ideas of variational Bayesian CP factorization in Sectign |
Since tensors are a generalization of matrices and vectors,

the above definitions of (generalized) inner product apply t

il---id m=1

Definition 4: The Frobenius norm of a tensorX is further The tensor completion approach can be considered as a

defined ag|X||r = /(X, X). more flexible generalization of the virtual probe [22]. Irder
Definition 5: A tensor X € R™**"d is rank-1 if it can to demonstrate this, we consider the problem of approxigati
be written as the outer product dfvectors: a d-variable functionf(ty,---,tq), wheret; € [0,T;] is a
. , continuous variable foi =1,2,--- ,d.
X=uo---ouy & x4, =u(iy)---ug(iq)  (3) We discretize[0, T;] into n; — 1 segments of length\; =
whereuy (i) denotes the,-th element of vectony, € R™+.  Ti/(n; — 1), then the(iy, iz, - - - ,iq)-th element ofX” can be
regarded as the discretized valuefdt,,--- ,t4):
I1l. TENSORBASED CHIP TESTIN . .

SORBASED CHIP TESTING =t = (i1~ DAy, ta= (ia— 1) Ad). (6)

Different from the previous virtual probe techniques [20]- S )
[23] that employ compressive sensing, this section forpesla Consequently, the low-rank tensor factorization is edeiva

the virtual testing as a tensor completion problem. to approximatingf by some separable functions
s
A. Problem Formulation Fltr, - ta) = ul (t)ud(ta) - uf(ta), 7
We consider the variations of; dies on a wafer, and j=1

assume that each die hagx ny circuits (e.g., ring oscillators - . . . .
which can capture spatialﬁcorQreIations.(lngteadgof meag @i ) and the vectouy, in (5) includesr, discretized function values
ninsns testing circuits, we aim to estimate their performanc@f uz () on the grid points{t, = (ix — 1)Ax}. In a low-rank

by measuring onlyV circuits, with N < nqnons. In order to tensor factorization, wedaptivelyfind someunknownuni-
achieve this goal, we first stack all dies as a 3-D data array. ¥ariate functionsu; (¢;) to approximatef(t,--- ,tq). Once
shown in Fig. 2, the whole data set of digis a matrixX*. some “good” univariate functions are found, a small number
We can seeX’ asi;-th slice of a tensox’ € R™*n2xns  of product terms can be used to approximgte(and X
Now the virtual testing problem can be formulated as tens@gcordingly) with good accuracy.

completion. Assume thalV.measurement results; are The virtual probe technique [20] is equivalent to approxi-

11213

given, (i1,4s,13) € Q, andQ denotes the indices of measurednating f(t1,-- - ,t4) by somegivenandfixedbasis functions:
samples. Then, we have the following problem: n1 na
Given @y, 4, for (i1,i2,13) € Q, find X. @ St =) Y i, iy (07 (t) i (ta).

=1  ig=1

This formulation can be easily extended to handle multiple _
wafers: one can add another indéxto indicate a specific Here {u;"(¢;)} are somepre-definedbasis functions, and
wafer, and the whole data sat is a 4th-order tensor. {¢i,...., } are the unknown weights. In [20], the basis functions
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(a) Exact data (b) Tensor completion (c) Virtual probe
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Fig. 3. (a) One slice of the original tensor; (b) one slice l# tesult from tensor completion witth% samples; (c) one slice of the result obtained by
virtual probe with10% samples.

are specifically chosen as some Fourier basis functions Thie use the matriU;, = [u},--- ,u}] € R™*" to denote all
choice of basis functions normally leads to a sparse represéactor vectors associated with tieth dimension.

