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Abstract—Recommendation systems, social network analysis,
medical imaging, and data mining often involve processing
sparse high-dimensional data. Such high-dimensional data are
naturally represented as tensors, and they cannot be efficiently
processed by conventional matrix or vector computations. Sparse
Tucker decomposition is an important algorithm for compressing
and analyzing these sparse high-dimensional data sets. When
energy efficiency and data privacy are major concerns, hardware
accelerators on resource-constraint platforms become crucial
for the deployment of tensor algorithms. In this work, we
propose a hybrid computing framework containing CPU and
FPGA to accelerate sparse Tucker factorization. This algorithm
has three main modules: tensor-times-matrix (TTM), Kronecker
products, and QR decomposition with column pivoting (QRP).
In addition, we accelerate the former two modules on a Xilinx
FPGA and the latter one on a CPU. Our hybrid platform achieves
23.6× ∼ 1091× speedup and over 93.519% ∼ 99.514% energy
savings compared with CPU on the synthetic and real-world
datasets.

I. INTRODUCTION

As massive data is collected from social media, wearable
devices and internet of things, novel algorithms and platforms
are highly desired to handle data-intensive computing tasks.
Vector- and matrix-based methods can efficiently process 1-
way data (e.g., a sequence of voice data) or 2-way data
(e.g., a gray-scale image), but they are often inefficient to
handle multi-way data. Representative examples includes 3-
way (or order-3) E-commerce data (which records customers’
preference on massive products over a few months), 4-way (or
order-4) cardiac image data (which records the spatial data of
3D at multiple time points). Processing such multi-way data
often suffers from the curse of dimensionality.

Tensors are a high-order generalization of matrices and
vectors, and they are a natural tool to represent and process
multi-way data [1]. Leveraging various tensor decomposition
or factorization methods [1]–[4], the curse of dimensionality
of storing and computing multi-way data can be avoided or
significantly mitigated in many applications. For instance, the
canonical polyadic (CP) [5], [6] and tensor-train [2] factor-
izations can reduce the storage cost and unknown variables
from an exponential function to a linear one. Tucker factor-
ization [3] can be used for high-order principle component
analysis or facial recognition [7]–[9]. Tensor computation has
achieved tremeonduous success in data mining [10], computer
vision [7]–[9], medical imaging [11], electronic design au-
tomation [12]–[15] and deep learning [16]–[18].

The emerging tensor computation concept brings in mas-
sive research opportunities and challenges on the hardware
level. Due to the fundamental difference between tensor
and matrix computations, we may need to re-think many
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aspects of tensor computation (e.g., storage, computing and
data movement) on specific platforms. Increasing research
results have been reported to improve the tensor data storage
and computing on the cloud and high-performance clusters
[19]–[21]. However, little work has been done on resource-
constrained platforms. This becomes increasingly important as
the need of energy-efficient machine learning and data privacy
surges. In order to address this issues, some efforts have
been made towards tensor-compressed neural networks on
mobile devices [22] and dense tensor operations on FPGA. For
instance, some dense tensor operations including MTTKRP,
TTM and TTMc were accelerated in [23]; a spectral analysis
of Hankel tensors was reported in [24]. To perform dense
Tucker decomposition on FPGA, Zhang et al. [25] divided
the hardware architectures into three modules: tensor-times-
matrix, singular value decomposition via Jacobi iterations
and tensor permutation/reshaping. In addition, a warm-start
algorithm was used to reduce the cost of Jacobi iterations. The
resulting FPGA accelerator demonstrated significant speedup
compared with both CPU and GPU. However, the FPGA
accelerator [25] cannot exploit data sparsity, and it becomes
energy- and time-inefficient when dealing with sparse tensors.
Ref. [26] reported some sparse tensor computation kernels.
For instance, it demonstrated how to implement both dense
and sparse tensor operations, such as sparse TTMc via sparse
compute pattern SF 3. To our best knowledge, there is no
FPGA accelerator available for sparse Tucker decomposition.

In this paper, we investigate the hardware acceleration of
Tucker factorization for sparse tensor data. Sparse tensors
widely appear in practice due to the missing information
in recommendation systems, medical image or E-commerce
data. For instance, in magnetic resonance imaging (MRI), one
can generate a sparse tensor by partial MRI scanning, then
reconstruct the whole image with a low cost [27]. In neuro-
science, researchers use sparse tensors to monitor the brain
variability [28]. In EDA, it is often too expensive to obtain
all simulation or measurement data, thus one uses a partially
sampled sparse tensor for process variation or performance
uncertainty prediction [12], [14], [15]. Although extensive
algorithms have been developed to process sparse tensors, their
hardware/algorithm co-optimization remains a rarely explored
field [25]. This task has become increasingly important as
energy efficiency and privacy cause lots of concerns in the
data science and machine learning community.

