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Abstract—Tensor network and tensor computation are widely
applied in scientific and engineering domains like quantum
physics, electronic design automation, and machine learning. As
one of the most fundamental operations for tensor networks, a
tensor contraction eliminates the sharing orders among tensors
and produces a compact sub-network. Different contraction
sequence usually yields distinct storage and compute costs, and
searching the optimal sequence is known as a hard problem.
Prior work have designed heuristic and fast algorithms to solve
this problem, however, several issues still remain unsolved. For
example, the data format and data structure are not efficient,
the constraints during modeling are impractical, the search of
the optimal solution might fail, and the search cost is very high.
In this paper, we first introduce a logk order representation and
design an adjacency matrix-based data structure to efficiently
accelerate the search of the optimal contraction sequence. Then,
we propose an outer product pruning method with acceptable
overhead to reduce the search space. Finally, we use a multithread
optimization in our implementation to further improve the
execution performance. We also present in-depth analysis of
factors that influence the search time. This work provides a
full-stack solution for optimal contraction sequence search from
both high-level data structure and search algorithm to low-level
execution parallelism, and it will benefit a broad range of tensor-
related applications.

Keywords: Tensor Contraction, Adjacency Matrix, BFS al-
gorithm, Search Space Reduction, Multithread Optimization

I. INTRODUCTION

Tensor networks are widely applied in a wide range of appli-
cations. The most well-known fields are many-body quantum
physics [1]–[5], matrix product states and projected entangled
pair states [6]–[11], multiscale entanglement renormalization
ansatz [12], [13], and quantum circuit design [14], [15].
Besides the applications in quantum physics, tensor networks
are recently applied in IC modeling [16] and EDA problems
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[17]. In addition, tensor networks are capable of compressing
the large-size parameters or data in neural networks [18]–[20]
or signal processing algorithms [21], [22].

Tensor contraction, a process of computing a tensor network
by eliminating the sharing orders among pairs of tensors, is
one of the most fundamental operations in tensor network
processing [23]. In a tensor network, the contraction operation
iteratively merges two nodes into one until the whole network
cannot be merged anymore. Different contraction sequence
can result in distinct memory and compute costs. Therefore,
finding the optimal contraction sequence which consumes
less compute or storage resources is critical for reducing the
consequent contraction cost.

However, this might be a very hard problem. On one hand,
to find the contraction sequence with optimal compute cost is
proved to be NP-hard in [24]. On the other hand, for any tensor
network, the optimal storage cost of contraction sequences
equals the treewidth of its line graph, which has been proved
by [25]. Since the problem of computing the treewidth of a
graph is NP-hard in general, it is a rational hyphothesis that the
problem of finding the contraction sequence with optimal stor-
age cost is also a hard problem. Therefore, designing heuristic
search algorithms seems the only way to find the contraction
sequence with optimal storage or compute cost. There exist
both depth-first constructive search (DFS) algorithms [24] and
breadth-first constructive search (BFS) algorithms [26], [27] to
do this search. Dynamic programming can also be applied to
solve this problem [27], [28]. These techniques go through all
possible contraction sequences before determining the optimal
one.

However, the search space grows exponentially as the
network size increases. Some algorithms have also been in-
vestigated in order to shrink the original search space. For the
storage cost, an optimization algorithm is proposed in [29],
but this method does not guarantee an optimal sequence. For
the compute cost, cost capping is used to prune the sequences
that cost more than the optimal one, and some outer product
constraints are added to further reduce the search space [27].
However, the search complexity depends on the variance of the
sharing orders between tensors. In addition, some algorithms
have been proposed to accelerate the search of contraction
sequences in closed tensor networks (i.e. the tensor network
being contracted into a scalar) [30]. A polynomial search
solution is proposed by [31] for considering both storage and
compute costs, however, their solution is only effective for the
tree structure.