tation; however, it is not guaranteed optimal. For instatice Probabilistic Model. Supposef2 denotes the indices of
Fourier basis function is not a good choice to approximat®me observed entries J, the observed tens@/, is defined

a non-smooth functiory (¢4, -- ,t4). Non-smooth behaviors as )

actually frequently appear in spatial variation modeling do Y, = Yiy.ig 1T (i1,...,ia) € Q

the random systematic variations [30]. In fag{t,, - ,tq) 270 otherwise

is rarely smooth with respect . when dimensiork is not

an actual spatial dimension (e.g., whénis the additional We further denoteu;;, = [U(i,:)]Y € R™*, ie., the

dimension after stacking multiple 2-D dies as a 3-D array).transpose of thgth row of matrix U,. Combining the noise
Our tensor-completion chip testing approach is more flexibdlistribution and the CP model, we get the observation model
and often more efficient than the virtual probe technigugat is factorized over the observed tensor entries
because of the following reasons:
g pVol{Uiti_i,m) = ]

« In tensor completion, the univariate functicmj(tk) in (7)
is chosenadaptively and is not limited to smooth func- .
tions (e.g., cosine functions as in [20]). Therefore, tenso N (Yirial (@15 o 0a), 771)

completion is able to use "better” univariate functions angle selection of a latent tensor ramkhas been a challenging
thus fewer product terms to approximaf¢t., - - -, ta). FOr aqy “Previous probabilistic models rely on a predeterthine
instance, we consider a random low-rank 3D data array @fing parameter chosen either by cross-validations or-max
size 30 x 30 x 15. We use tensor completion to recover thg,,m’ jikelihood. However, the Bayesian CP factorization
whole 3D data set with0% entries, and use virtual probe t0method [28] is able to automatically determine the tensok ra
recover the data slice by slice. Fig. 3 shows the result of t_fg]g part of the Bayesian inference process. This approach use
first slice. The Virtual Probe has a huge error (and a relative got of hyper-paramete = [\, s, ..., \,]) to control
error of 106%) for this data set due to the non-smoothnesg,qe rank. Each\. controls the magn7itud,é“(’)f Tthjath column

In contrast, tensor completion recovers the non-smoot# dgf each,. Further, a sparsity-inducing prior distribution is

perfectly with a relative errop.23 x 10°. aced over all the latent factors, given b
» The virtual probe technique forms an under—determiné)é 9 y

(il,...,id)EQ

equation with N = Hi: n; columns to compute the o .
unknown weights{cil,..cd}.1 As d increases, the size of p(Uk|A) = H N (u,i 0,A77) VR € [L.d] - (9)
this linear equation grows exponentially. Consequently, i k=1

porting this huge-size equation is beyond the capabilifjhere A=diag ) is the precision matrix. Note that the larger
of a computer's physical memory, let alone performing . the smaller elements in thjeth column ofU,,. The hyper-
numerical computation. Our tensor completion approach igiors overA and~ are Gamma distributions, factorized over

a natural solution for large, and it does not suffer from g5ch dimensionality of the latent tensaf, given by
the curse of dimensionality. '

IV. BAYESIAN CP FACTORIZATION

We employ the variational Bayesian approach [28] to solve
our problem, due to its automatic rank determination and low p(T) = GaT|ag, bo), (11)

computational cost. The key ideas are summarized below.

_ ; hereay, by (scalars) andy, dy (vectors) are selected heuris-
Lety = X +¢ be a noisy tensor, and the true latent tens‘i‘l\‘cally. Together, the overall probabilistic model can be e

p(A) = H Ga(\jleo(j), do(4)), (10)

X is generated by a CP model: pressed as the following joint distribution
~ i d
X =3 woowy=TeyUs.Us ) 43,0, Uy = p@al{Ui,7) [ U7,
Jj=1 k=1

The noise terme is an i.i.d Gaussian distributions ~ Variational Bayesian Solver. We need to compute the
[L, ..., N(0,77"). Here, we have used; to denote the posterior distribution of all latent variables, includir@P
factor vector of dimensionality: in the j-th outer product; factors{U}, rank-controlling hyper-parameteds and noise
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10° 10° 10 Fig. 5. Top: exact spatial variation patterns of of Die 4 arid B. Bottom:

sampling ratio predicted variation patterns by our approach with5& sampling rate.

