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Abstract. Active subspace is a model reduction method widely used in the uncertainty quantification commu-
nity. In this paper, we propose analyzing the internal structure and vulnerability of deep neural
networks using active subspace. Firstly, we employ the active subspace to measure the number of
“active neurons” at each intermediate layer, which indicates that the number of neurons can be re-
duced from several thousands to several dozens. This motivates us to change the network structure
and to develop a new and more compact network, referred to as ASNet, that has significantly fewer
model parameters. Secondly, we propose analyzing the vulnerability of a neural network using active
subspace by finding an additive universal adversarial attack vector that can misclassify a dataset
with a high probability. Our experiments on CIFAR-10 show that ASNet can achieve 23.98× pa-
rameter and 7.30× flops reduction. The universal active subspace attack vector can achieve around
20% higher attack ratio compared with the existing approaches in our numerical experiments. The
PyTorch codes for this paper are available online 1.
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1. Introduction. Deep neural networks have achieved impressive performance in many
applications, such as computer vision [35], nature language processing [58], and speech recog-
nition [23]. Most neural networks use deep structure (i.e., many layers) and a huge number of
neurons to achieve a high accuracy and expressive power [44, 19]. However, it is still unclear
how many layers and neurons are necessary. Employing an unnecessarily complicated deep
neural network can cause huge extra costs in run-time and hardware resources. Driven by
resource-constrained applications such as robotics and internet of things, there is an increasing
interest in building smaller neural networks by removing network redundancy. Representa-
tive methods include network pruning and sharing [17, 25, 27, 39, 38], low-rank matrix and
tensor factorization [49, 26, 18, 36, 43], parameter quantization [12, 15], knowledge distilla-
tion [28, 46], and so forth. However, most existing methods delete model parameters directly
without changing the network architecture [27, 25, 7, 38].

Another important issue of deep neural networks is the lack of robustness. A deep neural
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network is desired to maintain good performance for noisy or corrupted data to be deployed in
safety-critical applications such as autonomous driving and medical image analysis. However,
recent studies have revealed that many state-of-the-art deep neural networks are vulnerable
to small perturbations [54]. A substantial number of methods have been proposed to generate
adversarial examples. Representative works can be classified into four classes [52], including
optimization methods [8, 41, 40, 54], sensitive features [22, 45], geometric transformations
[16, 32], and generative models [4]. However, these methods share a fundamental limitation:
each perturbation is designed for a given data point, and one has to implement the algorithm
again to generate the perturbation for a new data sample. Recently, several methods have
also been proposed to compute a universal adversarial attack to fool a dataset simultaneously
(rather than one data sample) in various applications, such as computer vision [40], speech
recognition [42], audio [1], and text classifier [5]. However, all the above methods only solve a
series of data-dependent sub-problems. In [33], Khrulkov et al. proposed to construct universal
perturbation by computing the so-called (p, q)-singular vectors of the Jacobian matrices of
hidden layers of a network.

This paper investigates the above two issues with the active subspace method [48, 9, 10]
that was originally developed for uncertainty quantification. The key idea of the active sub-
space is to identify the low-dimensional subspace constructed by some important directions
that can contribute significantly to the variance of the multi-variable function. These di-
rections are corresponding to the principal components of the uncentered covariance matrix
of gradients. Afterwards, a response surface can be constructed in this low-dimensional sub-
space to reduce the number of parameters for partial differential equations [10] and uncertainty
quantification [11]. However, the power of active subspace in analyzing and attacking deep
neural networks has not been explored.

1.1. Paper Contributions. The contribution of this manuscript is twofold.
• Firstly, we apply the active subspace to some intermediate layers of a deep neural network,

and try to answer the following question: how many neurons and layers are important in
a deep neural network? Based on the active subspace, we propose the definition of “active
neurons”. Fig. 1 (a) shows that even though there are tens of thousands of neurons, only
dozens of them are important from the active subspace point of view. Fig. 1 (b) further
shows that most of the neural network parameters are distributed in the last few layers.
This motivates us to cut off the tail layers and replace them with a smaller and simpler new
framework called ASNet. ASNet contains three parts: the first few layers of a deep neural
network, an active-subspace layer that maps the intermediate neurons to a low-dimensional
subspace, and a polynomial chaos expansion layer that projects the reduced variables to the
outputs. Our numerical experiments show that the proposed ASNet has much fewer model
parameters than the original one. ASNet can also be combined with existing structured re-
training methods (e.g., pruning and quantization) to get better accuracy while using fewer
model parameters.
• Secondly, we use active subspace to develop a new universal attack method to fool deep

neural networks on a whole data set. We formulate this problem as a ball-constrained loss
maximization problem and propose a heuristic projected gradient descent algorithm to solve
it. At each iteration, the ascent direction is the dominant active subspace, and the stepsize
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Figure 1: Structural analysis of deep neural networks by the active subspace (AS). All experi-
ments are conducted on CIFAR-10 by VGG-19. (a) The number of neurons can be significantly
reduced by the active subspace. Here, the number of active neurons is defined by Definition 3.1
with a threshold ε = 0.05; (b) Most of the parameters are distributed in the last few layers;
(c) The active subspace direction can perturb the network significantly.

is decided by the backtracking algorithm. Fig. 1 (c) shows that the attack ratio of the active
subspace direction is much higher than that of the random vector.

The rest of this manuscript is organized as follows. In Section 2, we review the key idea of
active subspace. Based on the active-subspace method, Section 3 shows how to find the number
of active neurons in a deep neural network and further proposes a new and compact network,
referred to as ASNet. Section 4 develops a new universal adversarial attack method based on
active subspace. The numerical experiments for both ASNet and universal adversarial attacks
are presented in Section 5. Finally, we conclude this paper in Section 6.

2. Active Subspace. Active-subspace is an efficient tool for functional analysis and di-
mension reduction. Its key idea is to construct a low-dimensional subspace for the input
variables in which the function value changes dramatically. Given a continuous function c(x)
with x described by the probability density function ρ(x), one can construct an uncentered
covariance matrix for the gradient: C = E[∇c(x)∇c(x)T ]. Suppose the matrix C admits the
following eigenvalue decomposition,

(2.1) C = VΛVT ,

where V includes all orthogonal eigenvectors and

(2.2) Λ = diag(λ1, · · · , λn), λ1 ≥ · · · ≥ λn ≥ 0

are the eigenvalues. All the eigenvalues are nonnegative because C is positive semidefinite.
One can split the matrix V into two parts,

(2.3) V = [V1, V2], where V1 ∈ Rn×r and V2 ∈ Rn×(n−r).

The subspace spanned by matrix V1 ∈ Rn×r is called an active subspace [48], because c(x) is
sensitive to perturbation vectors inside this subspace .
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Remark 2.1 (Relationships with the Principal Component Analysis). Given a set of data
X = [x1, . . . ,xm] with each column representing a data sample and each row is zero-mean,
the first principal component w1 inherits the maximal variance from X, namely,

(2.4) w1 = argmax
‖w‖2=1

m∑
i=1

(wT
1 xi)2 = argmax

‖w‖2=1
wTXXTw.

The variance is maximized when w1 is the eigenvector associated with the largest eigenvalue
of XXT . The first r principal components are the r eigenvectors associated with the r largest
eigenvalues of XXT . The main difference with the active subspace is that the principal com-
ponent analysis uses the covariance matrix of input data sets X, but the active-subspace
method uses the covariance matrix of gradient ∇c(x). Hence, a perturbation along the direc-
tion w1 from (2.4) only guarantee the variability in the data, and does not necessarily cause
a significantly change on the value of c(x).