Based on the observations from prior work, several issues
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Table I: Variable definition.
Variable Definition Variable Definition

τττi An original single tensor from a tensor network TI A tensor after contraction, where I is a set of i to denote the subscripts of original single tensors

FOTI
Free order collection of tensor TI SOTITJ

Sharing order collection between tensors TI and TJ , where I ∩ J = φ

SETI
Storage expense of tensor TI CETITJ

Compute expense for contracting tensors TI and TJ , where I ∩ J = φ

MS Maximum storage expense of a contraction sequence MC Maximum compute expense of a contraction sequence

RTI
Row vector of possible tensor TI OTI

Outer product vector used in the outer product pruning for possible tensor TI

TI1 ,TI2 Two split source tensors to contract possible tensor TI sq A contraction sequence

Cv
V Binomial coefficient Setv A set of possible tensors that are contracted by v original tensors

should be considered in the search of the optimal contraction
sequence. First, since the search space is vast, efficient data
format and data structure indeed matter and should be designed
to accelerate the search process. Second, we should propose
an algorithm which can find the optimal solution based on the
data structure, shrink the search space, and fit general tensor
networks without specific structure constraints. At last, the
search time should be superior. In order to make the optimal
contraction search more efficient, we propose the following
techniques. (1) We design a search algorithm based on the
adjacency matrix structure which is friendly to data access
and network update. (2) Since the outer product between two
tensors can be pruned from the search space, we design an
efficient algorithm to identify the prunable tensors. (3) Finally,
we adopt multithread optimization for parallel execution of our
search algorithm, which can further improve the efficiency. 1

Our proposed method will benefit a broad range of applications
that rely on tensor computation.

II. PRELIMINARIES

In this section, we first introduce the background of tensor,
tensor contraction, and the problem definition of finding the
optimal contraction sequence of a tensor network in Section
II-A. Then, in Section II-B, we describe the vanilla BFS search
algorithm that we adopt as the basis of our algorithm design.

A. Tensor Network Contraction

Tensor. The variables commonly used in this paper are
listed in Table I. We define a tensor in a network as τττi.
Tensor can be regarded as generalization of vector and matrix
to represent high-order data. The number of orders in a tensor
is denoted as M , and the length of the m-th order is denoted
as Nm

τττi
, where M,Nm

τττi
∈ Z+. Any element in a tensor

can be represented as τττi(n
0
τττi
, n1τττi

, ..., nM−1τττi
) where we have

nmτττi
∈ {0, 1, ..., Nm

τττi
− 1}.

In Figure 1, we show the tensor format of vector, matrix and
cube. We take the cube as an example, which is is a third-order
tensor, i.e. M = 3. In this example the length of orders are
N0

τττ2
= 3, N1

τττ2
= 4, and N2

τττ2
= 2. We highlight an element in

τττ2 which can be denoted as τττ2(1, 2, 0). We can also use graph
representation to denote a tensor, where a vertex is a tensor
and an edge stands for one of its orders.

Tensor Contraction under logk Order Representation.
Figure 2(a) shows an example of the tensor contraction be-
tween two tensors. In this example, τττ0 and τττ1 are two third-
order tensors. We use TI to represent a tensor after contraction,

1https://github.com/liangling76/tensor-contraction-sequence-searching
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Figure 1: Examples of tensors with different order configu-
ration. The top subfigures visualize the original tensors; the
middle and bottom subfigures show the graph representation
of tensors.

where I denotes the subscript set of involved original single
tensors, e.g. here TI = T01. In this example, T01 is a two-
order tensor (i.e. matrix). The element in tensor T01, such as
T01(2, 1), can be calculated from the contraction between τττ0
and τττ1 by

T01(2, 1) =

N0
τττ0∑

α=0

N1
τττ0∑

β=0

τττ0(α, β, 2)× τττ1(α, β, 1). (1)

In Figure 2(b), we term N2
τττ0

and N2
τττ1

as free orders which
have only one end. These orders will be preserved after the
contraction. Furthermore, τττ0 and τττ1 share two orders that have
the same ends, which are remarked as N0

τττ0τττ1
and N1

τττ0τττ1
. We

call them sharing orders and we have Nm
τττiτττj

= Nm
τττjτττi

. The
contraction between two tensors can be interpreted as eliminat-
ing sharing orders between two source tensors and preserving
all free orders in the new tensor after the contraction.