Fig. 4. Relative errors of tensor completion with various skmgpratios. TABLE |

CPU TIME FOR VIRTUAL PROBE AND OUR METHOD WITH15% SAMPLES.

precision 7. In order to achieve this goal, the variational Metlhoc’sb S“Ce'By;S“Ceh)I 3'Df Array }
i ictri i i Virtual Probe 62,947 s (17.5 Out of Memory
Bayesian method [28] seeks for a distribution function Proposed Method ™ 325 S (5.5 min) | s |

q(Uy,...,Ug, A, 7) by minimizing the KL divergence of the
two distribution p and ¢. By assuming that the posterior
distributions of U, , A, andr are independent, one can use
expectation-maximization (EMjteps to obtain the optimal maximum tensor rank as 15. Then, we perform tensor com-
solution in the following form: pletion repeatedly for different sampling ratios. The shngp
. ratios are chosen as 10 logarithmically spaced points legtwe
_ e ) 3% and 50%. For each experiment, we compute the relative
@(Us) = J] NawialBe s Vicar). vk € [Ld] - (12) error of the predicted results By — Y||r/||Y||r. As shown

=t in Fig. 4, our approach can predict the spatial variatiora dat
r ) . with a very small sampling ratio: the relative error decesas
ao(A) = ] Gale(), d()) (13)  to around0.2% as the sampling ratio is greater thabf%; the
j=1 relative errors are bel_ow% for all 10 experiments. As shown
4. (1) = Galr]a, b) (14) in [15], the chip variation data typically has some certain

patterns in the spatial domain. However, these patternsare
where the computed(i) and d(j) determines the posterioreasy to capture, since they depend on very small variations
mean of); and thus the magnitude of thieth column of all across a die or a wafer. Our approach is capable of predicting

CP factors{U }¢_,. the spatial patterns of the multiple-die data set simuttasky.
The predicted tens@ is calculated based on the posteriofVe show the results of tensor completion by usind5&b
mean of the obtained latent factors: sampling ratio and by fixing the maximum rankids The top
- part of Fig. 5 shows the exact variation patterns of two chips
S ~j obtained by measuring all testing circuits. The bottom gf Bi
Y= z;ul oot (15) shows the predicted variation pattern by tensor completion
iz

using only15% random measurement data.
wherett/ is the posterior mean of vectar.. The relative error  Comparison with Virtual Probe. We further compare our

of the predicted data can be measured as approach with the virtual pI’Obe on this realistic data seir O
~ data set had44 x 256 x 20 entries. Suppose we observe
relative error= ||y — Y||r/||V||F- (16) 15% of the data, the Virtual Probe approach then has to solve

a linear equation with 110,592 rows and 737,280 columns.
Computing such a large-scale matrix and importing it int® th
V. NUMERICAL RESULTS physical memory is far beyond the capability of our desktop
In order to verify our tensor completion-based chip vaoiati computer. In contrast, the Bayesian tensor completionstake
data prediction method, we have implemented the algorithenly one minute to predict such a large-scale 3-D data array
in MATLAB on a Windows Desktop Workstation with 8-GB with an accuracy of 0.2%, as shown in Table I. Since the
RAM and a 3.4-GHz CPU. We test our codes by a data séittual Probe technique is unable to directly process tig-hi
describing the variability of contact plug resistance inOm® volume 3-D data, we perform another round of comparison
CMOS process [15]. The data set has the measurement redwtpredicting the 3-D data array slice-by-slice. Specifical
of multiple dies, and each die has 256 x 144 = 35,854 testimg use Virtual Probe and tensor completion to predict the
circuits. We stack the data of 20 dies as a 3rd-order tens®@, individual slices of144 x 256 matrices based on5%
which has 717,080 data samples in total. In the numeriggen samples. The Virtual Probe approach can work in this
experiments, we assume that only a small number of samptese, and it generates one model for each individual slice.
(which are randomly picked with a uniform distribution) ardHowever, Virtual Probe is extremely time-consuming: iteésak
given, and we aim to accurately estimate the whole 3-D dat&.5 hours to predict all slices as shown in Table. I. In cstir
set based on the given measurement samples. our Bayesian tensor completion finishes the prediction iy on
Numerical Accuracy. In order to check the numerical5.5 minutes and with the similar level of accuracy. This is
accuracy of our approach on the chip data set, we fix thecause that Virtual Problem has to solve a large-scalerunde
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TABLE I
PREDICTED TENSOR RANKS UNDER DIFFERENT MAXIMUM RANKS

