
1

Efficient Processing of Sparse Tensor
Decomposition via Unified Abstraction and

PE-interactive Architecture
Bangyan Wang, Lei Deng, Member , IEEE , Zheng Qu, Shuangchen Li,

Zheng Zhang, Member , IEEE , Yuan Xie, Fellow , IEEE

F

Abstract—We propose a novel architecture to efficiently execute sparse
tensor decomposition/completion. As the generalization of vectors and
matrices, tensors are widely used to process high-dimensional data. It is
a natural choice for high-dimensional big data analysis problems in areas
such as machine learning and EDA (electronic design automation). Low-
rank decomposition is not only an emerging tensor analysis technique but
also an effective tool to reduce the storage and computation cost of ten-
sors. Many practical tensors are very sparse, motivating recent studies of
sparse tensor decomposition (SpTD). However, conventional general-
purpose processors are inefficient to perform SpTD, mainly due to: i)
diversity of decomposition algorithms; ii) variable sparsity degree and
flexible buffer size requirement; iii) difficulties of fusing multiple execution
kernels to pursue better performance.

To solve the above challenges, we propose a unified abstraction
for SpTD algorithms and design a specialized accelerator. First, we
formulate two types of core kernels (SpLrMM and LrSampling) that serve
as a standard form to fit a broad range of SpTD algorithms. Second,
we design a sparse tensor engine (STE) to efficiently perform SpTD.
STE uses a processing element (PE)-interactive architecture where PEs
can be flexibly grouped together via Network-on-Chip (NoC) to share
the buffer capacity, bandwidth, and compute resources. This design
enables flexible buffer capacity and efficient kernel fusion. By identifying
and satisfying three requirements during task mapping, the deadlock
issue can be successfully eliminated. We evaluate our accelerator with
extensive experiments, and it can achieve an average speedup of 45×
over CPU and 29× over GPU. The impact of tensor sparsity, PE group
size, and memory/compute optimizations are analyzed in detail to give
design insights. To the best of our knowledge, this work demonstrates
the first accelerator for SpTD, and will stimulate more research on high-
performance architecture to facilitate tensor-based data analysis and
scientific computing.

1 INTRODUCTION

Tensor is the generalization of vectors (i.e., 1D data) and matrices
(i.e., 2D data). A d-dimension (termed as mode) tensor of size n1×
n2×·· ·nd can be denoted as X ∈ Rn1×n2×···nd . If most elements in
a tensor are zeros, then the tensor is sparse and can be stored using
only O(nnz) rather than O(nd) memory, where nnz is the number of

The work was partially supported by National Science Foundation (Grant No.
1817037). Corresponding author: Lei Deng. Bangyan Wang, Lei Deng, Zheng
Qu, Shuangchen Li, Zheng Zhang, and Yuan Xie are with the Department of
Electrical and Computer Engineering, University of California, Santa Barbara,
CA 93106, USA (email: {bangyan, leideng, zhengqu, shuangchenli, zhengzhang,
yuanxie}@ucsb.edu).

non-zeros. Today, sparse tensors have been widely used to represent
real-world data. For example, Amazon reviews can be represented
as a 3-mode User-Product-Review sparse tensor; publications make
up a 4-mode Author-Title-Journal/Conference-Year sparse tensor;
and any incomplete scientific simulation sweeping over d variables
forms a d-mode sparse tensor. Despite the superior expressive
power of tensors, the traditional methods based on vectors and
matrices are not suited for tensors due to the extra dimensions.

Tensor Decomposition:
Given , find , , such that

Tensor Network

Tensor Contraction: Compute

74 13 24 30

59 76 65 31

6 97 68 69

32 30 33 16

95 64 61 43

71 97 32 25

12 68 91 99

24 44 56 43

7 100 33 93

1 37 12 100

22 48 48 90

64 24 83 32

25 82 28 36

11 97 10 36

14 91 5 23

73 57 29 61

:3-mode tensor

2

1

Fig. 1: Tensor contraction and tensor decomposition.

One attractive solution is the sparse tensor decomposition
(SpTD). Given a sparse input tensor, usually, an SpTD algorithm
can produce a tensor network to approximate the original tensor
with much fewer variables, as illustrated in Figure 1. Previous work
have already observed that the key data patterns can be extracted
by SpTD algorithms, making them very useful in big data analysis,
such as social networks analysis [1], [2], [3], discussion tracking
[4], [5], Internet traffic analysis for cybersecurity [6], [7], [8], [9],
and healthcare [10], [11], [12]. Another important application of
SpTD is for the completion of missing data: we can regard the
majority of zero entries in a tensor as missing data, and then the
tensor network obtained by SpTD can serve as the trained model
to predict the missing values [13], [14], [15], [7], [8], [9], [12].
Furthermore, SpTD can significantly compress the data volume
and save the computational cost [16], [17], [18]. Despite the wide
application scope, the efficient processing of SpTD is not an easy
task due to the following difficulties.

Algorithm Diversity. There are many popular methods of
tensor decomposition [19], including (but not limited to) CP
[20], Tucker [21], tensor train (TT) [22], and hierarchical Tucker
(HT) [23] decomposition. Moreover, there are different forms to
formulate and solve the basic optimization problem in SpTD,
including tensor network structure, loss function, optimization

2

…… ……

Fig. 2: Different tensor network structures: CP, Tucker, TT (tensor train), and HT (hierarchical Tucker), from left to right.

method, constraint condition, and so forth. Facing such diverse
algorithms, quite different execution kernels are required and it
is difficult to simultaneously achieve high flexibility and high
performance.

Sparsity Variance. In an SpTD algorithm, most execution
time is spent on data access with irregular indices. The opportunity
of data reuse depends on the buffer capacity and tensor density.
Sparser tensors need larger buffer capacity. In real-world cases, the
density of a tensor varies in a wide range (e.g. 10−9 ∼ 10−1 in the
case of 3-mode tensors), while both the local and global buffer
size are fixed in conventional architecture. As the sparsity rises, the
utilization of the private local buffer gradually decreases. This also
increases the requirement for data movement bandwidth if most
accesses fall into the shared global buffer or even off-chip memory.

Kernel Fusion Hardness. Fussing multiple execution kernels
(following, we simply call it ‘kernel’) into one kernel is a
promising solution to reduce off-chip memory accesses and to
eliminate redundant operations. However, executing fused kernel in
parallel is hard on traditional architectures, because fussing kernels
complicates the write-conflict problem.

These challenges motivate us to develop a top-down solution for
the efficient processing of SpTD. On the algorithm side, we propose
a unified abstraction via two general sparse tensor kernels to support
a broad range of SpTD algorithms. On the architecture side, we
design a specialized architecture, sparse tensor engine (STE), to
efficiently execute SpTD. STE allows processing elements (PEs)
to form tightly collaborated groups to share buffer, bandwidth and
compute resources. In this way, we provide a flexible buffer capacity
to address the sparsity variance issue, to share the bandwidth of
each PE, and to avoid the write conflict. Our contributions in this
work are summarized as follows:

• We propose a unified abstraction with two general sparse tensor
kernels to describe various SpTD algorithms.

• We design an STE to accelerate SpTD. Using a lightweight but
effective PE-interactive design, STE satisfies the flexible buffer
size requirement and solves the write-conflict problem to enable
kernel fusion.

• We conduct extensive experimental evaluations. STE shows an
average speedup of 45× over CPU and 29× over GPU. We
further analyze the impact of tensor sparsity, PE group size, and
memory/compute optimizations in detail.

2 BRIEF BACKGROUND

Tensor network is a graph used to represent the multiplication of
multiple tensors, which reflects the format of tensor decomposition.
Each node in a tensor network denotes a tensor, while the

edges connecting to this node represent the tensor’s modes (i.e.
dimensions). For example, a node representing a vector (i.e. 1D
tensor) just has exactly one edge, and a node representing a matrix
(i.e. 2D tensor) has two edges, etc. If an edge connects two (or
more) tensors (e.g. red lines in Figure 1), it means that the two
tensors will be multiplied and summed up along this mode. But
if an edge of a tensor does not connect to any other tensor, then
this dimension will be preserved. Finally, a tensor is obtained after
such multiplication of the entire tensor network. Taking Figure 1
as an example, factor tensors A, B, and C form a tensor network;
indices i, j, and k are preserved in TABC while r is eliminated by
summation, following

TABC(i, j,k) =
R

∑
r=1

A(i,r)B(j,r)C(k,r). (1)

In practice, a tensor network can have different structures
as shown in Figure 2. The above procedure of computing the
final tensor (i.e. TABC) for a given tensor network is called tensor
contraction. The inverse operation of tensor contraction is called
tensor decomposition, i.e. finding an appropriate tensor network
so that the contraction result can approximate a given tensor. We
focus on tensor decomposition in this work. To avoid confusion, in
the rest sections, we call the original tensor to be approximated as
an input tensor (which is sparse in the context of SpTD), while
the tensors in the tensor network as factor tensors. We regard
a tensor/matrix as low-rank if it is the contraction result of a
tensor network. An easy way to get a sense of SpTD without
knowing too much background is to look at an SpTD example
in its simplest possible form. For instance, the following is the
tensor decomposition problem corresponding to the tensor network
illustrated in Figure 1:

argmin
A,B,C

∑
i, j,k

(
Xi, j,k−

R

∑
r=1

A(i,r)B(j,r)C(k,r)

)2

. (2)

3 CHALLENGE AND MOTIVATION

As mentioned in Section 1, processing SpTD algorithms on
conventional general-purpose architectures is inefficient. In this
section, we provide a more detailed analysis of the challenges that
motivate our solution.