In this paper, we define the compute expense as how many
multiplication operations are required for the contraction. In
this example, in order to get one element in T01 we need 8
multiplications (i.e. N0

τττ0τττ1
×N1

τττ0τττ1
). Hence, 64 multiplications

in total (i.e. N2
τττ0
×N0

τττ0τττ1
×N1

τττ0τττ1
×N2

τττ1
) are needed to finish

the contraction between τττ0 and τττ1. Moreover, the new tensor
T01 will consume additional storage space, which is defined as
the storage expense in this paper. In this example, the storage
expense of T01 is 8 (i.e. N2

τττ0
×N2

τττ1
).

In order to simplify the calculation of expense, we adopt
the logk representation of each order in a tensor as suggested
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Figure 2: Illustration of the tensor contraction operation be-
tween two tensors: (a) Graph representation of two third-order
tensors τττ0 and τττ1. The free orders include N2

τττ0
and N2

τττ1
, the

sharing orders are N0
τττ0

, N0
τττ1

, N1
τττ0

, and N1
τττ1

; (b) Normal graph
representation of the tensor contraction operation; (c) logk
(here k = 2) graph representation of the tensor contraction
operation.

by [31], where k can be an arbitrary positive value. With the
logk representation, we denote the free and sharing orders with
solid lines as Figure 2(c). In this example, we set k = 2,
then we calculate the log2 value of each order and denote the
free orders as FOTI

. In this example, we now have FOτττ0
=

log2N
2
τττ0

= 2 and FOτττ1
= log2N

2
τττ1

= 1. In a similar way, the
sharing orders are also collected together and further denoted
as SOTITJ

(note that SOTITJ
= SOTJTI

). In this example,
SOτττ0τττ1 = log2(N

0
τττ0τττ1
×N1

τττ0τττ1
) = log2N

0
τττ0τττ1

+ log2N
1
τττ0τττ1

=
3. The logk representation of collected free and sharing orders
are summarized as

FOTI
=

∑
m

logkN
m
TI
, {Nm

TI
∈ free orders of TI}, (2)

SOTITJ
=

∑
m

logkN
m
TITJ

. (3)

Then we use STI
to denote the data size of each tensor as

STI
= FOTI

+
∑
J

SOTITJ
, where J /∈ I. (4)

In this example, we have Sτττ0
= FOτττ0

+SOτττ0τττ1
= 5. Finally,

the calculations of storage expense (SE) and compute expense
(CE) for contracting two tensors under the logk representation
are governed by

SETITJ
= STIJ

= STI
+ STJ

− 2SOTITJ
, (5)

CETITJ
= STI

+ STJ
− SOTITJ

= STIJ
+ SOTITJ

. (6)

For instance, we yield SEτττ0τττ1 = 3 and CEτττ0τττ1 = 6 in this
example. The real storage and compute expenses under this
format are kSETITJ (i.e. 23 = 8 here) and kCETITJ (i.e. 26 =
64 here), respectively. In the rest of this paper, we use the
logk representation unless otherwise specified. From Equation
(2)-(6), it is easy to observe that the logk representation could
transform the complex multiplicative calculations to simpler
additive ones, which accelerates the processing.

