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Prediction of Multi-Dimensional Spatial Variation
Data via Bayesian Tensor Completion

Jiali Luan and Zheng Zhang

Abstract—This paper presents a multi-dimensional computa-
tional method to predict the spatial variation data inside and
across multiple dies of a wafer. This technique is based on
tensor computation. A tensor is a high-dimensional generalization
of a matrix or a vector. By exploiting the hidden low-rank
property of a high-dimensional data array, the large amount
of unknown variation testing data may be predicted from a
few random measurement samples. The tensor rank, which
decides the complexity of a tensor representation, is decided
by an available variational Bayesian approach. Our approach is
validated by a practical chip testing data set, and it can be easily
generalized to characterize the process variations of multiple
wafers. Our approach is more efficient than the previous virtual
probe techniques in terms of memory and computational cost
when handling high-dimensional chip testing data.

Index Terms—Data analytics, process variation, tensor, tensor
completion, Bayesian statistics, variation modeling.

I. I NTRODUCTION

Today’s nano-scale semiconductor manufacturing is subject
to significant process variations (e.g., uncertain geometric
and material parameters caused by imperfect lithography,
chemical-mechanical polishing and other steps) [1]. These
process variations can propagate to circuit and system levels,
and cause remarkable performance uncertainties and yield
degradation. Therefore, extensive numerical modeling, simu-
lation and optimization techniques have been developed in the
past decades to predict and control performance uncertainties
of analog, digital and mixed-signal design [2]–[13]. These
numerical tools typically require a given detailed statistical
model (e.g., a probability density function or a set of statistical
moments) of the process variations.The statistical models of
process variations are typically obtained by measuring and
analyzing the performance data of a huge number of testing
chips. The testing data can also be used for post-silicon yield
analysis and performance tuning [14].

It is non-trivial to design and measure testing chips. Firstly,
one needs to carefully design and fabricate specialized cir-
cuits (e.g., ADC or ring oscillators) to measure or monitor
the variation of certain parameters (e.g,Vth) [15]–[17]. For
instance, a micro-processor may have hundreds of ring oscil-
lators to monitor parametric variations, leading to large chip
area overhead [18]. Secondly, one usually needs to measure
many testing circuits on each die in order to extract statistical
distributions or to characterize intra-die/inter-die spatial cor-
relations. Testing these circuits can consume a large amount
of time. Finally, hardware measurement may also permanently
damage the chips due to mechanical stress [19].

Instead of measuring all circuits, virtual testing techniques
aim to reduce the cost by measuring only a small number
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Fig. 1. (a) a 2-D data array (e.g., one slice of MRI data) is a matrix, (b) a
3-D data array (e.g., multiple slices of images) is a 3rd-ordertensor.

of samples. A representative example is the “Virtual Probe”
technique [20], [21] and its variants [22], [23], which employ
compressed sensing [24] to estimate all performance data from
a few measurement samples. In order to estimate all data on
a die with ann1 × n2 array of circuits, these techniques
approximate the variation data by the linear combination of
n1n2 basis functions [e.g., 2-D discrete cosine transformation
(DCT) bases] of spatial axisesx and y. When the approx-
imation is very sparse (which is generally true in practice),
the n1n2 coefficients can be estimated even if onlyN <
n1n2 measurement samples are available. These techniques
have proved to be more efficient than traditional approaches
such as Kriging prediction [25] andk-LSE estimation [26].
Compressed sensing is effective for processing 2-D data, but
it has some shortcomings: 1) it is inefficient to exploit the
structure of multi-dimensional data; 2) it involves large-scale
optimization to compute all DCT coefficients. More detailed
analysis will be given in Section III-C and Section V.

This paper presents an alternative tensor approach to reduce
the cost of modeling variations across multiple dies or wafers.
Tensor computation [27] can reveal more information that
cannot be captured by matrix- or vector-based computations
(e.g., compressed sensing). By stacking all 2-D chip data asa
multi-dimensional data array, we estimate them simultaneously
with a small number of random samples. The full unknown
multi-dimensional data set is characterized by several low-rank
tensor factors, and the unknown tensor factors are adaptively
computed by employing the recently developed variational
Bayesian approach [28] with an automatic rank determination
process. We demonstrate the effectiveness of our approach by
a realistic data set with717, 080 data samples describing the
contact resistivity of20 dies, which is beyond the computa-
tional capability of Virtual Probe [20]–[23].

II. BASICS OFTENSOR

We first describe a few key definitions related to tensor,
which are necessary to understand this manuscript.We refer
the readers to [27] for a detailed introduction of tensor and[29]
for tensor computation in electronic design automation.