3.1 Limited Algorithm Flexibility

An important step to accelerate a domain-specific application is
to summarize common computation patterns and extract reusable
kernels. However, it is challenging in the context of SpTD because

3

of its algorithm diversity. In general, an SpTD algorithm can be
written as the following form of optimization problem:

argmin
f actor tensors

∑
i, j,k∈Ω

E(Xi, j,k, Ti, j,k),

Ti, j,k = Contract(f actor tensors)i, j,k

s.t. additional constraints

(3)

where T = Contract(f actor tensors) computes the predicted
tensor by contracting the tensor network, and E computes the
approximation error between the predicted T and the input tensor
X . It is clear that SpTD algorithms can have 1) different tensor
network structures (reflected by “Contract”), 2) different loss
functions to define the approximation error (i.e. E), 3) different
constraint conditions, and 4) sometimes different optimization
methods to find the solution. Therefore, the kernels required by
SpTD algorithms can have huge diversity, as shown in the left side
of Figure 3.

SpMTTKRP

SpTTMc

SpLrMM

LrSamplingTensor Network

App. Error

Opti. Method

Fig. 3: Algorithm diversity of SpTD (left) and two proposed core
kernels to cover most algorithms (right).

Although the existing BLAS library covers part of the required
operations of SpTD (such as matrix multiplication and matrix
inversion), they cannot handle sparse tensors. To address this issue,
some specialized kernels to accelerate the processing of sparse
tensors on general processors or distributed platforms are developed,
such as SpMTTKRP kernel [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37] and SpTTMc kernel [24], [26],
[38], [35], [36], [39], [40], [41]. However, both SpMTTKRP and
SpTTMc are restricted to specific SpTD algorithms: SpMTTKRP
is mainly used for CP decomposition with square loss; SpTTMc
is for Tucker decomposition using HOSVD or HOOI method. In
short, they are not general enough.

Requirements: To avoid such a case-by-case study and ac-
celerate the SpTD study in a more general manner, we need to
find a unified abstraction for kernels that are required by various
algorithms.

3.2 Variable Buffer Size Requirement and Insufficient
Data Movement Bandwidth
There is a very unique property about the data access pattern in
SpTD algorithms. That is, when processing any sparse entry of X
(e.g. Xi jk), the data access is restricted to a very small portion of
factor tensors (i.e. A(i, :), B(j, :), C(k, :)) determined by the indices
(i.e. i, j, k). If two sparse entries Xi jk and Xi′ j′k′ have part of
identical indices, some accesses of factor tensors can be reused. For
instance, the accessed data A(i, :) can be reused when requesting
A(i′, :) if we have i = i′. However, the indices of consecutive sparse
entries are unpredictable if without careful pre-processing, due to
the high randomness. This lack of locality impedes the exploitation
of potential data reuse.

Tilling box size

Non-zero sparse
entries ()

Required Buffer
Size

Data Reuse Rate

Fig. 4: The data reuse analysis in SpTD.

To maximize the data reuse between sparse entries, the sparse
entries close to each other should be processed together, as shown
in Figure 4. For example, we can process the sparse entries in a
tiling box with each dimension being b. Assuming the density of
sparse tensor X is ρ , then, totally about ρbd sparse entries within
this tilling box need to load only O(b) instead of O(ρbd) amount
of data due to inter-sparse entry data reuse. The only constraint is
that buffer size Cbu f f er should be big enough to hold the O(b)-size
factor tensor data, i.e. b ∝ Cbu f f er. With this knowledge, data reuse
ratio λ can be speculated as

λ ∝
ρO(bd)

Cbu f f er
∝ ρO(bd−1) ∝ ρCd−1

bu f f er. (4)

This property leads to a challenge: when the tensor density
ρ decreases (i.e. sparsity increases), the data reuse rate drops
proportionally. Unfortunately, ρ in real-world tensors usually has a
wide range, such as from 10−1 to 10−9, causing an unbearably low
data reuse rate. However, this property also brings an opportunity:
if the buffer capacity increases by a factor of γ , the data reuse
rate increases by a factor of γd−1, which can mitigate the negative
effect of the decrease of ρ .

CPU GPU

Local
Buffer

N 28 cores 80 SMs

C 1056 KB 384 KB

B 140~360 GB/s 172~2,457 GB/s

L 4~13 cycles 28 cycles

Global
Buffer

C 38.5 MB 6 MB

B 40.5 GB/s 27 GB/s

L 50~70 cycles 193 cycles

Off-Chip
Mem.

B 5 GB/s 11.25 GB/s

Fig. 5: Variable buffer size requirement affected by the tensor
density ρ . Here we take the CP decomposition with R = 8 as
an example. The table lists the number of cores/SMs (N), local
memory size per core/SM or memory size of global buffer (C),
buffer bandwidth (B), and local buffer hit latency (L). The global
buffer bandwidth values are evenly distributed onto each core/SM.

The unique property of SpTD in Equation (4) causes a variable
buffer size requirement if we want to achieve a satisfactory data
reuse rate as the input tensor sparsity varies, which is illustrated
in Figure 5. Whereas, traditional general-purpose architectures
that feature “fixed small local buffer & large global buffer” look
embarrassing in this situation. Specifically, the required buffer size
often exceeds the size of local buffers, while the global buffer,
although larger, provides much lower bandwidth than the local
buffers. Besides, the local buffers cannot be borrowed to become

4

a part of the global buffer to provide a bigger capacity when
necessary.

Requirements: Above problems post two requirements in the
architecture design: i) it should allow a flexible buffer configuration
to fit different tensor sparsity; ii) it should overcome the limitation
of on-chip interconnection bandwidth.

3.3 Difficult Kernel Fusion
When we have multiple kernels to run, we often have a chance to
achieve higher efficiency by fusing them into one. There are two
benefits: i) part of data for multiple kernels can be loaded only once;
ii) part of the computation result can be shared by different kernels.
Nevertheless, the kernel fusion is difficult for parallel execution
due to the conflict of memory writes from different kernels: we first
notice that after the kernel fusion (as in Algorithm 3), each sparse
entry in the input tensor (e.g. Xi jk) needs to add some results onto
multiple objects such as Out1(i, :), Out2(j, :), and Out3(k, :). When
processing multiple sparse entries in parallel, such operations may
lead to write conflict when any one of the three indices i, j or k
overlap between any two sparse entries.

There are several software-level attempts to avoid write conflict
in the context of kernel fusion, but none of them can work well in
our context. In particular, conflict-free partition [33], [32] divides
the sparse entries into different threads (or PEs) such that their
indices (e.g. i, j, k, etc.) are simultaneously disjoint. Whereas, it
will incur not only over-partition of the workload (i.e. Pd partitions
for P threads) but also complicated scheduling and synchronization.
Even worse, any conflict-free partition method will inevitably
prevent buffer sharing between threads, which is vital for SpTD
because a large buffer capacity is needed in the case of high
sparsity.

Requirements: Due to the difficulty in solving the write
conflict problem at the software level, we need to address it from
the architecture level, i.e. it should be able to support “atomic-add”-
like operations in large volume.

4 ALGORITHM ABSTRACTION

To address the algorithm diversity problem, we first propose two
general core kernels which are parameterizable with respect to the
tensor network structure, termed as SpLrMM and LrSampling, and
then we show that they are enough to cover a variety of SpTD
algorithms.

4.1 SpLrMM Kernel
SpLrMM (sparse-matrix low-rank-matrix multiplication). This
kernel is a special case of matrix-matrix multiplication, while
one of the two operand matrices is sparse and the other is low-rank.
It can be simply denoted as

Out =W T X (5)

where X is sparse and W is low-rank. The low-rank matrix W can
be expressed by a tensor network. An example is given in Figure
6(a), where W has three internal factor tensors: A, B, and C. By
varying the network structure inside W , different forms of SpLrMM
kernels can be constructed to support different SpTD algorithms.
The prior SpMTTKRP and SpTTMc are just two special instances
of SpLrMM.

Two unique properties of W and X will be exploited to perform
SpLrMM efficiently, i.e. the low-rankness of W and the sparsity of

(a)
(b)

For each
sparse

entry in

Fig. 6: An example of performing SpLrMM.

X . The former property allows us to compute the result from the
tensor network representation without explicitly constructing W ;
the latter property allows us to only process the non-zero entries.
Let’s continue to use the example in Figure 6(a) to show how to
exploit these properties. Each entry in the sparse matrix X can
be processed separately, causing a partial sum to be added into
the corresponding column of Out. It is illustrated in Figure 6(b),
equivalent to

Out(:,i)← Out(:,i)+W T
(:,(j,k,l))X((j,k,l),i). (6)

Algorithm 1: Pseudocode for SpLrMM

for No. ∈ {1,2, ...,nnz} do
x← Value(No.), i, j,k, l← Index(No.)// x =Xi, j,k,l
a← A(j, :), b← B(k, :, :), c←C(l, :)
t1 = ax (vector-scalar), t2 = t1b (vector-matrix)
t3 = cT t2 (vector outer product)
Out(:, i)← Out(:, i)+ reshape(t3)

end

For sparse entry Xi, j,k,l , the column W T
(:,(j,k,l)) only relies on

A(j, :), B(k, :, :), and C(l, :), and the result is accumulated onto
Out(:, i). In essence, all data accesses depend exactly on the indices
of sparse entries. The pseudo code for SpLrMM is provided in
Algorithm 1, corresponding to Figure 6.

Notice that we cannot perform SpLrMM using common matrix-
matrix multiplication methods despite being mathematically correct,
because W and X have dimension exponentially proportional to the
number of factor tensors. Explicitly constructing them for direct
matrix-matrix multiplication can easily consume a storage space
larger than TBs or even PBs and cause a huge amount of wasted
computation. Making use of the sparsity and low-rankness as we
did above avoids such a problem.