The following lemma quantitatively describes that c(x) varies more on average along the
directions defined by the columns of V1 than the directions defined by the columns of V2.

Lemma 2.2. [10] Suppose c(x) is a continuous function and C is obtained from (2.1). For
the matrices V1 and V2 generated by (2.3), and the reduced vector

(2.5) z = VT
1 x and z̃ = VT

2 x,

it holds that

Ex[∇zc(x)T∇zc(x)] =λ1 + . . .+ λr,

Ex[∇z̃c(x)T∇z̃c(x)] =λr+1 + . . .+ λn.(2.6)

Sketch of proof [10]:

Ex[∇zc(x)T∇zc(x)]

=trace
(
Ex[∇zc(x)∇zc(x)T ]

)
=trace

(
Ex[VT

1∇xc(x)∇xc(x)TV1]
)

=trace
(
VT

1 CV1

)
=λ1 + . . .+ λr.

When λr+1 = . . . = λn = 0, Lemma 2.2 implies ∇z̃c(x) is zero everywhere, i.e., c(x) is
z̃-invariant. In this case, we may reduce x ∈ Rn to a low-dimensional vector z = VT

1 x ∈ Rr
and construct a new response surface g(z) to represent c(x). Otherwise, if λr+1 is small,
we may still construct a response surface g(z) to approximate c(x) with a bounded error, as
shown in the following lemma.

2.1. Response Surface. For a fixed z, the best guess for g is the conditional expectation
of c given z, i.e.,

(2.7) g(z) = Ez̃[c(x)|z] =

∫
c(V1z + V2z̃)ρ(z̃|z)dz̃.

Based on the Poincaré inequality, the following approximation error bound is obtained [10].
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Lemma 2.3. Assume that c(x) is absolutely continuous and square integrable with respect
to the probability density function ρ(x), then the approximation function g(z) in (2.7) satisfies:

(2.8) E[(c(x)− g(z))2] ≤ O(λr+1 + . . .+ λn).

Sketch of proof [10]:

Ex[(c(x)− g(z))2]

=Ez[Ez̃[(c(x)− g(z))2 |z]]

≤const× Ez[Ez̃[∇z̃c(x)T∇z̃c(x)|z]] (Poincaré inequality)

=const× Ex[∇z̃c(x)T∇z̃c(x)]

=const× (λr+1 + . . .+ λn) (Lemma 2.2)

=O(λr+1 + . . .+ λn).

In other words, the active-subspace approximation error will be small if λr+1, . . . , λn are
negligible.

3. Active Subspace for Structural Analysis and Compression of Deep Neural Networks.
This section applies the active subspace to analyze the internal layers of a deep neural network
to reveal the number of important neurons at each layer. Afterward, a new network called
ASNet is built to reduce the storage and computational complexity.

3.1. Deep Neural Networks. A deep neural network can be described as

(3.1) f(x0) = fL (fL−1 . . . (f1(x0))) ,

where x0 ∈ Rn0 is an input, L is the total number of layers, and fl : Rnl−1 → Rnl is a
function representing the l-th layer (e.g., combinations of convolution or fully connected,
batch normalization, ReLU, or pooling layers). For any 1 ≤ l ≤ L, we rewrite the above
feed-forward model as a superposition of functions, i.e.,

(3.2) f(x0) = f lpost(f
l
pre(x0)),

where the pre-model f lpre(·) = fl . . . (f1(·)) denotes all operations before the l-th layer and

the post-model f lpost(·) = fL . . . (fl+1(·)) denotes all succeeding operations. The intermediate

neuron xl = f lpre(x0) ∈ Rnl usually lies in a high dimension. We aim to study whether such a
high dimensionality is necessary. If not, how can we reduce it?

3.2. The Number of Active Neurons. Denote loss(·) as the loss function, and

(3.3) cl(x) = loss(f lpost(x)).

The covariance matrix C = E[∇cl(x)∇cl(x)T ] admits the eigenvalue decomposition C =
VΛVT with Λ = diag(λ1, · · · , λnl

). We try to extract the active subspace of cl(x) and reduce
the intermediate vector x to a low dimension. Here the intermediate neuron x, the covariance
matrix C, eigenvalues Λ, and eigenvectors V are also related to the layer index l, but we
ignore the index for simplicity.
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Definition 3.1. Suppose Λ is computed by (2.2). For any layer index 1 ≤ l ≤ L, we define
the number of active neurons nl,AS as follows:

(3.4) nl,AS = arg min

{
i :

λ1 + . . .+ λi
λ1 + . . .+ λnl

≥ 1− ε
}
,

where ε > 0 is a user-defined threshold.

Based on Definition 3.1, the post-model can be approximated by an nl,AS-dimensional
function with a high accuracy, i.e.,

(3.5) gl(z) = Ez̃[cl(x)|z].

Here z = VT
1 x ∈ Rnl,AS plays the role of active neurons, z̃ = VT

2 x ∈ Rn−nl,AS , and V =
[V1,V2].

Lemma 3.1. Suppose the input x0 is bounded. Consider a deep neural network with the
following operations: convolution, fully connected, ReLU, batch normalization, max-pooling,
and equipped with the cross entropy loss function. Then for any l ∈ {1, . . . , L}, x = f lpre(x0),

and cl(x) = loss(f lpost(x)), the nl,AS-dimensional function gl(z) defined in (3.5) satisfies

(3.6) Ez

[
(gl(z))2

]
≤ 2Ex0

[
(c0(x0))2

]
+O(ε).

Proof. Denote cl(x) = loss(fL(. . . (fl+1(x))), where loss(y) = − log exp(yb)∑nL
i=1 exp(yi)

is the cross

entropy loss function, b is the true label, and nL is the total number of classes. We first show
cl(x) is absolutely continuous and square integrable, and then apply Lemma 2.3 to derive
(3.6).

Firstly, all components of cl(x) are Lipschitz continuous because (1) the convolution,
fully connected, and batch normalization operations are all linear; (2) the max pooling and
ReLU functions are non-expansive. Here, a mapping m is non-expansive if ‖m(x)−m(y)‖ ≤
‖x − y‖; (3) the cross entropy loss function is smooth with an upper bounded gradient,
i.e., ‖∇loss(y)‖ = ‖eb − exp(y)/

∑nL
i=1 exp(yi)‖ ≤

√
nL. The composition of two Lipschitz

continuous functions is also be Lipschitz continuous: suppose the Lipschitz constants for f1
and f2 are α1 and α2, respectively, it holds that ‖f1(f2(x̄))−f1(f2(x))‖ ≤ α1‖f2(x̄)−f2(x)‖ ≤
α1α2‖x̄−x‖ for any vectors x̄ and x. By recursively applying the above rule, cl(x) is Lipschitz
continuous:

‖cl(x̄)− cl(x)‖2 = ‖loss(fL(. . . (fl+1(x̄))))− loss(fL(. . . (fl+1(x))))‖2
≤
√
nLαL . . . αl+1‖x̄− x‖2.

The intermediate neuron x is in a bounded domain because the input x0 is bounded and all
functions fi(·) are either continuous or non-expansive. Based on the fact that any Lipschitz-
continuous function is also absolutely continuous on a compact domain [47], we conclude that
cl(x) is absolutely continuous.

Secondly, because x is bounded and cl(x) is continuous, both cl(x) and its square integral
will be bounded, i.e.,

∫
(cl(x)2ρ(x)dx <∞.
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Finally, by Lemma 2.3, it holds that

Ex[(cl(x)− gl(z))2] ≤ O(λnl,AS+1 + . . .+ λn).