Definition 1: A tensor is a high-dimensional generalization
of a matrix. A matrixX ∈ R

n1×n2 is a 2nd-order tensor, and
its element indexed by(i1, i2) can be denoted asxi1i2 . For a
generaldth-order tensorX ∈ R

n1×···nd , its element indexed
by (i1, · · · , id) can be denoted asxi1···id .
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Fig. 2. Tensor completion for chip data testing. Each die is an1 ×n2 slice
(i.e., a matrix) of a tensor. The small green squares representa small number
of available measurement results.

Fig. 1 shows a matrix and a3rd-order tensor, respectively.
In this paper, we denote scalars by lowercase letters (e.g.,x),
vectors (tensors of order one) by boldface lowercase letters
(e.g.,x), matrices (tensors of order two) by boldface capital
letters (e.g.X), and higher-order tensors (order three or higher)
by boldface calligraphic letters (e.g.,X ), respectively.

Definition 2: Given any two tensorsX andY of the same
size, theirinner product is defined as

〈X ,Y〉 =
∑

i1···id

xi1···idyi1···id . (1)

Definition 3: Given n tensors
{
X (m)

}
of the same size,

their generalized inner product is defined as

〈X (1), · · · ,X (n)〉 =
∑

i1···id

n∏

m=1

x
(m)
i1···id

(2)

Since tensors are a generalization of matrices and vectors,
the above definitions of (generalized) inner product apply to
matrices and vectors as well.

Definition 4: TheFrobenius norm of a tensorX is further
defined as||X ||F =

√
〈X ,X 〉.

Definition 5: A tensorX ∈ R
n1×···×nd is rank-1 if it can

be written as the outer product ofd vectors:

X = u1 ◦ · · · ◦ ud ⇔ xi1···id = u1(i1) · · ·ud(id) (3)

whereuk(ik) denotes theik-th element of vectoruk ∈ R
nk .

III. T ENSOR-BASED CHIP TESTING

Different from the previous virtual probe techniques [20]–
[23] that employ compressive sensing, this section formulates
the virtual testing as a tensor completion problem.

A. Problem Formulation
We consider the variations ofn3 dies on a wafer, and

assume that each die hasn1×n2 circuits (e.g., ring oscillators)
which can capture spatial correlations. Instead of measuring all
n1n2n3 testing circuits, we aim to estimate their performance
by measuring onlyN circuits, withN ≪ n1n2n3. In order to
achieve this goal, we first stack all dies as a 3-D data array. As
shown in Fig. 2, the whole data set of diei1 is a matrixXi1 .
We can seeXi1 as i1-th slice of a tensorX ∈ R

n1×n2×n3 .
Now the virtual testing problem can be formulated as tensor
completion. Assume thatN measurement resultsxi1i2i3 are
given, (i1, i2, i3) ∈ Ω, andΩ denotes the indices of measured
samples. Then, we have the following problem:

Given xi1i2i3 for (i1, i2, i3) ∈ Ω, find X . (4)

This formulation can be easily extended to handle multiple
wafers: one can add another indexi4 to indicate a specific
wafer, and the whole data setX is a 4th-order tensor.

B. Low-Rank Tensor Completion
The problem in (4) has an infinite number of solutions, since

we do not have any information about the un-given samples.
Therefore, some constraints should be added. For instance,a
ℓ1 regularization is used in Virtual Probe [20], [21] because
heuristic experience shows that a 2-D DCT transform of the
data on each die has very sparse coefficients.

In this work, we estimate the unknown variation data based
on a different heuristic: we find thatX in the chip testing prob-
lem usually has a low-rank property in the high-dimensional
space.Intuitively, this is because two reasons. Firstly, there
exist strong spatial correlations. Secondly, the fabrication data
samples depend on the same fabrication process, and some
fabrication process have much stronger influence in causing
process variations.Similar to matrices, a low-rank tensor can
be written as the sum of some rank-1 tensors:

X =

r∑

j=1

u
j
1 ◦ · · · ◦ u

j
d. (5)

This factorization is called the CANDECOMP/PARAFAC
(CP) factorization, which is one of several popular factoriza-
tion formats [27]. Having a few samples ofX , we attempt
to compute the factors in (5) and to determine the rankr.
Many tensor completion methods were introduced, but most
approaches tend to have an inaccurate tensor rank and latent
factors estimation, and eventually lead to the problem of
over-fitting or weak predictive performance. In this paper,we
choose to employ the variational Bayesian CP factorization
model [28] to solve our problem. We will introduce the key
ideas of variational Bayesian CP factorization in Section IV.