4.2 LrSampling Kernel

LrSampling (sampling elements from a low-rank tensor according
to sparse entries). This kernel is to sample values (e.g. Ti, j,l) from
a low-rank tensor T (implicitly represented by a tensor network)
given a set of sparse entries (∀(i, j,k) ∈Ω). Similar to SpLrMM,
LrSampling is also parameterizable with respect to the tensor
network structure. LrSampling can be formulated as

Out = T ◦Ω (7)

where ◦ denotes element-wise product and Ω has binary values to
indicate the sampling locations. The pseudocode for LrSampling
is given in Algorithm 2. Again we see the same access pattern
depending on the indices of sparse entries.

5

TABLE 1: Mapping SpTD algorithms onto the proposed SpLrMM and LrSampling kernels. The colored data are low-rank tensors and
sparse tensors, respectively.

Loss Function Iterative Method Update Formula Derivation Kernel Mapping

ALS
H← (λ I +W TW)−1W T X
Key Components: W TW , W T X

SpLrMM: W T X
Tensor Contraction: W TW

Square Loss: ‖X−WH‖2 Gradient Descent
δH←W T X− (W TW)H
Key Components: W TW , W T X

SpLrMM: W T X
Tensor Contraction: W TW

Multiplicative Update
Hai← Hai[(W T X)ai/(W TWH)ai]

Key Components: W TW , W T X
SpLrMM: W T X
Tensor Contraction: W TW

ALS

H[:, i]← (λ I +W ′i
TW ′i)

−1W ′i
T X [:, i]

where W ′i = diag(ΩX [:, i])W
Key Components (raw): W ′i

TW ′i , W ′i
T X [:, i]

Key Components (simplified & batched):
(W T �W T)ΩX , W T X

SpLrMM: (W T �W T)ΩX

SpLrMM: W T X

Masked Square Loss: ‖ΩX ◦ (X−WH)‖2 Gradient Descent

δH[:, i]←W ′i
T (X [:, i]−W ′i H[:, i])

where W ′i = diag(ΩX [:, i])W
Key Components:
R1← X−ΩX ◦ (WH), R2←W T R1

LrSampling: R1← X−ΩX ◦ (WH)

SpLrMM: R2←W T R1

Multiplicative Update

Hai← Hai[(W ′i
T X [:, i])a/(W ′i

TW ′i H[:, i])a]

Key Components (raw): W ′i
TW ′i ,W ′i

T X [:, i]
Key Components (simplified & batched):
(W T �W T)ΩX , W T X

SpLrMM: (W T �W T)ΩX

SpLrMM: W T X

KL Divergence: DKL(X‖WH) Multiplicative Update

Haµ ← Haµ [(∑i Wia
Xiµ

(WH)iµ
)/(∑i Wia)]

Decompose into two steps:
Step 1: Siµ ← [Xiµ/(WH)iµ]

Step 2: Haµ ← Haµ [(W T S)aµ/(W T~1)a]

Key Components: [Xiµ/(WH)iµ], W T S, W T~1

LrSampling: [X iµ/(WH)iµ]

SpLrMM: W T S
Tensor Contraction: W T~1

Algorithm 2: Pseudocode for LrSampling

for No. ∈ {1,2, ...,nnz} do
i, j,k← Index(No.)
a← A(i, :), b← B(j, :, :), c←C(k, :)
t1 = ab (vector-matrix), t2 = t1cT (vector inner product)
Out(No.)← t2 // Out(i, j,k)← t2

end

4.3 Connection to SpDT Algorithms
To show that the proposed SpLrMM and LrSampling kernels
are able to cover a variety of SpTD algorithms, we first
rewrite the objective function of an SpTD algorithm into an
equivalent matrix form. For example, the original objective
function such as argminA,B,C ‖X −TA,B,C‖ can be modified as
argminA,B,C ‖X−WB,CHA‖, where HA and X are matrices reshaped
from A and X , and the matrix WB,C is obtained by removing the
A’s component from the original tensor network TA,B,C. After
this transformation, we can obtain an update formula for HA
(and equivalently, for A) from the matrix form. Such updates
can often be implemented using SpLrMM and LrSampling kernels,
as exemplified in Table 1.

The same procedure is also applicable to update other factor
tensors such as B and C. In this way, the tensor factors are updated
repeatedly until convergence. In each update, there are usually
multiple SpLrMM/LrSmpling kernels and each of them is a loop
iterating over all sparse entries (See Algorithm 1, 2). We can fuse
those separate kernels (or loops) into one to reduce redundant
computation and data access, as shown in Algorithm 3. With the
above descriptions, it can be seen that our proposed kernels are
general enough to support a wide range of SpTD algorithms and
are in the standard forms accepted by our architecture.

5 STE ARCHITECTURE DESIGN

We introduce an efficient architecture, STE, to run the mentioned
core kernels in this section. Figure 7 depicts the overview of our

Algorithm 3: A pseudocode example for the kernel fusion

for No. ∈ {1,2, ...,nnz} do
//Refer to Algorithm 1 and Algorithm 2 for the data, operation,

result required by SpLrMM and LrSampling, respectively
Load:
x← Value(No.), i, j,k, l← Index(No.)// x =Xi, j,k,l
Load factor tensor data for LrSampling
Load factor tensor data for SpLrMM
Load factor tensor data for · · ·
Compute:
Perform operations of LrSampling
Perform operations of SpLrMM
Perform operations of · · ·
Update:
Update the result of LrSampling
Update the result of SpLrMM
Update the result of · · ·

end

design. There are 16×16 PEs in total, a scheduler, and a memory
controller. Multiple PEs can interact with each other through a
Network-on-Chip (NoC) infrastructure to form a PE group for task
processing. We will introduce the design of major components,
describe the task execution flow, and explain how to deploy SpTD
algorithms.

5.1 Design Philosophy
First, let’s focus on the challenge of the requirement for flexible
buffer size. Each PE has a fixed 128KB private buffer. When
the demanded buffer size exceeds 128KB, we group a flexible
number of PEs into a tightly collaborated group to share their
buffer capacity so that their total capacity is PENum×128KB where
PENum is the PE group size. Whereas, simply grouping PEs cannot
solve the problem completely. Accessing data from other PEs
through a longer-latency and lower-bandwidth NoC is still far
slower than accessing a PE’s local buffer. To address this issue,
we propose to further share the compute resources of PEs within
a group. Specifically, we actively transfer tasks from one PE to

6

Guest

Task Receive FIFOs

Native

Guest

Task Send FIFOs

Native

Task Injection Unit

Compute Unit

Sparse Entry Loader

Slot id Pool

Scratchpad Mem

Factor Tensor Data
Replacement Unit

Temp Working Space

Factor Tensor Data

Factor Tensor Data

Perm Working Space NoC Interface

PE

Ping-Pong

Configuration Unit
Kernel-wise Configs

Tilling-box-wise Configs

High-Level States

Vector Unit

MAC x 8
& Add Tree

From Guest/Native Task Receive FIFO

Loop
Ctrl.

To Guest/Native Task Send FIFO

Addr
(Scratchpad

Mem)

Read

Write

Compute Unit

Scalar
Unit

Slot id
Pool

PE PE PE PE……

PE PE PE PE……

PE PE PE PE……

PE PE PE PE……

PE

…
…

…
…

…
…

Scheduler

M
em

o
ry

 C
o

n
tr

o
lle

r

A PE Group Other PE Groups…

Fig. 7: Overview of the STE architecture design.

another that has the expected data. The solution of task traveling
saves a lot of traffic on the NoC. For example, when performing a
matrix-vector multiplication, if the matrix is in one PE while the
vector is in another, transferring the task to the PE with the matrix
needs only a vector movement. Eventually, the computation can
enjoy both the high bandwidth of intra-PE private buffers and the
large capacity of the inter-PE group.

Second, let’s look at the challenge of write conflicts in kernel
fusion, which requires the support of atomic-add-like operations
with high throughput. With the PE-interactive design, it is now
solved for free. The local buffer is still private to each PE and other
PEs can only modify it by transferring the task to the current PE.
In this way, write conflicts will not happen.

At last, several additional problems must be solved to make
above idea practical. For example, we need to minimize the com-
munication/control overhead of such task travel design, properly
allocate the working space for tasks given a limited on-chip memory
space, avoid idleness and deadlock when PEs transfer tasks to each
other. All these problems are solved by our STE, the architectural
details of which are provided as follows.

5.2 Processing Element Specialization

A PE contains a configuration unit, task receive/send FIFOs, a task
injection unit, a factor data replacement unit, a scratchpad memory,
a compute unit, and an NoC interface, as illustrated in the right
side of Figure 7.

Terminology definitions. A task will traverse multiple PEs
through the NoC. The PE where it was created is the home PE and
all other PEs are remote PEs. When the task is in its home PE, it is
viewed as a native task, otherwise, it is treated as a guest task. Note
that a remote PE for one task might be the home PE for another
task in the meantime.

Configuration Unit. The configuration unit maintains the PE’s
high-level states and exposes the configuration registers and the
instruction buffer to the scheduler.

Task FIFOs. There are two pairs of task receive/send FIFOs:
one for native tasks and the other for guest tasks. The arriving task
will be put into one of the two task receive FIFOs depending on
its status (being native or guest). After processed by the compute
unit, the task will be put into the corresponding task send FIFO
(native or guest). The separation of native FIFOs and guest FIFOs is
intended for deadlock avoidance when congestion happens, which
will be discussed later. Task FIFOs enable PE to communicate with
other PEs using messages.

Task Injection Unit. This unit loads sparse entries in COO
(coordinate list) format from off-chip memory, creates one task for

each sparse entry, and injects the task into the native task receive
FIFO. The task injection unit should not keep on injecting new
tasks without considering whether old tasks have been finished,
in other words, it should be self-throttling. This is realized by
designing a slot id pool and bounding the maximum number of
on-the-fly tasks launched by each PE. Each time a task is injected,
a slot id will be granted to the task, which will be returned to the
injection unit when the task is destroyed (this implies the last stage
of a task must be processed in its home PE). The initially available
number of slot ids in the pool is SlotMax (i.e. the mentioned bound)
and no new task is allowed to be injected when the pool is empty.