A. Paper Contributions and Organization
This paper proposes to design an energy- and memory-

efficient hybrid FPGA-CPU accelerator for sparse Tucker
decomposition [19]. This algorithm consists of three ma-
jor components: tensor-times-matrix (TTM) [1], Kronecker
product [29] and QR decomposition with column pivoting
(QRP) [30]. Our specific contributions include:
• On the hardware side, we present a high-level synthesis

(HLS) FPGA implementation for sparse Tucker decom-
position. We describe the design of two modules, TTM
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Fig. 1. (a) A matrix is a 2-D data array (e.g., one slice of MRI data), (b) a 3-way tensor is a 3-D data array (e.g., multiple slices of images).

and Kronecker product, by exploiting the data sparsity.
• On the algorithm side, we replace the conventional sin-

gular value decomposition (SVD) [31] with the QR de-
composition with column pivoting (QRP) [30] to reduce
the data storage cost and to speed up the computation.

• We implement our FPGA accelerator in a Xilinx FPGA
on Amazon web service (AWS). Then we compare
our hybrid FPGA-CPU accelerator with CPU and with
the recently developed dense FPGA accelerator [25] on
synthetic and real-world sparse tensor benchmarks. Our
hybrid FPGA-CPU accelerator achieves 1.15×∼1091×
speedup and consumes 93.519%∼99.514% less energy.
In addition, our proposed accelerator achieves significant
speedup (23.6×∼1091×) when the tensor is very large
and sparse

This paper is organized as follows. Section II introduces
some background information about tensor operations. Sec-
tion III presents the algorithm and our Vivado HLS FPGA
design of a sparse Tucker decomposition. We compare our
FPGA/CPU hybrid platform with CPU and the dense Tucker
FPGA accelerator [25] in terms of run-time and energy effi-
ciency in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES OF TENSORS

This section presents some background about tensors, which
is necessary for understanding the ideas of this paper.

Definition 1: A tensor X ∈ RI1×I2×···×IN is a high-
dimensional array of order N . Here the order N (also known
as “way”) is the total number of dimensions. A matrix X ∈
Rn1×n2 is a 2nd-order (or 2-D) tensor, and its element indexed
by (i1, i2) can be denoted as xi1i2 . For a general N th-order
(or N -way) tensor X , its element indexed by (i1, i2 · · · , iN )
is denoted as xi1i2···iN .

Fig. 1 shows a matrix (e.g., one slice of MRI data) and
a 3-way tensor, respectively. In this paper, we use boldface
lower-case letters (e.g., x) to denote vectors, boldface upper-
case letters (e.g., X) to denote matrices, and boldface Euler
script letters ( e.g.,X ) to denote tensors. A scalar is denoted
by a lower-case letter, e.g., x.

Definition 2: The inner product of two tensors with the
same size is defined as

〈X ,Y〉 =
∑

i1i2···iN

xi1i2···iN yi1i2···iN . (1)

Furthermore, the Frobenius norm (also known as F-norm) of
a tensor X is defined as ||X ||F =

√
〈X ,X 〉.

Definition 3: A matricization operation, (also known as
unfolding or flattening), reshapes a tensor into a matrix. The
mode-n matricization of a tensor X ∈ RI1×I2×···×IN is
denoted as X(n) which has In rows and

∏
k 6=n Ik columns.

Algorithm 1 Standard HOOI for Tucker Decomposition
1: Initialize {Un}Nk=1 via HOSVD
2: while not converge do
3: for n = 1, 2, . . . , N do
4: Y = X×1U

T
1 · · ·×n−1UT

n−1×n+1U
T
n+1 · · ·×NUT

N

5: Unfold Y and perform SVD: Y(n) = USVT

6: Un ← the first Rn columns of U.
7: end for
8: end while
9: return {Un}Nn=1.

Element-wise, we have each entry of X(n) as

X(n)(in, j) = xi1i2···iN with j = 1+

N∑
k=1,k 6=n

(ik−1)
k−1∏

m=1,m 6=n

Im.

(2)
Definition 4: The mode-n tensor matrix product [or tensor-

times-matrix (TTM)], between a tensor X ∈ RI1×I2×···×IN
and a matrix U ∈ RJ×In is denoted as

G = X ×nU, where G ∈ RI1×···×In−1×J×In+1×···×IN . (3)

Element-wise, we can write this operation as

gi1···n−1jin+1...iN =

In∑
in=1

xi1i2...iNujin . (4)

We may also obtain a TTM product by using the unfolded
tensors:

G = X ×n U⇔ G(n) = UX(n). (5)

We further introduce a matrix operation that will be used
in our subsequent tensor computation.

Definition 5: Given a matrix A ∈ Rm×n and another
matrix B ∈ Rp×q , their Kronecker product A ⊗ B is the
following matrix C ∈ Rmp×nq

C = A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (6)

III. ACCELERATOR FOR SPARSE TUCKER DECOMPOSITION

Given a tensor X ∈ RI1×I2×···×IN , the Tucker decomposi-
tion [4] approximates it with a small low-rank core tensor G ∈
RR1×R2×···×RN and N factor matrices {Un ∈ RIn×Rn}Nn=1:

X ≈ G ×1 U1 ×2 U2 · · · ×N UN . (7)

Here (R1, R2, · · · , RN ) is a multilinear tensor rank.
The Tucker decomposition can be regarded as a high-

order generalization of singular value decomposition (SVD),
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Algorithm 2 Sparse Tucker Decomposition
Input: A sparse tensor X
R1,. . .,RN : rank of approximation