Tensor Network Contraction. In Figure 3(a), we give an
example of tensor network with four tensors. In this example,
we randomly assign the network topology, the free order of
each tensor and sharing orders between tensors. In this tensor
network, the original single tensor τττ2 occupies the highest
storage space according to Equation (4), i.e. Sτττ2

= FOτττ2
+

SOτττ0τττ2 + SOτττ1τττ2 = 14.
For a tensor network with V tensors, V − 1 contraction

steps in total are required to contract the network into one
tensor. We use sq to represent a contraction sequence. We
present an arbitrary contraction sequence in Figure 3(b), i.e.
sq = (((τττ0τττ1)τττ2)τττ3). In each contraction step, the highlighted
tensors are selected to perform a contraction. In particular, we
take the first contraction step to illustrate the contraction op-
eration. In this step, τττ0 and τττ1 are selected for contraction. As
mentioned earlier, the contraction first eliminates the sharing
orders between these two tensors. Then, two tensors coalesce
into one and the sharing orders connected with other tensors
will be merged if they have the same ends after contraction.
At last, the free orders of these two contracted tensors are also
collected together.

Contraction Sequence with the Lowest Maximum Ex-
pense. Usually, a contraction sequence can be evaluated by
total contraction expense [27], [30], [32] or maximum con-
traction expense [25], [29], [31]. The total contraction expense
is the sum of storage or compute expense at every contraction
step; while the maximum contraction expense considers the
maximum storage or compute expense across all contraction
steps. In essence, the maximum contraction expense becomes
close to the total contraction expense when the length of
each order is large [31]. Moreover, the maximum contraction
expense would be a preferable evaluation metric in practical
hardware system. The reason is that for a hardware system,
while the off-chip resource is usually sufficient, the on-chip
resource for both memory and compute is very limited due
to the concern on chip area and fabrication cost. Thus, the
algorithm is actually executed step by step with frequent data
exchange between off-chip memory and on-chip buffer, rather
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Figure 3: An example of tensor network contraction: (a) A
tensor network with randomly assigned topology and order
values; (b) An arbitrary contraction sequence; (c) The con-
traction sequence with the lowest maximum SE; (d) The
contraction sequence with the lowest maximum CE.

than hold all the contraction steps on the chip. In this sense,
the maximum contraction expense can predict the hardware
running performance better. Therefore, in this paper we adopt
the maximum SE (MS) and the maximum CE (MC) as the
evaluation metrics to measure the contraction cost of a given
contraction sequence:

MS = maxt SE(sqt), MC = maxt CE(sqt) (7)

where t represents the step index and sqt refers to the t-step
tensor contraction in the entire contraction sequence.

In Figure 3(b), we calculate the storage and compute
expenses for each contraction step. We find that the first
contraction step consumes the highest storage expense to store
the tensor T01 after contraction. The first two steps consume

the highest compute expense to calculate tensors T01 and T012.
Intuitively, different contraction sequences have different MS
and MC values. The goal of this work is to find a contraction
sequence that has the lowest MS or MC. Figure 3(c) shows
an expected optimal contraction sequence with the lowest MS,
i.e. sq = (((τττ0τττ3)τττ2)τττ1). Both the MS and the MC occur in
the second contraction step. The contraction sequence with the
lowest MC is given in Figure 3(d), i.e. sq = (((τττ0τττ3)τττ1)τττ2).
The MS also occurs in the second contraction step; while the
MC occurs in the last two steps. From the instances, it is easy
to observe that the contraction sequence with the lowest MS
(or MC) cannot guarantee that the sequence has the lowest
MC (or MS). Thus, the metric should be selected in advance
to evaluate the contraction cost in different scenarios.

B. BFS Search Algorithm

In this paper, we adopt the BFS algorithm as the design basis
[26], [27], which is illustrated in Figure 4. In this example, the
network includes three tensors and we need two contraction
steps to perform the network contraction. We use Setv to
denote the set of possible tensors which are contracted by
v original tensors and have v subscript numbers. Each Setv
contains CvV possible tensors, e.g. Set2 = {T01,T02,T12}. For
each possible tensor, we can find Splitv split cases to divide
its v subscript numbers into two sets representing two split
source tensors which can produce that possible tensor in one
contraction step. The search space of each splitv is O(2v).
There are three possible tensors in Set2 (i.e. T01, T02, and
T12), each of which has one split case with two split source
tensors that can be found in Set1. In Set3, the unique possible
tensor T012 has three split cases, i.e. Split3 = 3, and T012

can be contracted through {τττ0,T12}, {τττ1,T02}, or {τττ2,T01}
with a contraction operation between one split source tensor
in Set1 and the other in Set2. The number of split cases for
each possible tensor in Setv is