Scratchpad Memory. The scratchpad memory in each PE is
responsible for storing a part of factor tensor data and also storing
the intermediate results as a working space. The working space has
two types: temporary (Temp) one and permanent (Perm) one. The
Temp working space can be used by both native and guest tasks.
When the task leaves this PE, the Temp working space is available
to the following tasks and can be overwritten. In contrast, the Perm
working space is only visible to native tasks of the current PE,
which requires the slot id for data access. This is the reason that
it is divided into SlotMax separate chunks. Every on-the-fly task
has one such safe box in the Perm working space of its home PE
to store data even if the task has left its home PE. The data will
safely remain until the task is finished and the slot id is returned to
the task injection unit. With the Perm working space, the carried
intermediate data in the NoC can be reduced since only the required
data will be transferred while the rest remain in the home PE.

Factor Tensor Data Replacement Unit. Factor tensor data
replacement unit prefetches factor tensor data of next tiling box
into the ping-pong buffer. It actually helps decouple the off-chip
access and on-chip computation. Note that each PE in a group only
loads its own part of factor tensor data.

Compute Unit. This unit supports five types of instructions:
i) taking a message from task receive FIFOs and jumping to
the correct PC (program counter); ii) figuring out which PE
has the expected factor tensor data (e.g. for A(i, :), which is
mod(i,PENUM); iii) performing arithmetic operations; iv) creating
a message and putting it into task send FIFOs; v) returning the slot
id to the task injection unit when the task is finished.

The arithmetic operations include scalar ones (e.g. +, −, ×,
÷) and tensor ones (e.g. inner product (·), outer product (⊗),
element-wise product (◦), matrix-vector product), which are able
to support the operations required by SpLrMM (Algorithm 1) and
LrSampling (Algorithm 2). We therefore use two techniques to
improve the throughput. First, these operations need only one
instruction to do all jobs rather than using software loops. The
instruction will be expanded by hardware to generate a sequence

7

of micro operations, which avoids potential instruction overhead.
Second, these operations use an 8-lane vector unit to exploit the
data-level parallelism.

Dest Src PacLen Cat Payload

Dest Src PacLen Cat T_Payloadhome PE id slot id PC

(a)

(b)

Fig. 8: Packet format of task messages: (a) general format; (b)
specific format for inter-PE communication. The black segments
will be processed by the NoC interface.

NoC Interface. The NoC interface receives/sends packets
from/to other PEs. The packet format is shown in Figure 8(a). The
fields are destination (Dest), source (Src), packet length (PacLen),
traffic category (Cat), and Payload. The packets between PE↔PE,
PE↔scheduler, PE↔memory controller are classified into different
traffic categories.

The packet format for the PE↔PE communication is given in
Figure 8(b). The additional head for Payload is very lightweight:
home PE id (8 bits), slot id (8 bits), and PC (16 bits). PC indicates
the progress of this task. T Payload carries the required data of
the destination PE, in which the length and the content vary across
processing stages.

5.3 The Lifetime of A Task

From the two general core kernels in Algorithm 1 and 2, we
can see that for each sparse entry, a few operations need to
execute as listed in the loop body. We create one task for every
sparse entry, so totally nnz tasks will be created for each kernel
execution. Then, we explain the lifetime of a task through a
simplified example following Algorithm 1. Assume that the sparse
entry is X4,7,2,5 = 3.5 and the operations needed for this sparse
entry are 1) multiplying X4,7,2,5 with vector A(4, :) to get vector
t1; 2) multiplying vector t1 with matrix B(7, :, :) to get vector
t2; 3) compute outer product of the vector t2 and vector C(2, :)
to get matrix t3; 4) reshaping and accumulating matrix t3 onto
Out(:,5). Notice that A(4, :), B(7, :, :), C(2, :), and Out(:,5) may
be in different PEs within a group. For instance, we assume A(4, :)
is in the PE whose id = mod(4,PENum); B(7, :, :), C(2, :), and
Out(:,5) are similar. Therefore, the task needs to travel several PEs
to finish the execution.

In the beginning, one PE (can be any PE in the group, e.g. PE0)
loads the integer indices 4,7,2,5 and its value 3.5, and then creates
a task. PE0 now becomes the home PE of the created task. Task
Injection Unit grants a slot id (e.g. 3) to this task and puts it into
Native Task Receive FIFO as a message. The format is shown in
Figure 8, and the initial value of PC is 0. Compute Unit iteratively
pulls tasks from Task Receive FIFOs to execute. Once a task is
pulled and executed, it starts at the instruction specified by PC
in the message (the list of instructions is the same in all PEs).
Instructions are executed until a “send task” instruction is met, and
then a message in Task Send FIFOs is created to send this task
away and tell Compute Unit to start working on the next task in
Task Receive FIFOs. In the above example, the task will start at
PE0, and then it will go through four steps: 1) moving to the PE
that has A(4, :), performing operations there and moving back to
PE0; 2) moving to the PE that has B(7, :, :)), performing operations
there and moving back to PE0; similarly, 3) and 4) for C(2, :) and
Out(:,5), respectively. Finally, when it moves back to PE0, the task
returns the slot id to Task Injection Unit and ends.

5.4 Deadlock Avoidance
Congestion may happen if some PEs become hot spots. If their
receive FIFOs overflow, the traffic jam will diffuse into the NoC
and further blocks other traffics. We notice that, although a PE can
have maximally (PENum−1)×SlotMax guest tasks coming at the
same time in the worst case, it has no more than 1×SlotMax native
tasks at anytime. This inspires us to satisfy additional requirements
to avoid deadlock: i) Tasks must alternately visit home PE and
remote PE, i.e. home PE→remote PE→home PE→remote PE→...;
ii) The native task receive FIFOs should never overflow by setting
the FIFO capacity larger than Size(packet)× SlotMax; iii) The
home PE to the remote PE (going out) traffic should never block
the path from the remote PE to the home PE (coming back) traffic,
even if the former itself is blocked, which can be achieved by
allocating a set of virtual channels in the NoC to the latter path.

Guest Native

Guest Native

Compute Unit

Home PE

Guest Native

Guest Native

Compute Unit

Remote PE

Guest Native

Guest Native

Compute Unit

Home PE

Guest Native

Guest Native

Compute Unit

Remote PE

…… ……

The Trajectory Of A Task

Fig. 9: The task trajectory across PEs.

If all the above requirements are satisfied, the deadlock will
not happen. As Figure 9 shows, since the native task receive FIFO
will never overflow neither block on the road, the traffic from the
remote PE to the home PE (green arrows in Figure 9) will not be
permanently blocked. This means that the guest send FIFO can
always send packets and thus reflecting that the compute unit can
continuously process guest tasks, which similarly indicates that the
guest receive FIFO will never be blocked. Therefore, the traffic
from the home PE to the remote PE (blue arrows in Figure 9) is
also smooth. In a nutshell, the deadlock can be avoided.

5.5 Mapping Algorithms onto STE
In this section, we discuss how to map SpTD algorithms onto
STE, which includes algorithm compilation, data preprocessing,
and hardware execution, as given in Figure 10.

Data preprocessing Hardware
Execution

Algorithm
Compilation

SpTD
Algorithm

List of kernels:
LrSampling_1(…)
SpLrMM_2(…)
SpLrMM_3(…)
…

List of instructions:
MatrixVectorMul()
SendMessage()
...

Operation in stages:
Stage 1 = {...}
Stage 2 = {...}
Stage 3 = {...}

… Stage …= {...}
3

Standard form:

…

Sparse
Tensor Data

PE group size &
List of tilling boxes

PE PE PE ……

PE PE PE ……

PE PE PE ……

…

PE PE PE

PE

PE

PE

PE ……

PE Group 1 PE Group 2

PE Group 3 PE Group 4………

Dynamic
mapping

Box 35 to
PE group 1

Box 36 to
PE group 2

Box 33 to
PE group 3

2

1

Box 37 to
PE group 4

……

e.g. inside box 35:

Task 1:

Task 2:

… …

31 2

31 2

1 2

3

23

1

Fig. 10: Algorithm mapping flow.

Algorithm Compilation. We start with the SpTD algorithm
by expressing it using SpLrMM and LrSampling kernels. Then,
we fuse these kernels into a standard form as in Algorithm 3.
Next, we group the operations in the standard form into multiple
processing stages, so that a task will execute one stage on one PE.

8

The intermediate results are relayed between stages via the Perm
working space or via the T Payload field of the task. The later
should be minimized to reduce on-chip communication overheads.
To do this, we first assign the factor tensor data access operations
like a← A(i, :) and b← B(j, :, :) into different stages. Then, we
assign the compute operations like t← a∗b to the most correlated
stage that will incur the least data movement. For example, if
Size(a)< Size(b), we will assign t← a∗b to the stage with b←
B(j, :, :) and transfer a over the NoC. After all operations for a
sparse entry are assigned into appropriate stages, we insert the
“send message”-related instructions between every two stages, such
as determining the next PE id and packaging data into the message
payload. Finally, we represent the program as a list of instructions.

Data Preprocessing. The sparse input tensor will be tiled
into multiple boxes of b1×b2×·· ·×bd size, and each tiling box
will be processed in a PE group. The selection of {bi} follows
two principles (refer to Section 3): i) Enlarging the tiling box
to improve the data reuse rate if the tensor density ρ is low; ii)
Without violating the first principle, always keeping the tiling box
as small as possible to reduce the required buffer size (leading to a
smaller PE group with less on-chip traffic). With a tiling box size
given, the PE group size is then determined and the sparse entries
in each tiling box are packed as a list of tasks.

Hardware Execution. The scheduler will dynamically map
tilling boxes onto PE groups. The PE groups run independently,
while the PEs within each group interacts with each other. All PEs
need to load the required factor tensor data into the scratchpad
memory before the computation starts. Fortunately, the load latency
can be hidden using a ping-pong buffer. Then, the PEs can start
working on the sparse entries. Once all sparse entries in a tiling
box are processed, the scheduler switches the PE group to the next
tiling box.