From Definition 3.1, we have

λnl,AS+1 + . . .+ λn ≤ (λ1 + . . .+ λn)ε = ‖C1/2‖2F ε = O(ε).

In the last equality, we used that ‖C1/2‖F is upper bounded because cl(x) is Lipschitz con-
tinuous with a bounded gradient. Consequently, we have

Ex[(gl(z))2]

=Ex[(gl(z)− cl(x) + cl(x))2]

≤2Ex[(cl(x))2] + 2Ex[(cl(x)− gl(z))2]

=2Ex0 [(c0(x0))2] + 2Ex[(cl(x)− gl(z))2]

≤2Ex0 [(c0(x0))2] +O(ε).

The proof is completed.

The above lemma shows that the active subspace method can reduce the number of neurons
of the l-th layer from nl to nl,AS . The loss for the low-dimensional function gl(z) is bounded
by two terms: the loss c0(x0) of the original network, and the threshold ε related to nl,AS .
This loss function is the cross entropy loss, not the classification error. However, it is believed
that a small loss will result in a small classification error. Further, the result in Lemma 3.1 is
valid for thr fixed parameters in the pre-model. In practice, we can fine-tune the pre-model
to achieve better accuracy.

Further, a small active neurons nl,AS is critical to get a high compress ratio. From Def-
inition 3.1, nl,AS depends on the eigenvalue distribution of the covariance matrix C. For a
proper network structure and a good choice of the layer index l, if the eigenvalues of C are
dominated by the first few eigenvalues, then nl,AS will be small. For instance, in Fig. 5(a),
the eigenvalues for layers 4 ≤ l ≤ 7 of VGG-19 are nearly exponential decreasing to zero.

3.3. Active Subspace Network (ASNet). This subsection proposes a new network called
ASNet that can reduce both the storage and computational cost. Given a deep neural network,
we first choose a proper layer l and project the high-dimensional intermediate neurons to a low-
dimensional vector in the active subspace. Afterward, the post-model is deleted completely
and replaced with a nonlinear model that maps the low-dimensional active feature vector to
the output directly. This new network, called ASNet, has three parts:

(1) Pre-model: the pre-model includes the first l layers of a deep neural network.
(2) Active subspace layer: a linear projection from the intermediate neurons to the

low-dimensional active subspace.
(3) Polynomial chaos expansion layer: the polynomial chaos expansion [20, 56] maps

the active-subspace variables to the output.
The initialization for the active subspace layer and polynomial chaos expansion layer are
presented in Sections 3.4 and 3.5, respectively. We can also retrain all the parameters to
increase the accuracy. The whole procedure is illustrated in Fig. 2 (b) and Algorithm 3.1.
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Algorithm 3.1 The training procedure of the active subspace network (ASNet)

Input: A pretrained deep neural network, the layer index l, and the number of active
neurons r.
Step 1 Initialize the active subspace layer. The active subspace layer is a linear projec-

tion where the projection matrix V1 ∈ Rn×r is computed by Algorithm 3.2. If r is not
given, we use r = nAS defined in (3.4) by default.

Step 2 Initialize the polynomial chaos expansion layer. The polynomial chaos expan-
sion layer is a nonlinear mapping from the reduced active subspace to the outputs, as
shown in (3.10). The weights cα is computed by (3.12).

Step 3 Construct the ASNet. Combine the pre-model (the first l layers of the deep neural
network) with the active subspace and polynomial chaos expansion layers as a new
network, referred to as ASNet.

Step 4 Fine-tuning. Retrain all the parameters in pre-model, active subspace layer and
polynomial chaos expansion layer in ASNet for several epochs by stochastic gradient
descent.

Output: A new network ASNet

layer 1 layer 2 ... layer L

(a) A deep neural network

pre-model AS PCE

(b) The proposed ASNet

Figure 2: (a) The original deep neural network; (b) The proposed ASNet with three parts: a
pre-model, an active subspace (AS) layer, and a polynomial chaos expansion (PCE) layer.

3.4. The Active Subspace Layer. This subsection presents an efficient method to project
the high dimensional neurons to the active subspace. Given a dataset D = {x1, . . . ,xm}, the
empirical covariance matrix is computed by Ĉ = 1

m

∑m
i=1∇cl(xi)∇cl(xi)T . When ReLU is

applied as an activation, cl(x) is not differentiable. In this case, ∇ denotes the sub-gradient
with a little abuse of notation.

Instead of calculating the eigenvalue decomposition of Ĉ, we compute the singular value
decomposition of Ĝ to save the computation cost:

(3.7) Ĝ = [∇cl(x1), . . . ,∇cl(xm)] = V̂Σ̂ÛT ∈ Rnl×m with Σ̂ = diag(σ̂1, · · · , σ̂nl
).

The eigenvectors of C are approximated by the left singular vectors V̂ and the eigenvalues of

C are approximated by the singular values of Ĝ, i.e., Λ ≈ Σ̂
2
.

We use the memory-saving frequent direction method [21] to compute the r dominant
singular value components, i.e., Ĝ ≈ V̂rΣ̂rÛ

T
r . Here r is smaller than the total number of
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Algorithm 3.2 The frequent direction algorithm for computing the active subspace

Input: A dataset with mAS input samples {xj0}
mAS
j=1 , a pre-model f lpre(·), a subroutine for

computing ∇cl(x), and the dimension of truncated singular value decomposition r.

1: Select r samples xi0, compute xi = f lpre(x
i
0), and construct an initial matrix S ←

[∇cl(x1), . . . ,∇cl(xr)].
2: for t=1, 2, . . . , do
3: Compute the singular value decomposition VΣUT ← svd(S), where Σ =

diag(σ1, . . . , σr).
4: If the maximal number of samples mAS is reached, stop.
5: Update S by the soft-thresholding (3.8).
6: Get a new sample xnew

0 , compute xnew = f lpre(x
new
0 ), and replace the last column of S

(now all zeros) by the gradient vector S(:, r)← ∇cl(xnew).
7: end for

Output: The projection matrix V ∈ Rnl×r and the singular values Σ ∈ Rr×r.

samples. The frequent direction approach only stores an n × r matrix S. At the beginning,
each column of S ∈ Rn×r is initialized by a gradient vector. Then the randomized singular
value decomposition [24] is used to generate S = UΣVT . Afterwards, S is updated in the
following way,

(3.8) S← V

√
Σ2 − σ2r .

Now the last column of S is zero and we replace it with the gradient vector of a new sam-
ple. By repeating this process, SST will approximate ĜĜT with a high accuracy and V
will approximate the left singular vectors of Ĝ. The algorithm framework is presented in
Algorithm 3.2.

After obtaining Σ = diag(σ1, . . . , σr), we can approximate the number of active neurons
as

(3.9) n̂l,AS = arg min

i :

√
σ21 + . . .+ σ2i√
σ21 + . . .+ σ2r

≥ 1− ε

 .

Under the condition that σ2i → λi for i = 1, . . . , r and λi → 0 for i = r + 1, . . . , nl, (3.9) can
approximate nl,AS in (3.4) with a high accuracy. Further, the projection matrix V̂1 is chosen
as the first n̂l,AS columns of V. The storage cost is reduced from O(n2l ) to O(nlr) and the
computational cost is reduced from O(n2l r) to O(nlr

2).