Splitv =

{∑bv/2c
k=1 CvV , if v is odd∑v/2−1
k=1 CvV +

C
v/2
V

2 , if v is even
. (8)
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Figure 4: Illustration of the BFS algorithm in a network with
three tensors. The tensors surrounded with a big circle are
termed as “possible tensors”, and the two tensors on the same
row in a split case that can produce each possible tensor are
termed as “split source tensors”.

In the BFS algorithm, we calculate and save the lowest
MS (or MC) for producing every possible tensor and the
corresponding split case (the search starts from Set2 to SetV ).
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Finally, we only need to consider the contraction expense of
the last search iteration. The reason is that, in the last iteration,
the lowest MS (or MC) of producing all split source tensors
can be found in the previous iterations, which have already
been calculated and saved earlier. Thus, after going through
all split cases in the last iteration, the lowest MS (or MC) to
produce each final possible tensor and the corresponding split
case can be acquired. Based on that we are able to determine
the optimal sequence through the reverse trace of the lowest
MS (or MC). The detail of our algorithm implementation
will be introduced in Section III-B.

III. ADJACENCY MATRIX-BASED CONTRACTION SEARCH

In this section, we first describe how to use the adjacency
matrix to update the tensor network during contraction and
how to apply the outer product pruning based on the adjacency
matrix data structure in Section III-A. Then, we introduce
the algorithm details for both the vanilla BFS search and the
improved search with outer product pruning in Section III-B.
Finally, we present the parallelism optimization to further
improve the performance in Section III-C.

A. Data Structure Design

From the above analysis, the only computation during the
search is to calculate SE or CE for each split case of possible
tensors at each iteration according to Equation (5)-(6). Thanks
to the logk representation, these calculations only include
additive operations. However, we still need to get the data
size of two split source tensors in each split case and the
sharing order between them. For faster processing, we propose
an efficient data structure based on adjacency matrix.

A tensor network can be viewed as an undirected graph.
The adjacency matrix format of a network with four tensors
is shown in Figure 5(a). Note that we do not include free orders
in the adjacency matrix. In general, we define each element in
the matrix to satisfy Eτττiτττj +Eτττjτττi = SOτττiτττj = SOτττjτττi and
Eτττiτττi

= 0. Any configuration with non-negative elements that
satisfy the above equation is allowed. The extreme configura-
tion of Eτττiτττj

(or Eτττjτττi
) = SOτττiτττj

= SOτττjτττi
and Eτττjτττi

(or
Eτττiτττj ) = 0 is also acceptable.

Sharing Order and Data Size. For a given split case of
a possible tensor at each iteration, the sharing order between
two split source tensors is the summation of all orders that
connect these two tensors as Equation (3). Assume we want
to find the sharing order between two split source tensors
τττ1 and T02, we have SOτττ1T02

= SOτττ1τττ0
+ SOτττ1τττ2

. Figure
5(a) boxes all elements which are required to compute the
sharing order between them. If we directly use the above naive
calculation, the data access to the adjacency matrix according
to the tensor subscripts usually results in large cost due to
the random access pattern in a 2D space and non-reusable
additions. To address this issue, in Figure 5(b), we design
a more efficient way to calculate the sharing order which
requires two steps: (1) For each split source tensor, all of its
involved original rows in the adjacency matrix are reduced into
a new row vector RTI

via the accumulation operation; (2) For
each row vector of the two split source tensors, the elements

whose tensor subscription appears in the other split source
tensor will be selected and added to produce the sharing order.
Specifically, we first get the row vector RT02

by accumulating
the involved original rows in the adjacency matrix and Rτττ1

from the original adjacency matrix. Then, the sharing order
can be acquired by SOT02τττ1 = RT02 [1]+Rτττ1 [0]+Rτττ1 [2]. We
use the tensor network in Figure 3 as an example to illustrate
the sharing order calculation process. The adjacency matrix
of the sharing orders in the original tensor network is shown
in Figure 5(c). We first get the row vector RT02

by summing
row vectors Rτττ0 and Rτττ2 as in Figure 5(d). Then, the sharing
order SOT02τττ1 can be calculated by accumulating the yellow
box in RT02

and the red boxes in Rτττ1
, which equals 8.