5.6 Minor Optimizations

Relative Indexing. After tensor tiling, the sparse entries just need
to store the relative indices within each tilling box. This results in
reduced index overhead and helps to reduce the off-chip memory
accesses.

Continuous Tiling Box Assignment. The scheduler always
attempts to assign adjacent tiling boxes to the same PE group. In
this way, only one piece of factor tensor data (e.g. A(i, :)) needs to
be replaced, and the rest d−1 pieces can be continuously used (e.g.
B(j, :), C(k, :)). This also reduces the off-chip memory accesses.

Random Permutation. To achieve inter-PE workload balance,
we adopt three extra steps during prepossessing: i) Before tiling,
we randomly permute the indices of each tensor mode; ii) After
tiling, we assign the sparse entries of each tiling box evenly to
intra-group PEs; iii) Finally, the order of assigned sparse entries in
each PE is randomly permuted.

5.7 Advantage Summary

Major Advantages. i) Algorithm Generality: STE can support
a wide range of SpTD algorithms via the unified abstraction. ii)
Flexible Buffer Capacity and High Bandwidth: Our architecture
meets the requirement of variable buffer size by flexibly adjusting
the PE group size based on the actual tensor density ρ . Meanwhile,
thanks to the task transfer, tasks can enjoy the high bandwidth of
local scratchpad memory inside each PE it traverses. iii) Kernel
Fusion Enabled: Our architecture is write-conflict-free because the

Task Created Task Finished

Execution Period on a Single PE
Lifetime of a Task

Time
Temp Working Space
This Task (e.g.)

Perm Working Space

Remote PE (who has)

Home PE (who created task)

Other Remote PEs ……
Remote PE (who has)

……

Fig. 11: The memory trajectory across PEs.

compute transfer allows the operation taking place locally in the
PE that stores the required data.

Other Advantages. i) Latency Insensitivity: First, all the mem-
ory accesses during running are local and there is no performance
loss caused by the stall on non-local memory accesses. This is
because if a task needs to access factor tensor data that are not on
the current PE, the task will migrate itself to another PE which
has the expected data via the NoC (see Figure 11), leaving the
compute unit to the next task to maintain full utilization. The
overall throughput will not be degraded if we can always ensure
that every receive FIFO is not empty and the compute unit is
busy. ii) Lightweight Message: Each message only includes 4B
extra overhead (i.e. home PE id, slot id, and PC) beyond the
effectual payload. Moreover, the Perm working space in the home
PE reduces the length of T Payload because only the data required
by destination PE will be transferred.

6 EVALUATION

6.1 Experimental Setup

System Configuration and Simulation. The performance is
evaluated using two levels of simulation: single PE level and
PE array level. In the single PE level, we implement send/receive
FIFOs and the compute unit using Chisel [42]. With the RTL
simulation, we validate the functional correctness and completeness
of our instructions, and measure their cycle-accurate execution
time. To obtain the overall performance, we modify an NoC
simulator (i.e. BookSim2.0) and simulate the PE array. We add
modules to reproduce the PE’s behaviors including the task
injection unit, task receive/send FIFOs, the compute unit, and
the factor data replacement unit. The compute unit’s behaviors are
simplified to a countdown timer in which the delay is calculated
according to the RTL simulation result of a single PE. The
simulated traffic in BookSim2.0 includes both PE-to-PE and PE-to-
memory communications. To capture more insights, we add extra
performance counters to measure the utilization of the compute
unit, the NoC, and the memory controller.

TABLE 2: System configuration.

PE

PE array size: 16×16
Scratchpad Memory: 128 KB per PE
Task Send/Receive FIFOs: 16 KB per PE
Compute Unit Vector Width: 8
SlotMax: 50

NoC Channel Width: 128 bits
Off-chip Memory Bandwidth: 24∼96 GB/s

TABLE 3: Area and power breakdown at 22nm and 1GHz.

Interconnect Compute Scratchpad Memory Controller Total
Power 26% 29% 42% 3% 62 W
Area 43% 28% 28% 1% 115 mm2

9

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

Op1 Op2 Op3 Alg1 Alg2 Alg3 Op1 Op2 Op3 Alg1 Alg2 Alg3 Op1 Op1(/c) Op2 Op3 Alg1 Alg2 Alg3

CP TT Tucker

Th
ro

u
gh

p
u

t
(G

FL
O

P
s)

1.00E-01

1.00E-03

1.00E-05

1.00E-07

1.00E-09

Fig. 12: STE performance for different algorithms under various input tensor density. Here the PE group size is set to 8×8.

To estimate the area and power, we further use CACTI [43]
to simulate the SRAM, DSENT [44] to simulate the NoC, and
McPAT [45] to simulate the DRAM memory controller. The rest
parts of PE are implemented in RTL and compiled using Synopsis
Design Compiler. For the floating-point unit, we leverage the
implementation of the Berkeley FPU [46]. We use 22nm technology
library in above simulations to make a more fair comparison with
modern CPU/GPU. Table 2 presents the system configuration and
Table 3 shows the power and area breakdown. Please note that the
default off-chip memory bandwidth is 24 GB/s unless otherwise
specified.

TABLE 4: Testing cases for each tensor network structure.

Name Operations or Algorithms Kernels

Op1 W T X SpLrMM

Op2 (W T �W T)Ω SpLrMM

Op3 ΩX ◦ (WH) LrSampling

Alg1 Masked Square Loss (ALS or Multiplicative Update) Fused SpLrMMs

Alg2 Masked Square Loss (Gradient Descent) Fused SpLrMM & LrSampling

Alg3 KL Divergence (Multiplicative Update) Fused SpLrMM & LrSampling

Testing Benchmarks. We totally consider 19 cases to demon-
strate our STE’s wide support for SpTD algorithms. As mentioned
earlier, the algorithm diversity is mainly reflected from three
aspects: i) the network structure; ii) the loss function; iii) the
iterative method. For the first aspect, we consider the most
commonly used structures, i.e. CP, TT, and Tucker; for the last two
aspects, we also consider the widely used ones (see Table 4). Note
that for Tucker, there is an extra variant Op1(/c) for Op1, which
is a modified SpLrMM kernel with its core factor tensor excluded
and is actually equivalent to SpTTMc.

Unless otherwise specified, the sparse tensor data used in our
simulation are randomly generated because we want to sweep
the sparsity spectrum in a regular stride to reveal more insights.
Besides, we also evaluate the performance over CPU/GPU using
some real-world tensor data. Notice that the rank values are set to
16 throughout this section for simplicity.

TABLE 5: Bounding factors and solution suggestions.

Bounding Factor Solution Suggestions
(Comp.) Compute unit Increase the compute resources

(NoC) NoC Decrease PE group size, use compute trans-
fer, or increase NoC channel width

(Mem.1) Load sparse entries
(i.e. (Xi jk, i, j,k)) Increase off-chip memory bandwidth

(Mem.2) Load factor tensor data
(e.g. A(i, :),B(j, :, :))

Increase PE group size, or increase on-chip
memory capacity

6.2 Overall Performance
Figure 12 shows the overall performance in FLOPs for different
SpTD algorithms and different input data density (10−1 ∼ 10−9).

1.0

10.0

100.0

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
1/
c

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

CP TT Tucker

Sp
e
e
d
u
p 1E-1

1E-3

1E-5

1E-7

1E-9

CP TT Tucker

Fig. 13: Speedup over CPU.

1

10

100

1,000

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

O
p
1

O
p
1/
c

O
p
2

O
p
3

A
lg
1

A
lg
2

A
lg
3

CP TT Tucker

Sp
e
e
d
u
p 1E-1

1E-3

1E-5

1E-7

1E-9

CP TT Tucker

Fig. 14: Speedup over GPU.

The overall performance can reach 82 GFLOPs to 3.9 TFLOPs
across a wide range of algorithms and sparsity. We note that
the CP family generally presents lower throughput because they
usually have less computation per sparse entry compared to the TT
and Tucker families. Hence, CP-based algorithms are bounded by
loading sparse entries from off-chip memory rather than performing
computation as in TT-/Tucker-based algorithms.

In fact, we totally identify four types of factors that might bound
the system performance, as listed in Table 5. The performance
can be bounded by the compute unit (Comp.), NoC, and loading
sparse entries (Mem.1) or factor tensor data (Mem.2) from off-
chip memory. Which factor will bound the performance relies
on the selection of algorithm, input tensor sparsity and the
system configurations such as PE group size and off-chip memory
bandwidth.

6.3 Comparison with CPU and GPU

To compare STE with CPU/GPU implementations, we use Taco
[47] to generate the corresponding codes for Op1, Op2, and
Op3. Because Taco does not support the kernel fusion, the cases
Alg1, Alg2, and Alg3 can only be implemented by calling Op1,
Op2, and Op3 individually. Although there are other hand-tuned
high-performance routines for SpTD on both CPU (e.g. SPLATT
[30]) and GPU (e.g. B. Liu et al. [35]), they only support one
or two specific kernels that are insufficient for a comprehensive

10

0

50

100

150

200

250

300

350

1.E-121.E-091.E-061.E-031.E+00

Th
ro

u
gh

p
u

t
(G

FL
O

Ps
)

(1,1) (2,2) (4,4) (8,8) (16,16)

(Mem.1) (NoC) (Mem.2)

(a) CP-GD
0

1000

2000

3000

4000

1.E-121.E-091.E-061.E-031.E+00

Th
ro

u
gh

p
u

t
(G

FL
O

Ps
)

(1,1) (2,2) (4,4) (8,8) (16,16)

(Comp.) (NoC)

(Mem.2)

(b) TT-GD
0

1000

2000

3000

4000

5000

1.E-121.E-091.E-061.E-031.E+00

Th
ro

u
gh

p
u

t
(G

FL
O

Ps
)

(1,1) (2,2) (4,4) (8,8) (16,16)

(Comp.)
(Mem.2)

(c) Tucker-GD

Fig. 15: Performance curve with increasing input tensor sparsity and PE group size.

comparison. On the other hand, the codes generated by Taco
provide comparable performance to those of hand-tuned kernels
[47]. The CPU platform is 2× Intel(R) Xeon(R) CPU E5-2620
v4 with four DDR4 2133 MHz memories, and we use 32 threads
during execution; the GPU platform is NVIDIA Titan V. Note that
the default off-chip memory bandwidth of STE is only 24 GB/s,
while the same bandwidth specification of CPU and GPU can reach
96 GB/s and >500 GB/s, respectively. To make the comparison
fair, we increase the off-chip memory bandwidth of STE to 96
GB/s in this subsection.