C. Comparison with Virtual Probe
The tensor completion approach can be considered as a

more flexible generalization of the virtual probe [22]. In order
to demonstrate this, we consider the problem of approximating
a d-variable functionf(t1, · · · , td), where ti ∈ [0, Ti] is a
continuous variable fori = 1, 2, · · · , d.

We discretize[0, Ti] into ni − 1 segments of length∆i =
Ti/(ni − 1), then the(i1, i2, · · · , id)-th element ofX can be
regarded as the discretized value off(t1, · · · , td):

xi1···id = f (t1 = (i1 − 1)∆1, · · · , td = (id − 1)∆d) . (6)

Consequently, the low-rank tensor factorization is equivalent
to approximatingf by some separable functions

f(t1, · · · , td) =
r∑

j=1

uj
1(t1)u

j
2(t2) · · ·u

j
d(td), (7)

and the vectoruj
k in (5) includesnk discretized function values

of uj
k(tk) on the grid points{tk = (ik−1)∆k}. In a low-rank

tensor factorization, weadaptivelyfind someunknownuni-
variate functionsuj

k(tk) to approximatef(t1, · · · , td). Once
some “good” univariate functions are found, a small number
of product terms can be used to approximatef (and X

accordingly) with good accuracy.
The virtual probe technique [20] is equivalent to approxi-

matingf(t1, · · · , td) by somegivenandfixedbasis functions:

f(t1, · · · , td) =
n1∑

i1=1

· · ·
nd∑

id=1

ci1···id û
i1
1 (t1)û

i2
2 j(t2) · · · û

id
d (td).

Here {ûik
k (tk)} are somepre-definedbasis functions, and

{ci1···id} are the unknown weights. In [20], the basis functions
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Fig. 3. (a) One slice of the original tensor; (b) one slice of the result from tensor completion with10% samples; (c) one slice of the result obtained by
virtual probe with10% samples.

are specifically chosen as some Fourier basis functions. This
choice of basis functions normally leads to a sparse represen-
tation; however, it is not guaranteed optimal. For instance, the
Fourier basis function is not a good choice to approximate
a non-smooth functionf(t1, · · · , td). Non-smooth behaviors
actually frequently appear in spatial variation modeling due to
the random systematic variations [30]. In fact,f(t1, · · · , td)
is rarely smooth with respect totk when dimensionk is not
an actual spatial dimension (e.g., whenk is the additional
dimension after stacking multiple 2-D dies as a 3-D array).

Our tensor-completion chip testing approach is more flexible
and often more efficient than the virtual probe technique
because of the following reasons:
• In tensor completion, the univariate functionuj

k(tk) in (7)
is chosenadaptively and is not limited to smooth func-
tions (e.g., cosine functions as in [20]). Therefore, tensor
completion is able to use “better” univariate functions and
thus fewer product terms to approximatef(t1, · · · , td). For
instance, we consider a random low-rank 3D data array of
size30× 30× 15. We use tensor completion to recover the
whole 3D data set with10% entries, and use virtual probe to
recover the data slice by slice. Fig. 3 shows the result of the
first slice. The Virtual Probe has a huge error (and a relative
error of 106%) for this data set due to the non-smoothness.
In contrast, tensor completion recovers the non-smooth data
perfectly with a relative error2.23× 10−9.

• The virtual probe technique forms an under-determined
equation with N =

∏d

k=1 ni columns to compute the
unknown weights{ci1···cd}. As d increases, the size of
this linear equation grows exponentially. Consequently, im-
porting this huge-size equation is beyond the capability
of a computer’s physical memory, let alone performing
numerical computation. Our tensor completion approach is
a natural solution for larged, and it does not suffer from
the curse of dimensionality.

IV. BAYESIAN CP FACTORIZATION

We employ the variational Bayesian approach [28] to solve
our problem, due to its automatic rank determination and low
computational cost. The key ideas are summarized below.

Let Y = X + ε be a noisy tensor, and the true latent tensor
X is generated by a CP model:

X =
r∑

j=1

u
j
1 ◦ · · · ◦ u

j
d = Tcp(U1, ...,Ud). (8)

The noise termε is an i.i.d Gaussian distribution,ε ∼∏
i1,··· ,id

N (0, τ−1). Here, we have useduj
k to denote the

factor vector of dimensionalityk in the j-th outer product;

we use the matrixUk = [u1
k, · · · ,u

r
k] ∈ R

nk×r to denote all
factor vectors associated with thek-th dimension.