3.5. Polynomial Chaos Expansion Layer. We continue to construct a new surrogate
model to approximate the post-model of a deep neural network. This problem can be re-
garded as an uncertainty quantification problem if we set z as a random vector. We choose
the nonlinear polynomial because it has higher expressive power than linear functions.

By the polynomial chaos expansion [55], the network output y ∈ RnL is approximated by
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Figure 3: Distribution of the first two active subspace variables at the 6-th layer of VGG-19 for
CIFAR-10.

a linear combination of the orthogonal polynomial basis functions:

(3.10) ŷ ≈
p∑

|α|=0

cαφα(z), where |α| = α1 + . . .+ αd.

Here φα(z) is a multivariate polynomial basis function chosen based on the probability den-
sity function of z. When the parameters z = [z1, . . . , zr]

T are independent, both the joint
density function and the multi-variable basis function can be decomposed into products of
one-dimensional functions, i.e., ρ(z) = ρ1(z1) . . . ρr(zr), φα(z) = φα1(z1)φα2(z2) . . . φαr(zr).
The marginal basis function φαj (zj) is uniquely determined by the marginal density function
ρi(zi). The scatter plot in Fig. 3 shows that the marginal probability density of ezi is close to
a Gaussian distribution.

Suppose ρi(zi) follows a Gaussian distribution, then φαj (zj) will be a Hermite polynomial
[37], i.e.,

(3.11) φ0(z) = 1, φ1(z) = z, φ2(z) = 4z2 − 2, φp+1(z) = 2zφp(z)− 2pφp−1(z).

In general, the elements in z can be non-Gaussian correlated. In this case, the basis functions
{φα(z)} can be built via the Gram-Schmidt approach described in [13].

The coefficient cα can be computed by a linear least-square optimization. Denote zj =
V̂T

1 f
l
pre(x

j
0) as the random samples and yj as the network output for j = 1, . . . ,mPCE. The

coefficient vector cα can be computed by

(3.12) min
{cα}

1

mPCE

mPCE∑
j=1

‖yj −
p∑

|α|=0

cαφα(zj)‖2.

Based on the Nyquist-Shannon sampling theorem, the number of samples to train cα needs
to satisfy mPCE ≥ 2nbasis = 2

(
r+p
p

)
. However, this number can be reduced to a smaller set of

“important” samples by the D-optimal design [59] or the sparse regularization approach [14].
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The polynomial chaos expansion builds a surrogate model to approximate the deep neural
network output y. This idea is similar to the knowledge distillation [28], where a pre-trained
teacher network teaches a smaller student network to learn the output feature. However, our
polynomial-chaos layer uses one nonlinear projection whereas the knowledge distillation uses
a series of layers. Therefore, the polynomial chaos expansion is more efficient in terms of
computational and storage cost. The polynomial chaos expansion layer is different from the
polynomial activation because the dimension of z may be different from that of output y.

The problem (3.12) is convex and any first order method can get a global optimal solution.
Denote the optimal coefficients as c∗α and the finial objective value as δ∗, i.e.,

(3.13) δ∗ =
1

mPCE

mPCE∑
j=1

‖yj − ψ∗(zj)‖2, where ψ∗(zj) =

p∑
|α|=0

c∗αφα(zj).

If δ∗ = 0, the polynomial chaos expansion is a good approximation to the original deep neural
network on the training dataset. However, the approximation loss of the testing dataset may
be large because of the overfitting phenomena.

The objective function in (3.12) is an empirical approximation to the expected error

(3.14) E(z,y)[‖y − ψ(z)‖2], where ψ(z) =

p∑
|α|=0

cαφα(z).

According to the Hoeffding’s inequality [29], the expected error (3.14) is close to the empirical
error (3.12) with a high probability. Consequently, the loss for ASNet with polynomial chaos
expansion layer is bounded as follows.

Lemma 3.2. Suppose that the optimal solution for solving problem (3.12) is c∗α, the optimal
polynomial chaos expansion is ψ∗(z), and the optimal residue is δ∗. Assume that there exist
consts a, b such that for all j, ‖yj − ψ∗(zj)‖2 ∈ [a, b]. Then the loss of ASNet will be upper
bounded

(3.15) Ez[(loss(ψ∗(z)))2] ≤ 2Ex0 [(c0(x0))
2] + 2nL(δ∗ + t) w.p. 1− γ∗,

where t is a user-defined threshold, and γ∗ = exp(−2t2mPCE
(b−a)2 ).

Proof. Since the cross entropy loss function is
√
nL-Lipschitz continuous, we have

(3.16) E(y,z)[(loss(y)− loss(ψ∗(z)))2] ≤ nLE(y,z)[‖y − ψ∗(z)‖2],

Denote T j = ‖yj − ψ∗(zj)‖2 for i = 1, . . . , nL. {T j} are independent under the assumption
that the data samples are independent. By the Hoeffding’s inequality, for any constant t, it
holds that

(3.17) E[T ] ≤ 1

mPCE

∑
j

T j + t w.p. 1− γ∗,

with γ∗ = exp(−2t2mPCE
(b−a)2 ). Equivalently,

(3.18) E(y,z)[‖y − ψ∗(z)‖2] ≤ δ∗ + t w.p. 1− γ∗,
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Consequently, there is

Ez[(loss(ψ∗(z)))2]

≤2Ey[(loss(y))2] + 2E(y,z)[(loss(ψ∗(z))− loss(y))2]

≤2Ex0 [(c0(x0))
2] + 2nL(δ∗ + t) w.p. 1− γ∗.

The last inequality follows from c0(x0) = cl(xl) = loss(y), equations (3.16) and (3.18). This
completes the proof.

Lemma 3.2 shows with a high probability 1−γ∗, the expected error of ASNet without fine-
tuning is bounded by the pre-trained error of the original network, the accuracy loss in solving
the polynomial chaos subproblem (3.13), and the number of classes nL. The probability γ∗ is
controlled by the threshold t as well as the number of training samples mPCE.

In practice, we always re-train ASNet for several epochs and the accuracy of ASNet is
beyond the scope of Lemma 3.2.

3.6. Structured Re-training of ASNet. The pre-model can be further compressed by
various techniques such as network pruning and sharing [25], low-rank factorization [43, 36, 18],
or data quantization [15, 12]. Denote θ as the weights in ASNet and {x1

0, . . . ,x
m
0 } as the

training dataset. Here, θ denotes all the parameters in the pre-model, active subspace layer,
and the polynomial chaos expansion layer. We re-train the network by solving the following
regularized optimization problem:

(3.19) θ∗ = arg min
θ

1

m

m∑
i=1

loss(f(θ; xi0)) + λR(θ).

Here (xi0,y
i) is a training sample, m is the total number of training samples, loss(·) is the cross-

entropy loss function, R(θ) is a regularization function, and λ is a regularization parameter.
Different regularization functions can result in different model structures. For instance, an
`1 regularizer R(θ) = ‖θ‖1 [2, 50, 57] will return a sparse weight, an `1,2-norm regularizer
will result in a column-wise sparse weights, a nuclear norm regularizer will result in low-rank
weights. At each iteration, we solve (3.19) by a stochastic proximal gradient decent algorithm
[53]

(3.20) θk+1 = argmax
θ

(θ − θk)Tgk +
1

2αk
‖θ − θk‖22 + λR(θ).

Here gk = 1
|Bk|

∑
i∈Bk ∇θloss(f(θ; xi0),y

i) is the stochastic gradient, Bk is a batch at the k-th
step, and αk is the stepsize.