1: initialize U1, ...,UN randomly.
2: repeat
3: for n = 1, 2, . . . , N do
4: for xi1,...,iN 6= 0 do
5: Y(n)(in, :) += xi1,...,iN [⊗t 6=nUt(it, :)]
6: end for
7: Un ← QRP(Y(n), Rn)
8: end for
9: G ← Y ×N UT

N
10: until convergence or maximum number of iterations

reached
Output:
G: a R1×. . .×RN core tensor
U1, . . . ,UN: Un is a Rn × In factor matrix

FPGA CPU

Sparse Tucker Decomposition

Kronecker
Product
Module

Controller

DRAM

Tensor Times
Matrix Module

QR Decomposition
with Column

Pivoting Module

DRAM

Fig. 2. A Hybrid FPGA-CPU platform for sparse Tucker factorization.

and it is often implemented with the power iteration method
called high-order orthogonal iteration (HOOI) in [4]. As
shown in Alg. 1, it aims to find the orthogonal matrices
{Un ∈ RIn×Rn}Nn=1 to maximize the F-norm of

G = X ×1 U
T
1 ×2 U

T
2 · · · ×N UT

N . (8)

In every iteration, we need to compute the Rn dominant left
singular vectors of unfolded matrix Y(n), where

Y = X ×1 U
T
1 · · · ×n−1 UT

n−1×n+1 U
T
n+1 · · · ×N UT

N . (9)

The orthogonal matrix is obtained by a SVD of the unfolded
matrix Y(n).

The standard HOOI becomes very inefficient for sparse
tensors because Line 4 of Alg. 1 does not exploit any data
sparsity and always performs N−1 times of TTM operations.

A. Overall Algorithm Flow
In this paper, we design an FPGA-CPU hybrid accelerator

based on [19] to perform Tucker factorization for sparse
tensors. Two formats can be used to represent sparse tensors:
• The coordinate format (COO) stores a sparse tensor

with all nonzero elements and their associated coordinate
vectors, shown in Table I. The first four columns represent
the coordinate (i, j, k, l) of 4 nonzero elements, and the
last column represents the corresponding value. The COO
format usually requires storage of O(nnz ∗ N) index
values and O(nnz) nonzero data values, where nnz is
the number of nonzero elements and N is the mode of
the tensor.

TABLE I
COORDINATE (COO) FORMAT OF A 5× 5× 5× 5 SPARSE TENSOR. HERE

(i, j, k, l) DENOTES AN INDEX, AND nnz IS THE VALUE OF AN
ASSOCIATED NON-ZERO DATA ELEMENT.

i j k l nnz
1 1 1 1 2
1 1 1 5 7.5
1 1 3 5 4
2 2 2 4 5

• Compressed sparse fiber format (CSF) stores a sparse
tensor by compressing the indices of nonzero elements
that share the same coordinates. It is regarded as high
dimensional version of the compressed sparse row (CSR)
or compressed sparse column (CSC) formats used for
matrices in [32]. The CSF format requires O(2 ∗ (nnz+
s + f) + 2) to store an order-3 tensor with s slices, f
fibers and nnz non-zero values.

In this paper, we use the COO format because of its flex-
ibility and simplicity. Furthermore, the COO format provides
better performance on merging-related TTM [33]. If we do
not assume any special structure of the tensor and the non-
zero elements are uniformly distributed, there will be rarely
multiple nonzero elements in a given fiber. In such a general
case, the CSF format barely has any advantages in storage
compression.

The algorithm flow is summarized in Alg. 2. Compared
with the standard dense Tucker factorization, the following
techniques are used to exploit the data sparsity:
• Instead of storing the whole tensor, we only store the

nonzero entries by specifying their values and indices.
• When performing the tensor-times-matrix (TTM) in (9),

we do not perform N − 1 levels of iterations over all
modes except mode n. Instead, we only consider the non-
zero elements of X and have a one-level iteration over
the indices of all non-zero elements in X .

• In order to reduce the computational and memory cost
of extracting orthogonal matrix factor Un, we replace
the SVD of Y(n) with a QR decomposition with column
pivoting (QRP).

The proposed accelerator architecture is shown in Fig. 2.
Because it is difficult to parallelize the QRP operation, we
implement it on CPU. Both (8) and (9) require TTM opera-
tions, but they are handled in different ways. For (8) we only
need to compute

G = Y ×N UN (10)

once for each iteration after obtaining Y (which is often dense)
by (9). Therefore, we design a specialized TTM module on
FPGA in Section III-B. For the power iteration in (9), we
design a Kronecker product module on FPGA to accelerate
the sparse operation, which is detailed in Section III-C.

B. Tensor-Times-Matrix (TTM) on FPGA
The computation of G in (8) requires N tensor-matrix

products on the original huge-size tensor X . This expensive
computation actually can be simplified.