Figure 13 and Figure 14 show the speedup over CPU and
GPU on synthetic data, respectively. On average, STE can achieve
45× speedup over CPU and 29× speedup over GPU. We observe
a better acceleration in CP-Op2, CP-Alg1, and Tucker-Op1(/c),
because the performance of these three cases almost solely depends
on the factor of “Mem.2”, which highlights the unique advantage
of STE. In addition, Table 6 shows the speedup over CPU/GPU on
real-world data, which shows similar results like that on synthetic
data. The data sources are as follows: DNN is a reshaped weight
matrix of a pruned fully-connected layer in deep neural networks;
Nell2 [48] is a natural language dataset; NIPS [49] is a publication
statistic tensor in the Annual Conference on Neural Information
Processing Systems.; and Email [50] is a tensor recording email
sending/receiving statistics. This table also indicates the general
impact of our work in many fields.

TABLE 6: Speedup over CPU and GPU using real-world data.

Name Alg Size Density STE/CPU STE/GPU

DNN CP-Op1 512×512×392 3.0E-01 3.3× 3.4×
Nell2 CP-Op1 12K×9K×28K 2.4E-05 11.1× 14.2×
DNN Tucker-Op1 512×512×392 3.0E-01 50.1× 7.0×
Nell2 Tucker-Op1 12K×9K×28K 2.4E-05 70.6× 14.4×
NIPS TT-Op1 2K×3K×14K×17 1.8E-06 40.2× 24.1×
Email TT-Op1 6K×6K×224K×1K 5.5E-09 33.2× 20.0×

6.4 Tensor Sparsity and PE Group Analysis
In the following analysis, we only select Alg2 (GD) to shrink
the experiment space. Figure 15 depicts the performance under
different input tensor density and PE group size. We observe
that the performance degrades with a “ladder-shape” curve as
the sparsity increases, which is also observed in other algorithms
(see Figure 12). The three distinct regions of the “ladder-shape”
curves seem caused by different bounding factors as the sparsity
increases. To verify this hypothesis, we measure the resource
utilization of different hardware components in Figure 16 and mark
our interpretation in Figure 15. Apparently, the loading of factor
tensors (Mem.2) will bound the performance in the extremely

sparse cases, due to the higher requirement for buffer capacity that
exceeds the limit of a PE group. A larger PE group size offers
a larger total buffer capacity, thus delaying the turning point of
performance descent. However, it is not cost-free: a larger PE
group size increases the inter-PE communication distance and
thus degrading the performance when the NoC itself becomes the
bounding factor. This can be seen from the regions marked with
NoC in Figure 15. In this sense, there is not an always correct
configuration of PE group size to fit all sparsity levels. We suggest
selecting the PE group size according to the actual sparsity of input
tensors.

0%

20%

40%

60%

80%

100%

CMN CMN CMN CMN CMN CMN CMN CMN CMN CMN CMN CMN
(4,4) (16,16) (4,4) (16,16) (4,4) (16,16) (4,4) (16,16) (4,4) (16,16) (4,4) (16,16)

CP-GD TT-GD Tucker-GD CP-GD TT-GD Tucker-GD
Very Dense Tensors Very Sparse Tensors

(Comp.)Compute (Mem.1)Sparse Entries (Mem.2)Factor Tensors (NoC)NoC

Fig. 16: Resource utilization breakdown.

TABLE 7: Computation and memory costs for each sparse entry.
Mem.2 can be amortized due to the inter-sparse entry reuse.

Algorithm Comp. (MACs) NoC (Bytes) Mem.1 (Bytes) Mem.2 (Bytes)

CP-GD 161 768 14 768

TT-GD 3169 1792 16 8704

Tucker-GD 26225 768 14 66304

We have three more interesting observations from Figure 15.
First, in the cases of low sparsity, CP-GD is bounded by Mem.1
(loading sparse entries), while TT-GD and Tucker-GD are bounded
by Comp. This is because TT-GD and Tucker-GD have more
computations to deal with than CP-GD for each sparse entry (see
Table 7). Second, Tucker-GD does not have the NoC bound region.
This is due to its significantly higher MACs/traffic ratio (also see
Table 7). Third, the throughput of Tucker-GD does not converge
to zero even if under very high sparsity. Recalling Figure 2, there
is a special core tensor in Tucker decomposition. The core can be
reused by all sparse entries, which maintains the least amount of
computations.

6.5 Memory Optimization Analysis
In order to study the influence of off-chip memory bandwidth,
we measure the performance improvements if we increase the
off-chip memory bandwidth to 2×, 3×, and 4× over the 24 GB/s

11

baseline. The results are visualized in Figure 17. The improvements
are tightly related to the bounding factors listed in Table 5 and
need to be understood with the aid of Figure 15. For CP-GD
with dense tensors (ρ = 10−1 and ρ = 10−5), there are initial
performance improvements but they are saturated at 2× bandwidth.
The improvement is owing to the initial Mem.1 bound, while the
saturation is caused by the latter NoC bound. For CP-GD with
sparse tensors (ρ = 10−9), the performance improvement is not
saturated in our tests because it is always bounded by Mem.2.
For TT-GD and Tucker-GD, there is no performance improvement
under both ρ = 10−1 and ρ = 10−5 due to the compute rather than
memory bound.

0%

100%

200%

300%

400%

1.E-01 1.E-05 1.E-09 1.E-01 1.E-05 1.E-09 1.E-01 1.E-05 1.E-09

CP-GD TT-GD Tucker-GD

1x

2x

3x

4x
CP-GD TT-GD Tucker-GD

Fig. 17: Normalized performance with increased off-chip memory
bandwidth. Here the PE group size is set to 4×4.

0%
20%
40%
60%
80%
100%

(4,4) (16,16) (4,4) (16,16) (4,4) (16,16)
CP-GD TT-GD Tucker-GD

1 2

5 10

20 50

100

Fig. 18: Normalized performance with increased SlotMax. Here
the tensor density is 10−1.

Figure 18 depicts the impact of SlotMax. A smaller SlotMax
means less on-the-fly tasks, making the compute unit prone to be
idle. We observe an obvious performance penalty under SlotMax <
20. When the SlotMax comes larger than 50, the performance
improvement stops. Therefore, we adopt SlotMax = 50 in our
architecture design.

6.6 Compute Optimization Analysis

We evaluate the contribution of kernel fusion or compute transfer in
Figure 19. Without the kernel fusion optimization, the kernels need
to be executed individually, causing redundant computations and
off-chip accesses. Note that Op1, Op2, and Op3 cannot achieve
benefits from kernel fusion since they are single kernels. Without
the compute transfer optimization, i.e. the computation is only
allowed to be processed in the home PE and every byte of data on
remote PEs must be acquired through the NoC, the performance
significantly decreases due to the overwhelmed NoC, sometimes
even down to only 8% of the baseline. CP-Op1 and Tucker-Alg3
do not suffer from the removal of computer transfer because the
NoC traffic is not the bound there.

7 RELATED WORKS

Algorithms and Applications. Tensor decomposition is a big
family rather than a single algorithm. A lot of variants have
been proposed , using different tensor network structure (CP [20],
Tucker [21], tensor train (TT) [22], or hierarchical-Tucker (HT)
[23]), different loss function, different iterative method [51], and
sometimes different constraint [52]. The application domains for
tensor decomposition are widely identified, such as to reduce data

0%
20%
40%
60%
80%

100%

O
p

1

O
p

2

O
p

3

A
lg

1

A
lg

2

A
lg

3

O
p

1

O
p

2

O
p

3

A
lg

1

A
lg

2

A
lg

3

O
p

1

O
p

1(
/c

)

O
p

2

O
p

3

A
lg

1

A
lg

2

A
lg

3

CP TT Tucker
No Fusion No Compute Transfer

CP TT Tucker

Fig. 19: Normalized performance affected by kernel fusion or
compute transfer. Here the tensor density and PE group size are
10−5 and 8×8, respectively.

acquisition time in MRI [13], medical and health data analysis
[10], [11], [12], solving high-dimensional equations [53], visual
data completion [15], EDA problems [54], chatroom modeling
model [4], [5], social networks analysis [2], [3], and abnormal
network traffic detection [7], [8], [9]. Some works make special
assumptions on the data source of tensors, such as Boolean tensor
[55], streaming tensor [16], [17], tensor with side information [33],
or controllable tensor allowing importance sampling [34], while in
this work we study the common cases with sparse input tensors.

Software Optimization. Substantial efforts have been made
to optimize the tensor decomposition performance, but there are
different directions. S. Smith et al. [31], [38] propose a compact
data format for sparse tensor storage. O. Kaya et al. [28] and S.
Smith [29] et al. explore different methods to partition the sparse
entries into groups. SPLATT [30] is specially tailored to execute
MTTKRP on CPUs. Other works have turned into GPUs [35], [36]
and distributed platforms [24], [24], [26], [37], [27]. There are also
works that compare the performance of different implementations
[56] as well as the convergence speed of different optimization
algorithms [32]. F. Kjolstad et al. [47] build a code generator, Taco,
to express arbitrary contraction, which is also used as our baseline.
The above software optimizations on general-purpose processors
still do not solve the challenges mentioned in Section 3.