In this work, we chose the `1 regularization to get sparse weight matrices. In this case,
problem (3.20) has a closed-form solution:

(3.21) θk+1 = Sαkλ(θk − αkgk),

where Sλ(x) = x�max(0, 1− λ/|x|) is a soft-thresholding operator.
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Figure 4: Perturbations along the directions of an active-subspace direction and of principal compo-
nent, respectively. (a) The function f(x) = aTx − b. (b) The perturbed function along the active-
subspace direction. (c) The perturbed function along the principal component analysis direction.

4. Active-Subspace for Universal Adversarial Attacks. This section investigates how to
generate a universal adversarial attack by the active-subspace method. Given a function f(x),
the maximal perturbation direction is defined by

(4.1) v∗δ = argmax
‖v‖2≤δ

Ex[(f(x + v)− f(x))2].

Here, δ is a user-defined perturbation upper bound. By the first order Taylor expansion, we
have f(x + v) ≈ f(x) +∇f(x)Tv, and problem (4.1) can be reduced to

(4.2) vAS = argmax
‖v‖2=1

Ex[(∇f(x)Tv)2] = argmax
‖v‖2=1

vTEx[∇f(x)∇f(x)T ]v.

The vector vAS is exactly the dominant eigenvector of the covariance matrix of ∇f(x). The
solution for (4.1) can be approximated by +δvAS or −δvAS . Here, both vAS and −vAS are
solutions of (4.2) but their effect on (4.1) are different.

Example 4.1. Consider a two-dimensional function f(x) = aTx − b with a = [1,−1]T

and b = 1, and x follows a uniform distribution in a two-dimensional square domain [0, 1]2,
as shown in Fig. 4 (a). It follows from direct computations that ∇f(x) = a and the co-
variance matrix C = aaT . The dominant eigenvector of C or the active-subspace direction
is vAS = a/‖a‖2 = [1/

√
2,−1/

√
2]. We apply vAS to perturb f(x) and plot f(x + δvAS)

in Fig. 4 (b), which shows a significant difference even for a small permutation δ = 0.3.
Furthermore, we plot the perturbed function along the first principal component direction
w1 = [1/

√
2, 1/
√

2]T in Fig. 4 (c). Here, w1 is the eigenvector of the covariance matrix

Ex[xxT ] =

[
1/3 1/4
1/4 1/3

]
. However, w1 does not result in any perturbation because aTw1 = 0.

This example indicates the difference between the active-subspace and principal component
analysis: the active-subspace direction can capture the sensitivity information of f(x) whereas
the principal component is independent of f(x).
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4.1. Universal Perturbation of Deep Neural Networks. Given a dataset D and a classifi-
cation function j(x) that maps an input sample to an output label. The universal perturbation
seeks for a vector v∗ whose norm is upper bounded by δ, such that the class label can be per-
turbed with a high probability, i.e.,

(4.3) v∗ = argmax
‖v‖≤δ

probx∈D[j(x + v) 6= j(x)] = argmax
‖v‖≤δ

Ex[1j(x+v)6=j(x)],

where 1d equals one if the condition d is satisfied and zero otherwise. Solving problem (4.3)
directly is challenging because both 1d and j(x) are discontinuous. By replacing j(x) with
the loss function c(x) = loss(f(x)) and the indicator function 1d with a quadratic function,
we reformulate problem (4.3) as

(4.4) max
v

Ex[(c(x + v)− c(x))2] s.t. ‖v‖2 ≤ δ.

The ball-constrained optimization problem (4.4) can be solved by various numerical tech-
niques such as the spectral gradient descent method [6] and the limited-memory projected
quasi-Newton [51]. However, these methods can only guarantee convergence to a local sta-
tionary point. Instead, we are interested in computing a direction that can achieve a better
objective value by a heuristic algorithm.

4.2. Recursive Projection Method. Using the first order Taylor expansion c(x + v) ≈
c(x) + vT∇c(x), we reformulate problem (4.4) as a ball constrained quadratic problem

(4.5) max
v

vTEx[∇c(x)∇c(x)T ]v s.t. ‖v‖2 ≤ δ.

Problem (4.5) is easy to solve because its closed-form solution is exactly the dominant eigen-
vector of the covariance matrix C = Ex[∇c(x)∇c(x)T ] or the first active-subspace direction.
However, the dominant eigenvector in (4.5) may not be efficient because c(x) is nonlinear.
Therefore, we compute v recursively by

(4.6) vk+1 = proj(vk + skdkv),

where proj(v) = v ×min(1, δ/‖v‖2), sk is the stepsize, and dkv is approximated by

(4.7) dkv = argmax
dv

dTvEx

[
∇c
(
x + vk

)
∇c
(
x + vk

)T]
dv, s.t. ‖dv‖2 ≤ 1.

Namely, dkv is the dominant eigenvector of Ck = Ex

[
∇c
(
x + vk

)
∇c
(
x + vk

)T ]
. Because dkv

maximizes the changes in Ex[(c(x + v + dv) − c(x + v))2], we expect that the attack ratio
keeps increasing, i.e., r(vk+1;D) ≥ r(vk;D), where

(4.8) r(v;D) =
1

|D|
∑
xi∈D

1j(xi+v)6=j(xi).

The backtracking line search approach [3] is employed to choose sk such that the attack ratio
of vk + skdkv is higher than the attack ratio of both vk and vk − skdkv, i.e.,

(4.9) sk = min
i
{ski,t : r(vk+1

i,t ;D) > max(r(vk+1
i,−t ;D), r(vk;D)},
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Algorithm 4.1 Recursive Active Subspace Universal Attack

Input: A pre-trained deep neural network denoted as c(x), a classification oracle j(x), a
training dataset D0, an upper bound for the attack vector δ, an initial stepsize s0, a decrease
ratio γ < 1, and the parameter in the stopping criterion α.

1: Initialize the attack vector as v0 = 0.
2: for k = 0, 1, . . . do
3: Select the training dataset as D = {xi + vk : xi ∈ D0 and j(xi + vk) = j(xi)}, then

compute the dominate active subspace direction dv by Algorithm 3.2.
4: for i = 0, 1, ...I do
5: Let ski,± = (−1)±s0γ

i and vk+1
i,± = proj(vk + sk+1

i,± d
k
v) . Compute the attack ratios

r(vk+1
i,1 ) and r(vk+1

i,−1) by (4.8).

6: If either r(vk+1
i,1 ) or r(vk+1

i,−1) is greater than r(vk), stop the process. Return sk =

(−1)tski,1, where t = 1 if r(vk+1
i,1 ) ≥ r(vk+1

i,−1) and t = −1 otherwise.
7: end for

If no stepsize sk is returned, let sk = s0r
I and record this step as a failure. Compute

the next iteration vk+1 by the projection (4.6).
8: If the number of failure is greater the threshold α, stop.
9: end for

Output: The universal active adversarial attack vector vAS .

where ski,t = (−1)ts0γ
i, t ∈ {1,−1}, s0 is the initial stepsize, γ < 1 is the decrease ratio, and

vk+1
i,t = proj(vk + sk+1

i,t dkv). If such a stepsize sk exists, we update vk+1 by (4.6) and repeat
the process. Otherwise, we record the number of failures and stop the algorithm when the
number of failure is greater than a threshold.

The overall flow is summarized in Algorithm 4.1. In practice, instead of using the whole
dataset to train this attack vector, we use a subset D0. The impact for different number of
samples is discussed in section 5.2.2.