Assuming that we have already done the power itera-
tion (9) for n = N , and obtained a small-size tensor
Y ∈ RR1×R2×···×IN and an orthogonal factor matrix UN ∈
RIN×RN . We only need to compute the mode-N tensor-matrix
product (10) to obtain the core tensor G (line 9, Alg. 2). This
TTM can be written in an element-wise manner:

(Y ×N UT
N )r1r2...rN =

IN∑
iN=1

yr1r2...iNUN (iN , rN ). (11)
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Algorithm 3 Vivado HLS Implementation of TTM on 3-way
Tensors
Input: Y ∈ RR1R2×I3 ,U ∈ RR3×I3

` = R1R2, b = 32
for (ib = 0; ib < `; iδ += b) do

initialize tmp as zero
for (k = 0; k < R3; k++) do

for (io = 0; io < b; io++) do
for (t = 0; t < I3; t++) do

tmp[io, k] += Y[io + ib, t] ∗U[k, t]
end for

end for
end for
for (k = 0; k < R3; k++) do

for (io = 0; io < b; io++) do
G[io + ib, k] = tmp[io, k]

end for
end for

end for
Output: G ∈ RR1R2×R3

M
at
rix
	In
te
rf
ac
e

Tensor	Interface

Fig. 3. Tensor-times-matrix (TTM) data flow.

Equivalently, we can express this particular TTM with un-
folded tensors as follows:

G = Y ×N UT
N ⇔ G(N) = UT

NY(N). (12)

Here G(N) and Y(N) are the mode-N unfolding of the tensors
G and Y , respectively.

In FPGA design, the 3-D sparse tensor X ∈ RI1×I2×I3 is
stored with a cost O(nnz), where nnz denotes the number
of nonzero elements. However, the tensor Y ∈ RR1×R2×I3

in (10) is dense, and we need to store all of its elements.
Although Y is multi-dimensional, it is unnecessary to create
a new copy of this tensor. We can just reshape it into a 2-D
matrix of size R1R2 × I3. Meanwhile, it is critical to process
the entries of Y in several batches. The batch size, b, controls
the number of entries in Y , being processed in each iteration.
If we set the batch size as b = R1R2, we will end up with 3
nested for-loops because the outermost for-loop is redundant.
As a result, all the entries of Y have to be processed at the
same time, resulting in an extremely large amount of loop
unrolling, which is not practical when R1R2 is larger. To
overcome this issue, we decrease our batch size to 32, and
separate this loop into two parts, resulting in 4 nested for-loops
to compute the resultant tensor of the TTM. In this way, we
could achieve optimal loop unrolling on memory-constrained
FPGAs.

We provide the Vivado HLS implementation pseudo code
of the TTM for a 3-way tensor X in Alg. 3. Given a 3-

Fig. 4. Tensor-times-matrix (TTM) Processing Element (PE) [25].

way tensor, X ∈ RI1×I2×I3 , (10) is a mode-3 TTM between
Y ∈ RR1×R2×I3 and U ∈ RI3×R3 , where G ∈ RR1×R2×R3

is the result. In the pseudo code, we reshape our tensors
Y ∈ RR1×R2×I3 and G ∈ RR1×R2×R3 into matrices Y ∈
RR1R2×I3 and G ∈ RR1R2×R3 . Basically, we divide our
result, G, into several portions such that we can update one
portion of G in each batch:
• First, we initialize the temporary matrix, tmp as zero

matrix of size b × R3, where b is the batch size. This
temporary matrix stores one portion of our result G.

• Then, we compute TTM by multiplying unfolded tensor
Y and U based on (12) and store the results in tmp.

• Finally, we just update one portion of G with tmp.
In order to optimize the Vivado HLS implementation, we
reshape U in cyclic forms by a factor of 8, and we reshape
Y and tmp in cyclic forms by a factor of 16. Furthermore,
in order to save RAM usage, we assign only one port of
RAM to the variables, Y, U, and tmp. We also assign the
intermediate variable tmp to registers instead of memory to
minimize memory usage.

Fig. 3 shows the data flow in the TTM computation module
on FPGA. According to the element-wise formula (11), each
entry of the resultant tensor can be recognized as the sum of
product between the entries from the original tensor Y and the
entries from the matrix UN. In Fig. 3, it shows that data from
the tensor interface, yr1r2...iN multiplies with the data from
the matrix interface, UN(iN , rN ). After the multiplication, the
results are summed up to obtain the entries in the resultant
tensor, (Y ×N UT

N )r1r2...rN .
A detailed data flow of the PE for TTM is shown in

Fig. 4, which was proposed in [25]. A buffer temporarily stores
the intermediate result after multiplying the tensor and the
matrix. For each batch, the multiplexer selects and adds the
intermediate result to the new product. Once all batches are
processed, the final result is stored the DRAM.

C. Kronecker Products on FPGA
The power iteration (9) requires O(Rd×n) operations, and

it consumes most of the computational power and run-time in
the sparse Tucker decomposition. Although an FPGA design
was presented in [25] to accelerate power iterations, existing
design cannot handle sparse tensor data efficiently. Therefore,
leveraging [19], [29], we design an FPGA module to compute
the power iteration via Kronecker products.
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Algorithm 4 Vivado HLS Implementation of Kronecker Prod-
uct

1: Input: a ∈ R1×R2 , b ∈ R1×R3

2: for (i = 0; i < R2; i++) do
3: for (j = 0; j < R3; j ++) do
4: c[R3 × i+ j] = a[i]× b[j]
5: end for
6: end for
7: Output: c ∈ R1×R2R3

Sparse	Tensor

Matrix Accumulator	

Index Value

Value

Value

Value

Fig. 5. The data flow of a Kronecker product.