Maximum Rank Predicted Rank Relative Error

5 4 0.214%
10 8 0.206%
15 9 0.200%
20 14 0.198%
25 17 0.196%

[8] J.Wang, P. Ghanta, and S. Vrudhula, “Stochastic arabyfsnterconnect

performance in the presence of process variationsPrat. DAG 2004,
pp. 880-886.

[9] X. Li, P. Gopalakrishnan, Y. Xu, and T. Pileggi, “Robushadog/RF

(10]

(11]

determined equation, whereas tensor completion only needs

compute a small number of unknown low-rank factors.

Remarks. Our proposed approach employs the variation

Bayesian method [28] to estimate the tensor rank probabilis
tically. Once the algorithm converges, we can compute t

expected value of eack;: a large)\; indicates very smali],

g]Z

]

circuit design with projection-based posynomial modelinig,” Proc.

ICCAD, 2004, pp. 855-862.

Z. Zhang, |. Osledets, X. Yang, G. E. Karniadakis, andDaniel,

“Enabling high-dimensional hierarchical uncertainty dtifesation by

ANOVA and tensor-train decompositionJEEE Trans. CAD Integr.
Circuits Syst.vol. 34, no. 1, pp. 63 — 76, Jan 2015.

Z. Zhang, X. Yang, G. Marucci, P. Maffezzoni, |. M. Elfald G. Karni-

adakis, and L. Daniel, “Stochastic testing simulator foegrated circuits
and MEMS: Hierarchical and sparse techniques,Pinc. CICC CA,

Sept. 2014, pp. 1-8.

C. Cui and Z. Zhang, “Stochastic collocation with nomdgsian cor-
related process variations: Theory, algorithms and appits,” arXiv

preprint arXiv:1808.097202018.

] ——, “Uncertainty quantification of electronic and pbaic ICs

forall k = 1,--- ,d, thus thej-th outer product in (8) will [14]
vanish, and a tensor rank deficiency is detected. We should

choose a maximum rank that is greater than the true rank;

otherwise, some tensor factors cannot be captured. Howel&t
if the selected maximum rank is too large, extensive dafg
will be required to infer the latent variables, causing leigh

computational cost. Table. Il has shown the predicted ranks

w.r.t. different maximum ranks when the sampling ratio ig7
fixed as15%. The predicted rank remains below 20 with the

relative errors around 0.2%;

may overestimate the true rank.

VI. CONCLUSION

spatial variation data of semiconductor fabrications. ®ey

the relative error decreases
the predicted rank increases to capture some small vargatio

However, a large maximum rank may cause over-fitting, and
[19] W. R. Mann, F. L. Taber, P. W. Seitzer, and J. J. Broz, “ldaling edge

i

]

[20]
This paper has presented a tensor framework to predict the

idea is to estimate the data of multiple dies simultaneouéﬁ}]
by performing tensor completion in a higher-dimensionahda

space. The approach has been implemented with a recef¥

developed variational Bayesian approach which autonibtica
determines the tensor rank in a probabilistic way. The numez3)
ical experiments on a contact plug resistivity variatiortada

set has shown excellent performance. High accuracy (

€.
a 0.2% relative error) has been achieved with a small (e.g}?fﬂ
10%) sampling ratio. The proposed approach has also corredi§l

<Hs)

predicted the spatial patterns of multiple dies simultasgo
Our proposed approach have easily handled a huge
data set in one minute, whereas the Virtual Probe techni
failed to work due to its huge cost of physical memory an

computational resources.
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