It is worthy noting that the saved row vectors (e.g. T02)
will be frequently reused during the entire search process
towards the optimal contraction sequence, which significantly
reduces the access and calculation costs compared to the naive
scheme solely based on the original adjacency matrix. As the
search iteration goes on, the required new row vectors can be
efficiently obtained given the previously saved row vectors:

RTI
= RTJ

+RTK
, J ∪K = I ∧ J ∩K = ∅, (9)

which avoids redundant accesses to the original adjacency
matrix. Finally we save the row vectors for all possible tensors.
Furthermore, the data size of each possible tensor can be
obtained by calculating the SE of an arbitrary split case as
Equation (5), which is also saved for reuse in the calculation
of consequent SEs and CEs during the search.

Outer Product Pruning. The contraction of two tensors
without any sharing order is called an outer product, e.g. the
contraction between τττ2 and τττ3 in the tensor network provided
in Figure 3. In prior work, it has been demonstrated, for
an arbitrary tensor network, there always exists a contraction
sequence which achieves the lowest MS or MC and does
not include any possible tensor that has split cases with outer
product [31]. Hence, the possible tensors with outer-product
split cases can be pruned during the search of the optimal
contraction sequence. The related calculation of these possible
tensors can be removed accordingly. When the tensor network
is composed by several sub-networks which do not share
orders with each other, the contraction can be done by first
applying tensor contraction in each sub-network and then
do outer product between them with an arbitrary contraction
sequence. To judge whether a possible tensor has outer-
product split cases can also be solved by BFS or minimum
cut [33], whereas, they are not efficient. Especially, when
a tensor network has dense connections, the benefits gained
from search space reduction will be degraded. To this end, we
design a fast method to identify all possible tensors that can
be pruned, which is still based on the adjacency matrix data
structure.

At the beginning, an additional adjacency matrix is gen-
erated, as depicted in Figure 5(e). Compared to the original
adjacency matrix, Eτττii

is set to 1. For a given possible tensor
TI , we aim to find out all original single tensors τττj that do
not share orders with TI . For example, we want to figure out
all τττj that disconnect to T12. According to Equation (3), TI
and τττj are disconnected when SOTIτττj = 0. In the adjacency
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Figure 5: Overview of the adjacency matrix based contraction sequence search: (a) Original adjacency matrix for sharing
orders of a network with four tensors; (b) Sharing order calculation based on row vectors (R); (c) Original adjacency matrix
for sharing orders of the tensor network in Figure 3; (d) Example of the sharing order calculation; (e) Adjacency matrix used
in the outer product pruning; (f) Outer product vector calculation; (g) Adjacency matrix used in the outer product pruning of
the tensor network in Figure 3; (h) Example of the outer product vector calculation, and the corresponding disconnected tensor
and pruned possible tensor.

matrix, all the information about sharing orders of TI are
stored in the involved rows and columns (i.e. #1 and #2 rows,
#1 and #2 columns here in the red boxes of Figure 5(e)). Based
on the sharing order calculation principles, the outer product
vector OTI

can be obtained by accumulating the boxed row
and column vectors, as illustrated in Figure 5(f). From the
outer product vector OT12

, it is easy to observe that the first
element indicates the sharing order between T12 and τττ0, and
the last element represents the sharing order between T12 and
τττ3. The location of zero elements in OT12

can reflect which
original single tensors are disconnected to T12. Note that the
single tensors whose subscript is already in I itself should
not be selected. This is the reason that we set Eτττii to 1,
resulting the elements’ value greater than 0 in OTI

when i ∈ I
(i.e. OT12

[1] and OT12
[2] here). Then, based on the locations

of zero elements, we can infer the prunable possible tensors
which can be contracted by two disconnected tensors and one
of them is T12.