5. Numerical Experiments. In this section, we show the power of active-subspace in
revealing the number of active neurons, compressing neural networks, and computing the
universal adversarial perturbation. All codes are implemented in PyTorch and are available
online2.

5.1. Structural Analysis and Compression. We test the ASNet constructed by Algo-
rithm 3.1, and set the polynomial order as p = 2, the number of active neurons as r = 50,
and the threshold in Equation (3.4) as ε = 0.05 on default. Inspired by the knowledge dis-
tillation [28], we retrain all the parameters in the ASNet by minimizing the following loss
function

min
θ

m∑
i=1

βH
(
ASNetθ(xi0), f(xi0)

)
+ (1− β)H

(
ASNetθ(xi0),y

i
)
.

2https://github.com/chunfengc/ASNet

https://github.com/chunfengc/ASNet
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Table 1: Comparison of number of neurons r of VGG-19 on CIFAR-10. For the stroage
speedup, the higher is bettter. For the accuracy reduction before or after finetuning, the
lower is better.

r = 25 r = 50 r = 75
ε Storage Accu. Reduce ε Storage Accu. Reduce ε Storage Accu. Reduce

Before After Before After Before After

ASNet(5) 0.34 20.7× 7.06 2.82 0.18 14.4× 4.40 1.82 0.11 11.0× 3.64 1.66
ASNet(6) 0.24 12.8× 2.14 0.59 0.11 10.1× 1.62 0.27 0.05 8.3× 1.40 0.21
ASNet(7) 0.15 9.3× 0.79 0.11 0.06 7.8× 0.63 -0.10 0.03 6.7× 0.77 0.00

Here, the cross entropy H(p,q) =
∑

j s(p)j log s(q)j , the softmax function s(x)j =
exp(xj)∑
j exp(xj)

,

and the parameter β = 0.1 on default. We retrain ASNet for 50 epochs by ADAM [34].
The stepsizes for the pre-model are set as 10−4 and 10−3 for VGG-19 and ResNet, and the
stepsize for the active subspace layer and the polynomial chaos expansion layer is set as 10−5,
respectively,

We also seek for sparser weights in ASNet by the proximal stochastic gradient descent
method in Section 3.6. On default, we set the stepsize as 10−4 for the pre-model and 10−5 for
the active subspace layer and the polynomial chaos expansion layer. The maximal epoch is
set as 100. The obtained sparse model is denoted as ASNet-s.

In all figures and tables, the numbers in the bracket of ASNet(·) or ASNet-s(·) indicate
the index of a cut-off layer. We report the performance for different cut-off layers in terms of
accuracy, storage, and computational complexities.

5.1.1. Choices of Parameters. We first show the influence of number of reduced neurons
r, tolerance ε, and cutting-off layer index l of VGG-19 on CIFAR-10 in Table 1. The VGG-
19 can achieve 93.28% testing accuracy with 76.45 Mb stroage consumption. Here, ε =
λr+1+...+λn
λ1+...+λn

. For different choices of r, we display the corresponding tolerance ε, the storage
speedup compared with the original teacher network, and the testing accuracy reduction for
ASNet before and after fine-tuning compared with the original teacher network.

Table 1 shows that when the cutting-off layer is fixed, a larger r usually results in a
smaller tolerance ε and a smaller accuracy reduction but also a smaller storage speedup. This
is corresponding to Lemma 3.1 that the error of ASNet before fine-tuning is upper bounded
by O(ε). Comparing r = 50 with r = 75, we find that r = 50 can achieve almost the same
accuracy with r = 75 with a higher storage speedup. r = 50 can even achieve better accuracy
than r = 75 in layer 7 probably because of overfitting. This guides us to chose r = 50 in the
following numerical experiments. For different layers, we see a later cutting-off layer index
can produce a lower accuracy reduction but a smaller storage speedup. In other words, the
choice of layer index is a trade-off between accuracy reduction with storage speedup.

5.1.2. Efficiency of Active-subspace. We show the effectiveness of ASNet constructed by
Steps 1-3 of Algorithm 3.1 without fine-tuning. We investigate the following three properties.
(1) Redundancy of neurons. The distributions of the first 200 singular values of the
matrix Ĝ (defined in (3.7)) are plotted in Fig. 5 (a). The singular values decrease almost
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Figure 5: Structural analysis of VGG-19 on the CIFAR-10 dataset. (a) The first 200 singular values
for layers 4 ≤ l ≤ 7; (b) The accuracy (without any fine-tuning) obtained by active-subspace (AS) and
polynomial chaos expansions (PCE) compared with principal component analysis (PCA) and logistic
regression (LR).

exponentially for layers l ∈ {4, 5, 6, 7}. Although the total numbers of neurons are 8192, 16384,
16384, and 16384, the numbers of active neurons are only 105, 84, 54, and 36, respectively.
(2) Redundancy of the layers. We cut off the deep neural network at an intermediate
layer and replace the subsequent layers with one simple logistic regression [30]. As shown by
the red bar in Fig. 5 (b), the logistic regression can achieve relatively high accuracy. This
verifies that the features trained from the first few layers already have a high expression
power since replacing all subsequent layers with a simple expression loses little accuracy.
(3) Efficiency of the active-subspace and polynomial chaos expansion. We compare
the proposed active-subspace layer with the principal component analysis [31] in projecting
the high-dimensional neuron to a low-dimensional space, and also compare the polynomial
chaos expansion layer with logistic regression in terms of their efficiency to extract class labels
from the low-dimensional variables. Fig. 5 (b) shows that the combination of active-subspace
and polynomial chaos expansion can achieve the best accuracy.

5.1.3. CIFAR-10. We continue to present the results of ASNet and ASNet-s on CIFAR-
10 by two widely used networks: VGG-19 and ResNet-110 in Tables 2 and 3, respectively.
The second column shows the testing accuracy for the corresponding network. We report
the storage and computational costs for the pre-model, post-model (i.e., active-subspace plus
polynomial chaos expansion for ASNet and ASNet-s), and overall results, respectively. For
both examples, ASNet and ASNet-s can achieve a similar accuracy with the teacher network
yet with much smaller storage and computational cost. For VGG-19, ASNet achieves 14.43×
storage savings and 3.44× computational reduction; ASNet-s achieves 23.98× storage savings
and 7.30× computational reduction. For most ASNet and ASNet-s networks, the storage
and computational costs of the post-models achieve significant performance boosts by our
proposed network structure changes. It is not surprising to see that increasing the layer index
(i.e., cutting off the deep neural network at a later layer) can produce a higher accuracy.
However, increasing the layer index also results in a smaller compression ratio. In other words,
the choice of layer index is a trade-off between the accuracy reduction with the compression
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Table 2: Accuracy and storage on VGG-19 for CIFAR-10. Here, “Pre-M” denotes the pre-model, i.e.,
layers 1 to l of the original deep neural networks, “AS” and “PCE” denote the active subspace and
polynomial chaos expansion layer, respectively.