Probabilistic Model. SupposeΩ denotes the indices of
some observed entries inY , the observed tensorYΩ is defined
as

YΩ =

{
yi1...id if (i1, . . . , id) ∈ Ω

0 otherwise.

We further denoteuk,ik = [Uk(ik, :)]
T ∈ R

r×1, i.e., the
transpose of thejth row of matrixUk. Combining the noise
distribution and the CP model, we get the observation model
that is factorized over the observed tensor entries

p(YΩ|{Uk}
d
k=1, τ) =

∏

(i1,...,id)∈Ω

N
(
yi1...id |〈u1,i1 , ...,ud,id〉, τ

−1
)

The selection of a latent tensor rank,r, has been a challenging
task. Previous probabilistic models rely on a predetermined
tuning parameter chosen either by cross-validations or max-
imum likelihood. However, the Bayesian CP factorization
method [28] is able to automatically determine the tensor rank
as part of the Bayesian inference process. This approach uses
a set of hyper-parameters(λ = [λ1, λ2, ..., λr]) to control
the rank. Eachλj controls the magnitude of thej-th column
of eachUk. Further, a sparsity-inducing prior distribution is
placed over all the latent factors, given by

p(Uk|λ) =
nk∏

ik=1

N
(
uk,ik |0,Λ

−1
)
, ∀k ∈ [1, d] (9)

whereΛ=diag(λ) is the precision matrix. Note that the larger
λj , the smaller elements in thej-th column ofUk. The hyper-
priors overλ andτ are Gamma distributions, factorized over
each dimensionality of the latent tensorX , given by

p(λ) =
r∏

j=1

Ga(λj |c0(j),d0(j)), (10)

p(τ) = Ga(τ |a0, b0), (11)

wherea0, b0 (scalars) andc0,d0 (vectors) are selected heuris-
tically. Together, the overall probabilistic model can be ex-
pressed as the following joint distribution

p(YΩ,U1, . . . ,Ud,λ, τ) = p(YΩ|{Uk}
d

k=1, τ)

d∏

k=1

p(Uk|λ)p(λ)p(τ).

Variational Bayesian Solver. We need to compute the
posterior distribution of all latent variables, includingCP
factors{Uk}, rank-controlling hyper-parametersλ, and noise



accepted by IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2019 4

10-2 10-1 100

sampling ratio

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
re

la
tiv

e
 e

rr
o

r 
(%

)

Fig. 4. Relative errors of tensor completion with various sampling ratios.

precision τ . In order to achieve this goal, the variational
Bayesian method [28] seeks for a distribution function
q(U1, . . . ,Ud,λ, τ) by minimizing the KL divergence of the
two distribution p and q. By assuming that the posterior
distributions ofUk , λ, and τ are independent, one can use
expectation-maximization (EM)steps to obtain the optimal
solution in the following form:

qk(Uk) =

nk∏

ik=1

N (uk,ik |ũk,ik ,Vk,ik), ∀k ∈ [1, d] (12)

qλ(λ) =

r∏

j=1

Ga(λj |c(j), d(j)) (13)

qτ (τ) = Ga(τ |a, b) (14)

where the computedc(i) and d(j) determines the posterior
mean ofλj and thus the magnitude of thej-th column of all
CP factors{Uk}

d
k=1.

The predicted tensor̃Y is calculated based on the posterior
mean of the obtained latent factors:

Ỹ =

r∑

j=1

ũ
j
1 ◦ · · · ◦ ũ

j
d, (15)

whereũj
k is the posterior mean of vectoruj

k. The relative error
of the predicted data can be measured as

relative error= ||Ỹ −Y ||F/||Y ||F. (16)

V. NUMERICAL RESULTS

In order to verify our tensor completion-based chip variation
data prediction method, we have implemented the algorithm
in MATLAB on a Windows Desktop Workstation with 8-GB
RAM and a 3.4-GHz CPU. We test our codes by a data set
describing the variability of contact plug resistance in a 90nm
CMOS process [15]. The data set has the measurement results
of multiple dies, and each die has 256 x 144 = 35,854 testing
circuits. We stack the data of 20 dies as a 3rd-order tensor,
which has 717,080 data samples in total. In the numerical
experiments, we assume that only a small number of samples
(which are randomly picked with a uniform distribution) are
given, and we aim to accurately estimate the whole 3-D data
set based on the given measurement samples.

Numerical Accuracy. In order to check the numerical
accuracy of our approach on the chip data set, we fix the
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Fig. 5. Top: exact spatial variation patterns of of Die 4 and Die 8. Bottom:
predicted variation patterns by our approach with a15% sampling rate.