For the example tensor network in Figure 3, the correspond-
ing outer product adjacency matrix is shown in Figure 5(g).
For the possible tensor T12, we find that τττ3 is the original
disconnected tensor, because the last element in the outer
product vector OT12 is zero as in Figure 5(h). Then, we can
conclude that the possible tensor T123 can be pruned from the
search space. Since it can be produced by two split tensors
which do not share orders and one of the split tensor is T12.

B. Contraction Sequence Search Algorithm

Adjacency Matrix based Vanilla Search. Based on the
efficient calculation of sharing orders and prunable possible
tensors shown in Figure 5, we further detail the algorithm of
vanilla BFS search with the proposed adjacency matrix based
data structure. Before going through the search algorithm,
we design a function named SOC to calculate the sharing
orders between two split source tensors TI1 and TI2 . The

inputs of this function are row vectors (RTI1
and RTI2

) and
tensor subscripts (I1 and I2) of two split source tensors. The
implementation is given in Algorithm 1.

Algorithm 1: Sharing Order Calculation (SOC)
1 Function SOC(RTI1

, RTI2
, I1, I2)

2 SOTI1
TI2

= 0;

3 for all i ∈ I1 do SOTI1
TI2

+ = RTI2
[i]; end

4 for all i ∈ I2 do SOTI1
TI2

+ = RTI1
[i]; end

5 return SOTI1
TI2

6 end

The overall search algorithm is provided in Algorithm
2. Notice that LME stores the lowest maximum expense
required to produce all possible tensors. At the beginning,
the data size Sτττi

, the row vector Rτττi
, and the LMEτττi

for
each single tensor in Set1 are initialized. The initialization of
LME depends on different evaluation metrics (MS or MC).

During the search, the first outer loop goes through all sets
and the second outer loop traverses all possible tensors of the
selected set. At the beginning of the second outer loop, we will
calculate the size of the current possible tensor (i.e. STI

) and
its row vector representation (i.e. RTI

) based on an arbitrary
split case according to Equation (4) and (9), respectively. If
the measurement metric is MS, the SE of TI will be saved
as the contraction expense (i.e. expense) of TI . The inmost
loop traverses all split cases of TI . For each split case, if the
measurement metric is MC, the CE of contracting two split
source tensors is calculated and updated into expense. Then,
the maximum expense required for producing TI under the
current split case (i.e. MEtmp) can be obtained by taking the
maximum value from expense and the LMEs of producing
two split tensors, where the latter values have been calculated
and saved in the previous iteration. If MEtmp is smaller
than the LME value saved in LMETI

, LMETI
will be
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Algorithm 2: Adjacency Matrix based Vanilla Search
1 Initialize the adjacency matrix adjmat;
2 Initialize all elements in LME with MAX Float;

3 for v = 0 : V − 1 do
4 Sτττv = sum(adjmat[v, :]) + sum(adjmat[:, v]) + FOτττv ;
5 Rτττv = adjmat[v, :];

6 if to find the lowest MS then LMEτττv = Sτττv ; end
7 else if to find the lowest MC then LMEτττv = 0; end
8 end
9 //Traverse all sets

10 for v = 2 : V do
11 //Traverse all possible tensors in each set
12 for all TI ∈ Setv do
13 Select an arbitrary split case of TI with TI1 and TI2 ;
14 SOTI1

TI2
= SOC(RI1 , RI2 , I1, I2);

15 STI
= STI1

+ STI2
− 2SOTI1

TI2
;

16 RTI
= RTI1

+RTI2
;