We consider a sparse 3-way tensor X as an example. We
investigate the power iteration of mode 1, which is written as
Y = X ×2 U2

T ×3 U3
T . To exploit the sparsity, we may

choose to compute the Kronecker products and consider only
nonzero elements xijk 6= 0 [19]:

Y(1)(i, :) = Y(1)(i, :) + xijk[U2(j, :)⊗U3(k, :)]. (13)

The number of Kronecker products depends on the number of
nonzero elements in X , which is often very small for sparse
tensors. Furthermore, a Kronecker product can be re-used for
all non-zero elements that share the same indices (j, k) for
the 2nd and 3rd modes. Therefore, replacing TTM of (9) with
some Kronecker products can largely reduce the computational
complexity. Additionally, directly computing TTM is memory-
inefficient when the size and order of X are large, causing a
high cost of RAM and registers on FPGA.

In the Vivado HLS implementation, we utilize nested for-
loops to implement the Kronecker product (Alg. 4):
• In order to parallelize the Kronecker product on FPGA,

we pipeline the first for-loop and unroll the second
for-loop. The rank of approximation, R1, R2, and R3,
are usually very small compared with the mode sizes.
Therefore, the available memory, lookup tables (LUTs)
and registers are often sufficient for parallelization.

• To update the corresponding rows of unfolded data Y(n)

in the the power iteration, we simply multiply the Kro-
necker product result in the LUTs with the corresponding
nonzero element yr1r2...iN .

• In addition, different nonzero elements may share the
same index of some modes. In this case, we accumulate
the multiplications between these nonzero elements and
their corresponding Kronecker product results.

Fig. 5 shows the data flow inside our Kronecker product
module on FPGA. To begin with, the indices of the non-zero
elements in the original tensor are extracted. Then, based on
the indices of the nonzero entries, the corresponding rows of

TABLE II
ACCURACY COMPARISON OF TUCKER DECOMPOSITION WITH SVD AND

WITH QRP.

Tensor Size Tucker Decomposition
with SVD

Tucker Decomposition
with QRP

50× 50× 50 1.9222× 10−09 1.9228× 10−09

100× 100× 100 1.3846× 10−09 1.3820× 10−09

200× 200× 200 1.1588× 10−09 1.1786× 10−09

400× 400× 400 1.2114× 10−09 1.2115× 10−09

800× 800× 800 3.8450× 10−10 3.8531× 10−10

the orthogonal matrix factor, Ut(it, :) are selected. Assuming
there are two row vectors, every entry in one row vector
multiply with every entry in the other row vector to generate
the Kronecker product. Since we only compute the Kronecker
product between two row vectors (not two matrices), the
module only requires multiplication units (no addition units).

D. QR Decomposition with Column Pivoting
In existing dense and sparse Tucker factorization [4], [19],

the orthogonal matrix Un is obtained with a singular value
decomposition (SVD) [31] of Y(n). The SVD is accurate but
extremely slow at computing the orthogonal matrices. In order
to speed up the computation and minimize the memory usage,
we propose to use QR decomposition with column pivoting
(QRP) [30] to obtain Un. The QRP implementation does not
lose any accuracy compared with the SVD implementation.
This is clearly shown in Table II, which reports the errors of
several low-rank Tucker decomposition with both SVD and
QRP implementations, respectively.

Given a matrix A ∈ Rm×n, the QRP get an orthogonal
matrix Q ∈ Rm×n and an upper-triangular matrix R ∈ Rn×n:

AP = QR, (14)

with P being a permutation matrix. The P is chosen so that
the diagonal elements of R is non-increasing:

| r11 |≥| r22 |≥ · · · ≥| rnn | . (15)

A QRP costs about 2mn2 − 2n3/3 flops, and an SVD costs
about 2mn2 + 11n3 flops, where m ≥ n. In the sparse
Tucker factorization of a tensor X ∈ RI1×I2×···×IN , A is
Y(n), the mode-n unfolding of the tensor Y obtained in (9).
Consequently, m = In, n =

∏
k 6=n

Rn, and the computational

saving is huge when the tensor order N or multilinear rank
parameters (R1, R2, · · · , RN ) are large. In some particular
cases, we may end up with a fat rectangular matrix, Y(n)

(n > m). In this case, we can perform QRP on a square
matrix, Y(n)Y

T
(n).

QRP Implementation. The QRP in our implementation is
based on the Householder reflection. This method computes
the orthogonal matrix Q as the product of multiple House-
holder reflection matrices:

Q = H1H2 . . .Hm−2Hm−1. (16)

The j-th reflection matrix, Hj , is defined as:

Hj = I− 2vjv
T
j = I− 2

uju
T
j

uTj uj
, (17)

where uj is an unit vector and uj =
vj

‖vj‖ . Vector vj can be
chosen based the jth column of A, aj :

vj = aj + sign(ajj) ‖an‖ e1. (18)
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TABLE III
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE TTM TASK.