TABLE I
CPU TIME FOR V IRTUAL PROBE AND OUR METHOD WITH15% SAMPLES.

Methods Slice-By-Slice 3-D Array

Virtual Probe 62,947 s (17.5 h) Out of Memory
Proposed Method 325 s (5.5 min) 67 s

maximum tensor rank as 15. Then, we perform tensor com-
pletion repeatedly for different sampling ratios. The sampling
ratios are chosen as 10 logarithmically spaced points between
3% and 50%. For each experiment, we compute the relative
error of the predicted results by||Ỹ−Y ||F/||Y ||F. As shown
in Fig. 4, our approach can predict the spatial variation data
with a very small sampling ratio: the relative error decreases
to around0.2% as the sampling ratio is greater than10%; the
relative errors are below1% for all 10 experiments. As shown
in [15], the chip variation data typically has some certain
patterns in the spatial domain. However, these patterns arenot
easy to capture, since they depend on very small variations
across a die or a wafer. Our approach is capable of predicting
the spatial patterns of the multiple-die data set simultaneously.
We show the results of tensor completion by using a15%
sampling ratio and by fixing the maximum rank as15. The top
part of Fig. 5 shows the exact variation patterns of two chips
obtained by measuring all testing circuits. The bottom of Fig. 5
shows the predicted variation pattern by tensor completion
using only15% random measurement data.

Comparison with Virtual Probe. We further compare our
approach with the virtual probe on this realistic data set. Our
data set has144 × 256 × 20 entries. Suppose we observe
15% of the data, the Virtual Probe approach then has to solve
a linear equation with 110,592 rows and 737,280 columns.
Computing such a large-scale matrix and importing it into the
physical memory is far beyond the capability of our desktop
computer. In contrast, the Bayesian tensor completion takes
only one minute to predict such a large-scale 3-D data array
with an accuracy of 0.2%, as shown in Table I. Since the
Virtual Probe technique is unable to directly process the high-
volume 3-D data, we perform another round of comparison
by predicting the 3-D data array slice-by-slice. Specifically,
we use Virtual Probe and tensor completion to predict the
20 individual slices of144 × 256 matrices based on15%
given samples. The Virtual Probe approach can work in this
case, and it generates one model for each individual slice.
However, Virtual Probe is extremely time-consuming: it takes
17.5 hours to predict all slices as shown in Table. I. In contrast,
our Bayesian tensor completion finishes the prediction in only
5.5 minutes and with the similar level of accuracy. This is
because that Virtual Problem has to solve a large-scale under-



accepted by IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2019 5

TABLE II
PREDICTED TENSOR RANKS UNDER DIFFERENT MAXIMUM RANKS.

Maximum Rank Predicted Rank Relative Error

5 4 0.214%
10 8 0.206%
15 9 0.200%
20 14 0.198%
25 17 0.196%

determined equation, whereas tensor completion only needsto
compute a small number of unknown low-rank factors.

Remarks. Our proposed approach employs the variational
Bayesian method [28] to estimate the tensor rank probabilis-
tically. Once the algorithm converges, we can compute the
expected value of eachλj : a largeλj indicates very smalluj

k
for all k = 1, · · · , d, thus thej-th outer product in (8) will
vanish, and a tensor rank deficiency is detected. We should
choose a maximum rank that is greater than the true rank;
otherwise, some tensor factors cannot be captured. However,
if the selected maximum rank is too large, extensive data
will be required to infer the latent variables, causing higher
computational cost. Table. II has shown the predicted ranks
w.r.t. different maximum ranks when the sampling ratio is
fixed as15%. The predicted rank remains below 20 with the
relative errors around 0.2%; the relative error decreases as
the predicted rank increases to capture some small variations.
However, a large maximum rank may cause over-fitting, and
may overestimate the true rank.

VI. CONCLUSION

This paper has presented a tensor framework to predict the
spatial variation data of semiconductor fabrications. Ourkey
idea is to estimate the data of multiple dies simultaneously
by performing tensor completion in a higher-dimensional data
space. The approach has been implemented with a recently
developed variational Bayesian approach which automatically
determines the tensor rank in a probabilistic way. The numer-
ical experiments on a contact plug resistivity variation data
set has shown excellent performance. High accuracy (e.g.,
a 0.2% relative error) has been achieved with a small (e.g.,
10%) sampling ratio. The proposed approach has also correctly
predicted the spatial patterns of multiple dies simultaneously.
Our proposed approach have easily handled a huge 3-D
data set in one minute, whereas the Virtual Probe technique
failed to work due to its huge cost of physical memory and
computational resources.
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