Network Accuracy Storage (MB) Flops (106)

VGG-19 93.28% 76.45 398.14

Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(5) 91.46% 2.12 3.18 5.30 115.02 0.83 115.85
(23.41×) (14.43×) (340.11×) (3.44×)

ASNet-s(5) 90.40% 1.14 2.05 3.19 54.03 0.54 54.56
(1.86×) (36.33×) (23.98×) (2.13×) (527.91×) (7.30×)

ASNet(6) 93.01% 4.38 3.18 7.55 152.76 0.83 153.60
(22.70×) (10.12×) (294.76×) (2.59×)

ASNet-s(6) 91.08% 1.96 1.81 3.77 67.37 0.48 67.85
(2.24×) (39.73×) (20.27×) (2.27×) (515.98×) (5.87×)

ASNet(7) 93.38% 6.63 3.18 9.80 190.51 0.83 191.35
(21.99×) (7.80×) (249.41×) (2.08×)

ASNet-s(7) 90.87% 2.61 1.91 4.52 80.23 0.50 80.73
(2.54×) (36.64×) (16.92×) (2.37×) (415.68×) (4.93×)

Table 3: Accuracy and storage on ResNet-110 for CIFAR-10. Here, “Pre-M” denotes the
pre-model, i.e., layers 1 to l of the original deep neural networks, “AS” and “PCE” denote
the active subspace and polynomial chaos expansion layer, respectively.

Network Accuracy Storage (MB) Flops (106)

ResNet-110 93.78% 6.59 252.89

Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(61) 89.56% 1.15 1.61 2.77 140.82 0.42 141.24
(3.37×) (2.38×) (265.03×) (1.79×)

ASNet-s(61) 89.26% 0.83 1.23 2.06 104.05 0.32 104.37
(1.39×) (4.41×) (3.19×) (1.35×) (346.82×) (2.42×)

ASNet(67) 90.16% 1.37 1.61 2.98 154.98 0.42 155.40
(3.24×) (2.21×) (231.55×) (1.63×)

ASNet-s(67) 89.69% 1.00 1.22 2.22 116.38 0.32 116.70
(1.36×) (4.29×) (2.97×) (1.33×) (306.72×) (2.17×)

ASNet(73) 90.48% 1.58 1.61 3.19 169.13 0.42 169.55
(3.11×) (2.06×) (198.07×) (1.49×)

ASNet-s(73) 90.02% 1.18 1.16 2.34 128.65 0.30 128.96
(1.34×) (4.32×) (2.82×) (1.31×) (275.74×) (1.96×)

ratio.
For Resnet-110, our results are not as good as those on VGG-19. We find that the

eigenvalues for its covariance matrix are not exponentially decreasing as that of VGG-19,
which results in a large number of active neurons or a large error ε when fixing r = 50. A
possible reason is that ResNet updates as xl+1 = xl + fl(xl). Hence, the partial gradient
∂xl+1/∂xl = I +∇fl(xl) is less likely to be low-rank.
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Table 4: Accuracy and storage on VGG-19 for CIFAR-100. Here, “Pre-M” denotes the pre-model,
i.e., layers 1 to l of the original deep neural networks, “AS” and “PCE” denote the active subspace
and polynomial chaos expansion layer, respectively.

Network Top-1 Top-5 Storage (MB) Flops (106)

VGG-19 71.90% 89.57% 76.62 398.18

Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(7) 70.77% 91.05% 6.63 3.63 10.26 190.51 0.83 191.35
(19.23×) (7.45×) (249.41×) (2.08×)

ASNet-s(7) 70.20% 90.90% 5.20 3.24 8.44 144.81 0.85 145.66
(1.27×) (21.56×) (9.06×) (1.32×) (244.57×) (2.73×)

ASNet(8) 69.50% 90.15% 8.88 1.29 10.17 228.26 0.22 228.48
(52.50×) (7.52×) (779.04×) (1.74×)

ASNet-s(8) 69.17% 89.73% 6.87 1.22 8.09 172.69 0.32 173.01
(1.29×) (55.36×) (9.45×) (1.32×) (530.92×) (2.30×)

ASNet(9) 72.00% 90.61% 13.39 2.07 15.46 247.14 0.42 247.56
(30.49×) (4.95×) (357.10×) (1.61×)

ASNet-s(9) 71.38% 90.28% 9.38 1.94 11.32 183.27 0.51 183.78
(1.43×) (32.49×) (6.75×) (1.35×) (296.74×) (2.17×)

Table 5: Accuracy and storage on ResNet-110 for CIFAR-100. Here, “Pre-M” denotes the
pre-model, i.e., layers 1 to l of the original deep neural networks, “AS” and “PCE” denote
the active subspace and polynomial chaos expansion layer, respectively.

Network Top-1 Top-5 Storage (MB) Flops (106)

ResNet-110 71.94% 91.71 % 6.61 252.89

Pre-M AS+PCE Overall Pre-M AS+PCE Overall

ASNet(75) 63.01% 88.55% 1.79 1.29 3.08 172.67 0.22 172.89
(3.73×) (2.14×) (367.88×) (1.46×)

ASNet-s(75) 63.16% 88.65% 1.47 1.20 2.67 143.11 0.31 143.42
(1.22×) (3.99×) (2.46×) (1.21×) (254.69×) (1.76×)

ASNet(81) 65.82% 90.02% 2.64 1.29 3.93 186.83 0.22 187.04
(3.07×) (1.68×) (302.96×) (1.35×)

ASNet-s(81) 65.73% 89.95% 2.20 1.21 3.41 155.61 0.32 155.93
(1.20×) (3.27×) (1.93×) (1.20×) (208.38×) (1.62×)

ASNet(87) 67.71% 90.17% 3.48 1.29 4.77 200.98 0.22 201.20
(2.41×) (1.38×) (238.04×) (1.26×)

ASNet-s(87) 67.65% 90.10% 2.91 1.21 4.12 166.50 0.32 166.81
(1.20×) (2.56×) (1.60×) (1.21×) (163.50×) (1.52×)

5.1.4. CIFAR-100. Next, we present the results of VGG-19 and ResNet-110 on CIFAR-
100 in Tables 4 and 5, respectively. On VGG-19, ASNet can achieve 7.45× storage savings and
2.08× computational reduction, and ASNet-s can achieve 9.06× storage savings and 2.73×
computational reduction. The accuracy loss is negligible for VGG-19 but larger for ResNet-
110. The performance boost of ASNet is obtained by just changing the network structures
and without any model compression (e.g., pruning, quantization, or low-rank factorization).
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5.2. Universal Adversarial Attacks. This subsection demonstrates the effectiveness of
active-subspace in identifying a universal adversarial attack vector. We denote the result
generated by Algorithm 4.1 as “AS” and compare it with the “UAP” method in [40] and
with “random” Gaussian distribution vector. The parameters in Algorithm 4.1 are set as
α = 10 and δ = 5, . . . , 10. The default parameters of UAP are applied except for the maximal
iteration. In the implementation of [40], the maximal iteration is set as infinity, which is time-
consuming when the training dataset or the number of classes is large. In our experiments, we
set the maximal iteration as 10. In all figures and tables, we report the average attack ratio
and CPU time in training out of ten repeated experiments with different training datasets.
A higher attack ratio means the corresponding algorithm is better in fooling the given deep
neural network. The datasets are chosen in two ways. We firstly test data points from one class
(e.g., trousers in Fashion-MNIST) because these data points share lots of common features
and have a higher probability to be attacked by a universal perturbation vector. We then
conduct experiments on the whole dataset to show our proposed algorithm can also provide
better performance compared with the baseline even if the dataset has diverse features.
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Figure 6: Universal adversarial attacks for the Fashion-MINST with respect to different `2-norms.
(a)-(c): the results for attacking one class dataset. (d)-(f): the results for attacking the whole dataset.

5.2.1. Fashion-MNIST. Firstly, we present the adversarial attack result on Fashion-
MNIST by a 4-layer neural network. There are two convolutional layers with kernel size
equals 5×5. The size of output channels for each convolutional layer is 20 and 50, respec-
tively. Each convolutional layer is followed by a ReLU activation layer and a max-pooling layer
with a kernel size of 2 × 2. There are two fully connected layers. The first fully connected
layer has an input feature 800 and an output feature 500.