Tensor Size Matrix Size CPU FPGA
Run-Time Energy Run-Time Energy

32× 32× 32 32× 32 0.493 ms 22.19 mJ 0.148 ms 0.4212 mJ
32× 32× 64 32× 64 0.596 ms 26.82 mJ 0.281 ms 0.8000 mJ
32× 32× 128 32× 128 1.165 ms 52.43 mJ 0.546 ms 1.556 mJ
32× 32× 256 32× 256 2.021 ms 90.95 mJ 1.077 ms 3.067 mJ

TABLE IV
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE KRONECKER PRODUCT TASK.

Size of xj Size of xk
CPU FPGA

Run-Time Energy Run-Time Energy
1× 32 1× 32 9.655 µs 0.4345 mJ 0.578 µs 2.111 µJ
1× 64 1× 64 14.72 µs 0.6624 mJ 2.301 µs 8.403 µJ
1× 128 1× 128 24.87 µs 1.119 mJ 9.195 µs 33.58 µJ
1× 256 1× 256 48.24 µs 2.171 mJ 38.55 µs 140.7 µJ

During every iteration of QRP, we need to update A by
multiplying it with the Householder matrix H. In order to
generate the permutation matrix, P, we need to compare the
norms of the columns of the updated matrix A at every
iteration, arranging the columns so that the norms of the
columns are in descending order. In this way, we can place
the most weighted entries in the upper left corner of Q,
achieving the similar accuracy to SVD. Since we need to
compare the norms of the columns at each iteration, the QRP
operation is sequential. In other words, the comparison of
the column norms made it very difficult to parallelize the
algorithm on FPGA. Thus, we implement the Householder
QR decomposition [30] with column pivoting on CPU.

IV. RESULTS

This section shows the performance of our hybrid FPGA-
CPU accelerator on both synthetic and real-world datasets.
We first verify the performance of individual FPGA modules
for the TTM and Kronecker product. Afterwards, we verify
the performance of the whole FPGA-CPU sparse Tucker
accelerator and compare it with CPU. We use the FPGA model
XCVU9P-FLGA2577-3-e in our experiment. The maximum
frequency of the FPGA implementation is 890MHz. The
CPU model used is Intel(R) Core(TM) i7-6820HK CPU @
2.70GHz. The size of the RAM is 16GB. The CPU has a
maximum memory bandwith of 34.1 GB/s and a thermal
design power (TDP) of 45W. In the experiments, we prioritize
the computations on CPU to achieve the maximum perfor-
mance, therefore, the energy consumption on CPU can be
estimated as the product of runtime and TDP. We estimate
the energy cost of sparse Tucker decomposition on FPGA on
Xilinx Vivado via Amazon Web Service. The communication
protocol between FPGA and CPU is PCI express, which has
a maximum bandwidth of 10GB/s. Our design can also be
implemented on a low-end FPGA such as Zynq-7100 as well.
On a low-end FPGA, We may decrease the LUT utilization by
adjusting the unroll factor in our TTM module implementation.

A. Performance of Individual FPGA Modules
Firstly we verify the performance of the TTM and

Kronecker-Product modules on some synthetic tensor data, and
summarize their performance below:
• TTM Module: We verify the performance by considering

a set of 3-way tensors Y ∈ RR1×R2×I3 and factor
matrices U ∈ RR3×I3 . The rank of approximate, R1,
R2 and R3, are always very small compared with the
original tensor size for data compression. Thus, we set

R1 = R2 = R3 = 32. The original tensor size, I3 is set to
increase from 32 to 256 as shown in Table III. In the real-
life examples, the original tensor size I3 can definitely
be larger than 256. And the performance of the tensor-
times-matrix (TTM) module won’t perform significantly
worse when the original tensor size becomes extremely
large. Here, we set the maximum of our tensor size to be
256 for experimental purpose only. The FPGA achieves
1.560× to 3.331× speedup than CPU on these tensor-
matrix products. We also compare the energy consump-
tion between FPGA and CPU on the tensor-times-matrix
task. As shown in Table III, the FPGA saves 95.6% to
98.1% of energy compared with CPU.

• Kronecker-Product Module: As shown in Section 4.3,
the Kronecker product used in the sparse Tucker decom-
position deals with two row vectors, xj ∈ R1×Rj and
xk ∈ R1×Rk . Therefore, we compare the performance
of Kronecker products on FPGA and CPU by changing
the rank parameters R1 and R2 from 32 to 256. The
rank of approximation R1 and R2 does not necessarily
need to be equal to each other. We set R1 and R2

to be equal for experimental purpose only. In addition,
the rank of approximation R1, R2 and R3 are usually
very small compared with the original tensor size for
data compression. We increase the rank from 32 to 256
to demonstrate the performance of Kronecker product
module. We estimated the power of the CPU to be
45W. The energy consumption of CPU is estimated by
multiplying the power with the CPU time. The results
are shown in Table IV. The speedup of FPGA over CPU
ranges from 1.251× to 16.704×. As shown in Table IV,
FPGA consumes 93.519% to 99.514% less energy than
CPU on the Kronecker-product tasks.