Specialized Hardware. ExTensor [57] is a specialized hard-
ware focusing on the same problem of Taco [47]: handling the
complex zero-skipping logic when two or more tensors are sparse.
In contrast, SpTD only requires the input tensor to be sparse, thus
the specialization of ExTensor is of no use in our context. TIE [58]
makes use of TT decomposition for deep learning. However, the
tensor-based data in TIE are already decomposed before deploying
onto hardware while our work handles the tensor decomposition
itself.

8 CONCLUSION

We identify that the challenges in processing sparse tensor decom-
position (SpTD) include the algorithm diversity, requirements for
buffer flexibility and data bandwidth due to variable sparsity, and
the hardness to fuse kernels. To address these issues, we propose
a unified abstraction via two general sparse kernels (i.e. SpLrMM
and SpSampling) and a unified execution framework that can
accommodate most algorithms with kernel fusion. Then, we design
a specialized accelerator, STE, to implement our top-down solution.
The PE-interactive architecture enables the sharing of local memory
capacity/bandwidth of each PE and avoids write conflicts during
kernel fusion. The deadlock is also eliminated by identifying
and satisfying three requirements during task mapping. Through
extensive experiments, we demonstrate an average speedup of 45×

12

over CPU and 29× over GPU. Comprehensive analysis of the
impact of tensor sparsity, PE group size, and memory/compute
optimizations are further presented to give design guidance. Our
design can stimulate more researches in designing specialized
architectures for high-performance tensor decomposition.

REFERENCES

[1] B. W. Bader, T. G. Kolda, and R. A. Harshman, “Temporal analysis of
social networks using three-way dedicom.” Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States); Sandia . . . , Tech. Rep., 2006.

[2] S. Sizov, S. Staab, and T. Franz, Analysis of Social Networks by Tensor
Decomposition. Boston, MA: Springer US, 2010, pp. 45–58. [Online].
Available: https://doi.org/10.1007/978-1-4419-7142-5 3

[3] A. Kao, W. Ferng, S. Poteet, L. Quach, and R. Tjoelker, “Talison - tensor
analysis of social media data,” in 2013 IEEE International Conference on
Intelligence and Security Informatics, June 2013, pp. 137–142.

[4] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener, “Modeling
and multiway analysis of chatroom tensors,” in Intelligence and Security
Informatics, P. Kantor, G. Muresan, F. Roberts, D. D. Zeng, F.-Y. Wang,
H. Chen, and R. C. Merkle, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 256–268.

[5] E. Acar, S. A. Çamtepe, and B. Yener, “Collective sampling and analysis
of high order tensors for chatroom communications,” in Intelligence and
Security Informatics, S. Mehrotra, D. D. Zeng, H. Chen, B. Thuraisingham,
and F.-Y. Wang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 213–224.

[6] M. M. Baskaran, T. Henretty, J. Ezick, R. Lethin, and D. Bruns-Smith,
“Enhancing network visibility and security through tensor analysis,” Future
Generations Computer Systems, 2 2019.

[7] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, and G. Zhang, “Accurate
recovery of internet traffic data: A tensor completion approach,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, April 2016, pp. 1–9.

[8] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, G. Zhang, J. Cao, and
D. Zhang, “Accurate recovery of internet traffic data: A sequential tensor
completion approach,” IEEE/ACM Transactions on Networking, vol. 26,
no. 2, pp. 793–806, April 2018.

[9] K. Xie, C. Peng, X. Wang, G. Xie, J. Wen, J. Cao, D. Zhang, and
Z. Qin, “Accurate recovery of internet traffic data under variable rate
measurements,” IEEE/ACM Transactions on Networking, vol. 26, no. 3,
pp. 1137–1150, June 2018.

[10] I. Perros, R. Chen, R. Vuduc, and J. Sun, “Sparse hierarchical tucker
factorization and its application to healthcare,” in , 11 2015, pp. 943–948.

[11] J. Ho, J. Ghosh, and J. Sun, “Marble: High-throughput phenotyping
from electronic health records via sparse nonnegative tensor factorization,”
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 08 2014.

[12] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. N. Kho, Y. Chen, B. A.
Malin, and J. Sun, “Rubik: Knowledge guided tensor factorization and
completion for health data analytics,” in KDD, 2015.

[13] J. He, Q. Liu, A. Christodoulou, C. Ma, F. Lam, and Z.-P. Liang,
“Accelerated high-dimensional mr imaging with sparse sampling using
low-rank tensors,” IEEE Transactions on Medical Imaging, vol. 35, pp.
2119–2129, 04 2016.

[14] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and
low-n-rank tensor recovery via convex optimization,” Inverse
Problems, vol. 27, no. 2, p. 025010, jan 2011. [Online]. Available:
https://doi.org/10.1088%2F0266-5611%2F27%2F2%2F025010

[15] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–220, Jan 2013.

[16] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, Streaming
Tensor Factorization for Infinite Data Sources. , , pp. 81–89. [Online].
Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.10

[17] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: Dynamic
tensor analysis,” in Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’06.
New York, NY, USA: ACM, 2006, pp. 374–383. [Online]. Available:
http://doi.acm.org/10.1145/1150402.1150445

[18] C. Hawkins and Z. Zhang, “Robust factorization and completion of
streaming tensor data via variational bayesian inference,” in , 2018.

[19] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan, “Tensor decompositions for signal processing applications:
From two-way to multiway component analysis,” IEEE Signal Processing
Magazine, vol. 32, no. 2, pp. 145–163, 2015.

[20] J. D. Caroll and J. J. Chang, “Analysis of individual differences in
multidimensional scaling via n-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[21] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[22] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[23] L. Grasedyck, “Hierarchical singular value decomposition of tensors,”
SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 4, p.
2029–2054, 2010.

[24] N. Park, B. Jeon, J. Lee, and U. Kang, “Bigtensor: Mining billion-scale
tensor made easy,” in Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, ser. CIKM ’16.
New York, NY, USA: ACM, 2016, pp. 2457–2460. [Online]. Available:
http://doi.acm.org/10.1145/2983323.2983332

[25] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
Scaling tensor analysis up by 100 times - algorithms and discoveries,”
in Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’12. New
York, NY, USA: ACM, 2012, pp. 316–324. [Online]. Available:
http://doi.acm.org/10.1145/2339530.2339583

[26] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2: Billion-
scale tensor decompositions,” in 2015 IEEE 31st International Conference
on Data Engineering, April 2015, pp. 1047–1058.

[27] S. Smith and G. Karypis, “Dms : Distributed sparse tensor factorization
with alternating least squares,” in , 2015.

[28] O. Kaya and B. Uçar, “Scalable sparse tensor decompositions in
distributed memory systems,” in SC ’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2015, pp. 1–11.

[29] S. Smith and G. Karypis, “A medium-grained algorithm for sparse
tensor factorization,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2016, pp. 902–911.

[30] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, May 2015,
pp. 61–70.

[31] S. Smith and G. Karypis, “Tensor-matrix products with a compressed
sparse tensor,” in Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, ser. IA3 ’15. New
York, NY, USA: ACM, 2015, pp. 5:1–5:7. [Online]. Available:
http://doi.acm.org/10.1145/2833179.2833183

[32] S. Smith, J. Park, and G. Karypis, “An exploration of optimization
algorithms for high performance tensor completion,” in SC ’16: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2016, pp. 359–371.

[33] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and
E. P. Xing, “Flexifact: Scalable flexible factorization of coupled tensors
on hadoop,” in Proceedings of the 2014 SIAM International Conference
on Data Mining. SIAM, 2014, pp. 109–117.

[34] E. Papalexakis, C. Faloutsos, and N. Sidiropoulos, “Parcube: Sparse par-
allelizable candecomp-parafac tensor decomposition,” ACM Transactions
on Knowledge Discovery from Data, vol. 10, no. 1, 7 2015.

[35] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified
optimization approach for sparse tensor operations on gpus,” in 2017
IEEE International Conference on Cluster Computing (CLUSTER), Sep.
2017, pp. 47–57.

[36] J. Li, Y. Ma, and R. Vuduc, “ParTI! : A parallel tensor infrastructure
for multicore cpus and gpus,” Oct 2018. [Online]. Available:
https://github.com/hpcgarage/ParTI

[37] J. H. Choi and S. V. N. Vishwanathan, “Dfacto: Distributed factorization
of tensors,” in Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1, ser. NIPS’14.
Cambridge, MA, USA: MIT Press, 2014, pp. 1296–1304. [Online].
Available: http://dl.acm.org/citation.cfm?id=2968826.2968971

[38] S. Smith and G. Karypis, “Accelerating the tucker decomposition with
compressed sparse tensors,” in Euro-Par 2017: Parallel Processing, F. F.
Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Cham: Springer International
Publishing, 2017, pp. 653–668.

[39] Y. Ma, J. Li, X. Wu, C. Yan, J. Sun, and R. Vuduc, “Optimizing
sparse tensor times matrix on gpus,” Journal of Parallel and Distributed
Computing, vol. 129, pp. 99 – 109, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731518305161

[40] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, P. Murali, S. S.
Pandian, Y. Sabharwal, and D. Sreedhar, “On optimizing distributed
tucker decomposition for sparse tensors,” in Proceedings of the 2018
International Conference on Supercomputing, ser. ICS ’18. New

https://doi.org/10.1007/978-1-4419-7142-5_3
https://doi.org/10.1088%2F0266-5611%2F27%2F2%2F025010
https://epubs.siam.org/doi/abs/10.1137/1.9781611975321.10
http://doi.acm.org/10.1145/1150402.1150445
http://doi.acm.org/10.1145/2983323.2983332
http://doi.acm.org/10.1145/2339530.2339583
http://doi.acm.org/10.1145/2833179.2833183
https://github.com/hpcgarage/ParTI
http://dl.acm.org/citation.cfm?id=2968826.2968971
http://www.sciencedirect.com/science/article/pii/S0743731518305161

13

York, NY, USA: ACM, 2018, pp. 374–384. [Online]. Available:
http://doi.acm.org/10.1145/3205289.3205315

[41] O. Kaya and B. Uçar, “High performance parallel algorithms for the tucker
decomposition of sparse tensors,” in 2016 45th International Conference
on Parallel Processing (ICPP), Aug 2016, pp. 103–112.