Fig. 6 presents the attack ratio of our active-subspace method compared with the baselines
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Figure 7: The effect of our attack method on one data sample in the Fashion-MNIST dataset. (a) A
trouser from the original dataset. (b) An active-subspace perturbation vector with the `2 norm equals
to 5. (c) The perturbed sample is misclassified as a t-shirt/top by the deep neural network.

UAP method [40] and Gaussian random vectors. The top figures show the results for just
one class (i.e., trouser), and the bottom figures show the results for all ten classes. For all
perturbation norms, the active-subspace method can achieve around 30% higher attack ratio
than UAP while more than 10 times faster. This verifies that the active-subspace method has
better universal representation ability compared with UAP because the active-subspace can
find a universal direction while UAP solves data-dependent subproblems independently. By
the active-subspace approach, the attack ratio for the first class and the whole dataset are
around 100% and 75%, respectively. This coincides with our intuition that the data points in
one class have higher similarity than data points from different classes.

In Fig. 7, we plot one image from Fashion-MNIST and its perturbation by the active-
subspace attack vector. The attacked image in Fig. 7 (c) still looks like a trouser for a human.
However, the deep neural network misclassifies it as a t-shirt/top.

5.2.2. CIFAR-10. Next, we show the numerical results of attacking VGG-19 on CIFAR-
10. Fig. 8 compares the active-subspace method compared with the baseline UAP and Gauss-
ian random vectors. The top figures show the results by the dataset in the first class (i.e.,
automobile), and the bottom figures show the results for all ten classes. For both two cases,
the proposed active-subspace attack can achieve 20% higher attack ratios while three times
faster than UAP. This is similar to the results in Fashion-MNIST because the active-subspace
has a better ability to capture the global information.

We further show the effects of different number of training samples in Fig. 9. When the
number of samples is increased, the testing attack ratio is getting better. In our numerical
experiments, we set the number of samples as 100 for one-class experiments and 200 for
all-classes experiments.

We continue to show the cross-model performance on four different ResNet networks and
one VGG network. We test the performance of the attack vector trained from one model on
all other models. Each row in Table 6 shows the results on the same deep neural network and
each column shows the results of the same attack vector. It shows that ResNet-20 is easier
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Figure 8: Universal adversarial attacks of VGG-19 on CIFAR-10 with respect to different `2-norm
perturbations. (a)-(c): The training attack ratio, the testing attack ratio, and the CPU time in seconds
for attacking one class dataset. (d)-(f): The results for attacking ten classes dataset together.

Table 6: Cross-model performance for CIFAR-10

ResNet-20 ResNet-44 ResNet-56 ResNet-110 VGG-19

ResNet-20 91.35% 87.74% 86.28% 87.38% 81.16%

ResNet-44 84.75% 92.28% 87.03% 85.44% 83.44%

ResNet-56 83.63% 86.67% 90.15% 87.39% 84.38%

ResNet-110 71.02% 77.58% 74.19% 92.77% 77.32%

VGG-19 53.61% 59.74% 61.49% 66.29% 80.02%

to be attacked compared with other models. This agrees with our intuition that a simple
network structure such as ResNet-20 is less robust. On the contrary, VGG-19 is the most
robust. The success of cross-model attacks indicates that these neural networks could find a
similar feature.

5.2.3. CIFAR-100. Finally, we show the results on CIFAR-100 for both the first class
(i.e., dolphin) and all classes. Similar to Fashion-MNIST and CIFAR-10, Fig. 10 shows that
active-subspace can achieve higher attack ratios than both UAP and Gaussian random vectors.
Further, compared with CIFAR-10, CIFAR-100 is easier to be attacked partially because it
has more classes.

We summarize the results for different datasets in Table 7. The second column shows the
number of classes in the dataset. In terms of testing attack ratio for the whole dataset, active-
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Figure 9: Adversarial attack of VGG-19 on CIFAR-10 with different number of training samples. The
`2-norm perturbation is fixed as 10. (a) The results of attacking the dataset from the first class; (b)
The results of attacking the whole dataset with 10 classes.

Table 7: Summary of the universal attack for different datasets by the active-subspace compared with
UAP and the random vector. The norm of perturbation is equal to 10.

Training Attack ratio Testing Attack ratio CPU time (s)

# Class AS UAP Rand AS UAP Rand AS UAP

Fashion- 1 100.0% 93.6% 1.8% 98.0% 91.3% 3.0% 0.15 5.49
MNIST 10 79.2% 51.5% 8.0% 73.3% 49.1% 12.3% 1.40 58.85

CIFAR-10
1 94.7% 79.8% 8.0% 84.5% 57.9% 10.6% 8.18 52.83
10 86.5% 65.9% 10.2% 74.9% 59.9% 17.0% 37.01 181.72

CIFAR-100
1 97.2% 87.9% 19.7% 92.1% 84.3% 37.9% 13.32 248.78

100 93.7% 86.5% 38.7% 83.5% 77.4% 52.0% 14.32 204.50

subspace achieves 24.2%, 15%, and 6.1% higher attack ratios than UAP for Fashion-MNIST,
CIFAR-10, and CIFAR-100, respectively. In terms of the CPU time, active-subspace achieves
42×, 5×, and 14× speedup than UAP on the Fashion-MNIST, CIFAR-10, and CIFAR-100,
respectively.

6. Conclusions and Discussions. This paper has analyzed deep neural networks by the
active subspace method originally developed for dimensionality reduction of uncertainty quan-
tification. We have investigated two problems: how many neurons and layers are necessary (or
important) in a deep neural network, and how to generate a universal adversarial attack vector
that can be applied to a set of testing data? Firstly, we have presented a definition of “the
number of active neurons” and have shown its theoretical error bounds for model reduction.
Our numerical study has shown that many neurons and layers are not needed. Based on this
observation, we have proposed a new network called ASNet by cutting off the whole neural
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Figure 10: Results for universal adversarial attack for CIFAR-100 with respect to different `2-norm
perturbations. (a)-(c): The results for attacking the dataset from the first class. (d)-(f): The results
for attacking ten classes dataset together.

network at a proper layer and replacing all subsequent layers with an active subspace layer
and a polynomial chaos expansion layer. The numerical experiments show that the proposed
deep neural network structural analysis method can produce a new network with significant
storage savings and computational speedup yet with little accuracy loss. Our methods can be
combined with existing model compression techniques (e.g., pruning, quantization and low-
rank factorization) to develop compact deep neural network models that are more suitable
for the deployment on resource-constrained platforms. Secondly, we have applied the active
subspace to generate a universal attack vector that is independent of a specific data sample
and can be applied to a whole dataset. Our proposed method can achieve a much higher
attack ratio than the existing work [40] and enjoys a lower computational cost.

ASNet has two main goals: to detect the necessary neurons and layers, and to compress
the existing network. To fulfill the first goal, we require a pre-trained model because from
Lemmas 3.1, and 3.2, the accuracy of the reduced model will approach that of the original one.
For the second task, the pre-trained model helps us to get a good estimation for the number of
active neurons, a proper layer to cut off, and a good initialization for the active subspace layer
and polynomial chaos expansion layer. However, a pre-trained model is not required because
we can construct ASNet in a heuristic way (as done in most DNN): a reasonable guess for
the number of active neurons and cut-off layer, and a random parameter initialization for the
pre-model, the active subspace layer and the polynomial chaos expansion layer.
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