B. Accelerator’s Performance: Synthetic Datasets
Now we evaluate the whole hybrid FPGA-CPU acceler-

ator on some randomly generated synthetic sparse tensor
data sets. Specifically, we consider a set of 3-way tensors
X ∈ R200×200×200 with different sparsity. We fix the rank
parameters R1=R2=R3=16.

Fig. 6 compares the run-time of our hybrid FPGA-CPU
platform with CPU and densor FPGA accelerator [25]. The
speedup of the hybrid FPGA-CPU accelerator is 27× ∼ 853×
compared with CPU. The speedup of our sparse Tucker ac-
celerator is 1.167× ∼ 126× faster than the FPGA accelerator
designed for dense Tucker decompsition [25]. In the whole
sparse Tucker decomposition algorithm, the Kronecker product
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Fig. 6. Run-time comparison between the proposed hybrid platform, dense
FPGA accelerator and CPU on a set of 200 × 200 × 200 synthetic random
tensors with different sparsity.

module takes the most amount of time. However, this module
is parallelized in our design, and it is significantly sped up
on FPGA as shown in Section IV-A. When the tensor has
more non-zero elements, more Kronecker-product operations
are required, leading to a more significant speedup on FPGA.

C. Real-World Datasets
Finally, we verify our accelerator on four real-world sparse

tensor data sets [34]–[37]. In addition, we compare the per-
formance of our accelerator with sparse Tucker decomposition
on CPU and with the dense FPGA accelerator in [25]. Table V
shows the detailed run-time and energy consumption of differ-
ent methods on these datasets. Table VI further shows the over-
all hardware resource utilization of our method on FPGA. The
FPGA design is compiled for each data set in order to achieve
the maximum efficiency. We use BRAM 18K, BDSP48E, FF
and LUT to denote block random access memory, digital signal
processing elements, flip flops and lookup tables, respectively.

The detailed experiments and results are summarized below:
• Amazon Reviews Datasets [34]. The modes of this three-

way tensor represent users, products, and words, respec-
tively. Each non-zero element in this tensor is the number
of times a word appears in a given review. Additionally,
we extract one portion of the Amazon reviews tensor
of size 20000 × 20000 × 20000 and choose the rank of
approximation as R1 = R2 = R3 = 32. We perform 2
power iterations on all modes. The sizes of the tensors and
matrices in TTM (12) are 32×32×20000 and 32×20000,
respectively. This sparse Tucker factorization involves 9
calls of QR decomposition on a set of 20000×32 matrices
in total to compute the orthogonal factor matrices. Finally,
there are totally 8, 820 calls of Kronecker products, which
depends on the number of non-zero tensor entries. On this
dataset, our hybrid FPGA/CPU platform achieves 1.15×
speedup than CPU with only 13.5% energy consumption.
Our method also achieves 1091× speedup than the dense
Tucker FPGA accelerator [25].

• NELL-2 Datasets [37]. This data set is extracted from
the Never Ending Language Learner knowledge base.
The non-zero entries represent some entity-relation-entity
tuples. We extract one portion of the NELL-2 data set
and obtain a sparse tensor of size 1000 × 1000 × 1000.

In addition, we choose our rank of approximation as
R1 = R2 = R3 = 16. We perform 5 power iterations
on all modes. The sizes of the tensors and matrices in
TTM (12) are 16×16×1000 and 16×1000, respectively.
This sparse Tucker factorization involves 15 calls of QR
decomposition on a set of 1000 × 256 matrices in total
to compute the orthogonal factor matrices. Finally, there
are totally 432, 555 calls of Kronecker products, which
depends on the number of non-zero tensor entries. Our
hybrid FPGA/CPU platform achieves 18× speedup and
94.8% energy saving compared with CPU. Our method is
also 23.6× faster than the dense FPGA accelerator [25].

• Binary 3-Way Tensor for Parallel Matrix Multiplica-
tion [35], [36]. This binary tensor describes the parallel
computation process of matrix multiplications. Given two
matrices A ∈ RM×K and B ∈ RK×N , their product
results in a matrix C ∈ RM×N . Let I1 = MK,
I2 = KN and I3 = MN , then a binary 3-way tensor X
can represent the parallel matrix multiplication. The first
mode corresponds to the first input matrix A with entries
in row-major order; the second mode corresponds to the
input matrix B with entries in row-major order; the third
mode corresponds to the output matrix C with entries
in column-major order. A nonzero entry xi1i2i3 = 1
corresponds to a scalar multiplication within the classical
matrix multiplication algorithm: the i1-th entry of A is
multiplied with the i2-th entry of B, and the result is
accumulated into the i3-th entry of C. The number of
nonzero elements in X is nnz = MKN . We consider
the case M = N = K = 5, which results in a binary
tensor X with size 25 × 25 × 25 and a sparsity of
8 × 10−3. To perform sparse Tucker decomposition on
this 3-way binary tensor, we choose an approximation
rank of R1 = R2 = R3 = 5. We perform three steps
of high-order power iterations on all modes, leading to
3 TTM in (12) and totally 6 calls for QR decomposition
with column pivoting. Finally, the number of Kronecker
products used in this data set is 1, 125. Our meethod
achieves 37× and 1.52× speedup than CPU and than
the dense FPGA accelerator [25], respectively. Compared
with the sparse Tucker decomposition on CPU, our ac-
celerator saves 97.1% energy.