[42] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
June 2012, pp. 1212–1221.

[43] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Cacti 6.0: A
tool to model large caches,” HP Laboratories, 01 2009.

[44] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh,
and V. Stojanovic, “Dsent - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, May
2012, pp. 201–210.

[45] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO 42:
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2009, pp. 469–480.

[46] “Berkeley fpu,” https://github.com/ucb-bar/berkeley-hardfloat, accessed:
2019-09-30.

[47] F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, “Taco:
A tool to generate tensor algebra kernels,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), Oct
2017, pp. 943–948.

[48] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M.
Mitchell, “Toward an architecture for never-ending language learning.” in
AAAI, vol. 5, 2010, p. 3.

[49] A. Globerson, G. Chechik, F. Pereira, and N. Tishby, “Euclidean
Embedding of Co-occurrence Data,” The Journal of Machine Learning
Research, vol. 8, pp. 2265–2295, 2007.

[50] J. Shetty and J. Adibi, “The enron email dataset database schema and
brief statistical report,” Information sciences institute technical report,
University of Southern California, vol. 4, 2004.

[51] T. Maehara, K. Hayashi, and K.-i. Kawarabayashi, “Expected tensor
decomposition with stochastic gradient descent,” in Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, pp. 1919–1925. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3016100.3016167

[52] S. Smith, A. Beri, and G. Karypis, “Constrained tensor factorization with
accelerated ao-admm,” in 2017 46th International Conference on Parallel
Processing (ICPP), Aug 2017, pp. 111–120.

[53] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey
of low-rank tensor approximation techniques,” GAMM-Mitteilungen,
vol. 36, no. 1, pp. 53–78, 2013. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201310004

[54] Z. Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong, “Tensor
computation: A new framework for high-dimensional problems in eda,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 4, pp. 521–536, 2016.

[55] N. Park, S. Oh, and U. Kang, “Fast and scalable distributed boolean
tensor factorization,” in 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), April 2017, pp. 1071–1082.

[56] T. B. Rolinger, T. A. Simon, and C. D. Krieger, “Performance evaluation
of parallel sparse tensor decomposition implementations,” in Proceedings
of the Sixth Workshop on Irregular Applications: Architectures and
Algorithms. Piscataway, NJ, USA: IEEE Press, 2016, pp. 54–57.
[Online]. Available: https://doi.org/10.1109/IA3.2016.14

[57] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: ACM, 2019, pp. 319–333.

[58] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “Tie: energy-
efficient tensor train-based inference engine for deep neural network,”
in Proceedings of the 46th International Symposium on Computer
Architecture. ACM, 2019, pp. 264–278.

Bangyan Wang received his B.E. degree from
Tsinghua University, China in 2017. He is cur-
rently a Ph.D. student at the Department of
Electrical and Computer Engineering, University
of California, Santa Barbara. His current research
interests include domain-specific accelerator de-
sign and tensor analysis.

Lei Deng received the B.E. degree from Univer-
sity of Science and Technology of China, Hefei,
China in 2012, and the Ph.D. degree from Ts-
inghua University, Beijing, China in 2017. He is
currently a Postdoctoral Fellow at the Depart-
ment of Electrical and Computer Engineering,
University of California, Santa Barbara, CA, USA.
His research interests span the area of brain-
inspired computing, machine learning, neuromor-
phic chip, computer architecture, tensor analysis,
and complex networks. Dr. Deng has authored

or co-authored over 40 refereed publications. He was a PC member for
ISNN 2019. He currently serves as a Guest Associate Editor for Frontiers
in Neuroscience and Frontiers in Computational Neuroscience, and a
reviewer for a number of journals and conferences. He was a recipient of
MIT Technology Review Innovators Under 35 China 2019.

Zheng Qu received the B.S. degree from Ts-
inghua University, Beijing, China, in 2018. He
is currently working toward the Ph.D. degree at
the Scalable Energy-efficient Architecture Lab
(SEAL), University of California at Santa Barbara,
Santa Barbara, CA, USA. His current research
interests include artificial intelligence (AI) accel-
erator and architecture, field-programmable gate
array (FPGA) design, algorithm and hardware
co-design for high-dimensional data processing.

Zheng Zhang (M’15) received the B.Eng. degree
from the Huazhong University of Science and
Technology, in 2008, the M.Phil. degree from The
University of Hong Kong, in 2010, and the Ph.D.
degree in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA, USA, in 2015. He
has been an Assistant Professor of electrical and
computer engineering with the University of Cali-
fornia at Santa Barbara, since 2017. His industrial
experiences include Coventor Inc., Cambridge,

MA, USA, and Maxim-IC, Colorado Springs, CO, USA; academic visiting
experiences include the University of California at San Diego, Brown
University, and Politechnico di Milano, Milan, Italy; government laboratory
experience includes the Argonne National Laboratory, Lemont, IL, USA.
His research interests include uncertainty quantification and tensor
computation with multi-domain applications, including CAD of nano-scale
IC/MEMS/photonics, data analytics, machine learning, and autonomous
systems.

He received the Best Paper Award for the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems in 2014,
the Best Paper Award for the IEEE Transactions on Components,
Packaging and Manufacturing Technology in 2018, two Best Paper
Awards (IEEE EPEPS 2018 and IEEE SPI 2016), and three additional
Best Paper Nominations (CICC 2014, ICCAD 2011, and ASP-DAC 2011)
at international conferences. His Ph.D. dissertation was recognized by the
ACM SIGDA Outstanding Ph.D. Dissertation Award in Electronic Design
Automation in 2016, and by the Doctoral Dissertation Seminar Award (i.e.,
Best Thesis Award) from the Microsystems Technology Laboratory, MIT
in 2015. He was a recipient of the Li Ka-Shing Prize from the University
of Hong Kong in 2011.

http://doi.acm.org/10.1145/3205289.3205315
https://github.com/ucb-bar/berkeley-hardfloat
http://dl.acm.org/citation.cfm?id=3016100.3016167
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201310004
https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201310004
https://doi.org/10.1109/IA3.2016.14

14

Yuan Xie received the B.S. degree in Electronic
Engineering from Tsinghua University, Beijing,
China in 1997, and M.S. and Ph.D. degrees in
Electrical Engineering from Princeton University,
NJ, USA in 1999 and 2002, respectively. He was
an Advisory Engineer with IBM Microelectronic
Division, VT, USA from 2002 to 2003. He was a
Full Professor with Pennsylvania State University,
PA, USA from 2003 to 2014. He was a Visiting
Researcher with Interuniversity Microelectronics
Centre (IMEC), Leuven, Belgium from 2005 to

2007 and in 2010. He was a Senior Manager and Principal Researcher
with AMD Research China Lab, Beijing, China from 2012 to 2013. He
is currently a Professor with the Department of Electrical and Computer
Engineering, University of California at Santa Barbara, CA, USA. His
interests include VLSI design, Electronics Design Automation (EDA),
computer architecture, and embedded systems.

Dr. Xie is an expert in computer architecture who has been inducted to
ISCA/MICRO/HPCA Hall of Fame and IEEE/AAAS/ACM Fellow. He was
a recipient of Best Paper Awards (HPCA 2015, ICCAD 2014, GLSVLSI
2014, ISVLSI 2012, ISLPED 2011, ASPDAC 2008, ASICON 2001) and
Best Paper Nominations (ASPDAC 2014, MICRO 2013, DATE 2013,
ASPDAC 2010-2009, ICCAD 2006), the 2016 IEEE Micro Top Picks
Award, the 2008 IBM Faculty Award, and the 2006 NSF CAREER Award.
He served as the TPC Chair for ICCAD 2019, HPCA 2018, ASPDAC
2013, ISLPED 2013, and MPSOC 2011, a committee member in IEEE
Design Automation Technical Committee (DATC), the Editor-in-Chief for
ACM Journal on Emerging Technologies in Computing Systems, and an
Associate Editor for ACM Transactions on Design Automations for Elec-
tronics Systems, IEEE Transactions on Computers, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on VLSI, IEEE Design and Test of Computers, and IET
Computers and Design Techniques. Through extensive collaboration with
industry partners (e.g. AMD, HP, Honda, IBM, Intel, Google, Samsung,
IMEC, Qualcomm, Alibaba, Seagate, Toyota, etc.), he has helped the
transition of research ideas to industry.

	Introduction
	Brief Background
	Challenge and Motivation
	Limited Algorithm Flexibility
	Variable Buffer Size Requirement and Insufficient Data Movement Bandwidth
	Difficult Kernel Fusion

	Algorithm Abstraction
	SpLrMM Kernel
	LrSampling Kernel
	Connection to SpDT Algorithms

	STE Architecture Design
	Design Philosophy
	Processing Element Specialization
	The Lifetime of A Task
	Deadlock Avoidance
	Mapping Algorithms onto STE
	Minor Optimizations
	Advantage Summary

	Evaluation
	Experimental Setup
	Overall Performance
	Comparison with CPU and GPU
	Tensor Sparsity and PE Group Analysis
	Memory Optimization Analysis
	Compute Optimization Analysis

	Related works
	Conclusion
	References
	Biographies
	Bangyan Wang
	Lei Deng
	Zheng Qu
	Zheng Zhang
	Yuan Xie