• Retinal Angiogram. Angiogramy is a medical diagnoic-
tic test that uses X-ray to take picture of the blood vessels.
The images, angiogram, are always very sparse. Fig. 6
shows the retinal angiogram of a patient on the left. The
size of the original retinal angiogram is 130× 150 [38].
Tucker factorization can also be employed to compress
2-D data, because a matrix is the special case of a tensor.
Different from SVD compression of a matrix where the
rank is a scalar, a Tucker decomposition allows one to
set two rank parameters. We perform a sparse Tucker
decomposition with rank R = [30, 35] on this image.
We performed 12 steps of high-order power iterations
on all modes, leading to 12 TTM in (12) and totally
24 calls for QR decomposition with column pivoting.
We do not need any Kronecker products since the order
of the tensor is 2. Our proposed method achieves 19×
speedup than CPU and 1.91× speedup than dense FPGA
accelerator [25], and it saves 94.4% energy compared
with the sparse Tucker factorization on CPU. Fig. 7
compares the original retinal angiogram and the resulting
compressed image from our FPGA/CPU hybrid accelera-
tor. The compression ratio is 18.57×. While the image is
highly compressed, the essential features, such as blood
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TABLE V
PERFORMANCE OF SPARSE TUCKER DECOMPOSITION ON REAL-WORLD BENCHMARKS.

Benchmarks Amazon Nell-2 Parallel Matrix Multiplication Retinal Angiogram
Tensor Size 20K × 20K × 20K 1K × 1K × 1K 25× 25× 25 130× 150
Sparsity 1.128× 10−10 2.40× 10−5 8× 10−3 0.18

CPU Run-Time 100.045 s 7.355 s 8.175× 10−2 s 0.1838 s
Energy 4502.03 J 330.98 J 3.68 J 8.27 J

Hybrid FPGA/CPU Run-Time 86.785 s 0.403 s 2.179× 10−3 s 9.898× 10−3 s
(proposed) Energy 3896.08 J 17.10 J 0.1057 J 0.4667 J
Dense FPGA Tucker [25] Run-Time 9.47× 104 s 9.5 s 9.9× 10−3 s 1.18× 10−2 s

TABLE VI
UTILIZATION OF FPGA ON REAL-WORLD BENCHMARKS. IN THE COLUMN OF ”MEMORY” WE LIST THE NUMBER OF BRAM, WHERE EACH BRAM HAS

18× 103 BITS.

Name Expression Instance Memory Multiplexer Register Total Available Utilization (%)

Amazon
BRAM 18K - - 542 - - 542 4320 13

DSP48E - 282 - - - 282 6840 4
FF 0 17257 - - 107670 124927 2364480 5

LUT 406251 17649 - 20587 - 443268 1182240 37

Nell-2
BRAM 18K - - 63 - - 63 4320 1

DSP48E - 470 - - - 470 6840 7
FF 0 29495 - - 54691 84186 2364480 4

LUT 405656 30863 - 13972 - 450491 1182240 38

Parallel
Matrix

Multiplication

BRAM 18K - - 2 - - 2 4320 ∼ 0
DSP48E - 16 - - - 16 6840 ∼ 0

FF 0 759 - - 107 866 2364480 ∼ 0
LUT 49799 778 - 707 - 51284 1182240 4

Retinal
Angiogram

BRAM 18K - - 5 - - 5 4320 ∼ 0
DSP48E - 21 - - - 21 6840 ∼ 0

FF 0 1171 - - 9438 10609 2364480 ∼ 0
LUT 121303 1089 - 2256 - 124648 1182240 11

Fig. 7. Left: the original retinal angiogram. Right: the approximated image by our sparse Tucker decomposition on the FPGA/CPU hybrid platform.

vessels, are still clearly preserved.

V. CONCLUSION

This paper has proposed a hybrid FPGA-CPU accelerator
for sparse Tucker decomposition. On the algorithm level, the
Kronecker products have exploited the data sparsity and has
significantly reduced the computational complexity. The QR
with pivoting method have dramatically reduced the complex-
ity of obtaining the orthogonal mode-n matrix factors. The
FPGA modules for the tensor-times-matrix and for the Kro-
necker products have achieved 93.519% to 99.514% energy
saving compared with CPU on synthetic benchmarks. The
proposed hybrid FPGA-CPU accelerator has been evaluated
with both synthetic and realistic sparse tensor data sets. It has
achieved 27×∼853× speedup over CPU and 1.167×∼126×

speedup over the recently developed dense Tucker FPGA ac-
celerator [25] on the synthetic datasets. Our proposed methods
have also achieved 1.15×∼1091× speedup and over 95%
energy savings on the tested real-world tensor datasets. Our
proposed accelerator have significantly outperformed CPU and
dense Tucker FPGA accelerator [25] when the tensor is very
large and sparse.
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