17 if to find the lowest MS then
18 expense = STI

;
19 end
20 //Traverse all split cases
21 for all split cases of TI do
22 Get two split source tensors TI1 and TI2 ;

23 if to find the lowest MC then
24 SOTI1

TI2
= SOC(RTI1

, RTI2
, I1, I2);

25 expense = STI
+ SOTI1

TI2
;

26 end
27 MEtmp = max(expense, LMETI1

, LMETI2
);

28 if MEtmp < LMETI
then

29 LMETI
=MEtmp;

30 sqTI
= [I1, I2];

31 end
32 if to find the lowest MS and MEtmp == expense

then
33 break;
34 end
35 end
36 end
37 end

updated with MEtmp, and the optimal split case for TI will
also be updated into sq. If the measurement metric is MS,
we should note although the saved LMEs of producing two
split tensors are variable across split cases, the SE value of
TI does not change. Therefore, if the largest SE occurs in
the last contraction step (i.e. MEtmp equals expense), there
is no need to search the rest split cases since the MEtmp
value cannot be smaller than current LMETI

anymore and
no update of LMETI

will occur.
Improved Search with Outer Product Pruning. In the

previous subsection, we have illustrated how to get discon-
nected tensors and prunable tensors based on the outer product
vector OTI

of a possible tensor TI . Here, we further detail how
we apply the outer product pruning to the search algorithm.
We explain it using a chain structure tensor network with
five tensors as depicted in Figure 6(a). The search space
pruning based on outer product is shown in Figure 6(b). For
the possible tensors in Set1, we list all disconnected tensors
and prunable possible tensors for each original single tensor.
In Set2, we need to get the LME and perform the outer
product search for the first possible tensor T01, because it is
not excluded from the search space in Set1. For the prunable

possible tensor T02, we do not search its optimal contraction
sequence, and also we skip its outer product search. Later we
will demonstrate that our search strategy is able to find all
prunable possible tensors.
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Figure 6: Outer product pruning during the search process:
(a) An example tensor network with a chain structure; (b) The
outer product pruning for all original tensors in Set1 and two
possible tensors in Set2.

When we apply the outer product pruning, we find that the
prunable possible tensors might be recognized multiple times.
For the prunable possible tensors identified by the possible
tensors from the same set, we call them intra-redundant
prunable tensors (e.g. T024 marked by orange stars). For those
prunable possible tensors identified by the possible tensors
from different sets, we call them inter-redundant prunable
tensors (e.g. T013 and T014 marked by purple stars). In this
work, we propose a method to reduce the recognition times
for inter-redundant prunable tensors, which is presented in
Algorithm 3.

Algorithm 3: Outer Product Pruning (OPP )
1 Function OPP(OTI

, vI )

2 Find set J = {j | OTI
[j] = 0};

3 for all J ′ ⊆ J & vJ′ > vI do
4 PTJ′∪I

= 0; //Pruned from the search space.
5 end
6 end

We use PTI
to indicate whether a possible tensor will be

pruned from the search space (0 pruned, 1 preserved). The
input of the function OPP (outer product pruning) is the
outer product vector OTI

and the number of elements in
the subscript I which is denoted as vI (vI represents how
many original single tensors are involved in producing TI ).
In the function OPP , we find all prunable possible tensors
based on the possible tensor TI . The possible tensors TJ′∪I
can be pruned from the search space, where TJ′ represents
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the possible tensors disconnected to TI . Note that during
our pruning, we only consider the disconnected tensors TJ′

which satisfy vJ′ > vI . The reason is that during the previous
search of TJ′′ , when vJ′′ < vI , the possible tensor TJ′′∪I has
already been pruned. With our method, parts of inter-redundant
pruning can be reduced. For example, in Figure 6(b), when we
apply OPP to T01, the disconnected tensors do not include τττ3
and τττ4 because T013 and T014 have already been pruned. In
this way, we prevent the redundant recognition of the pruned
possible tensors T013 and T014.

We first give a sketch proof that our pruning method is
sufficient to find all prunable possible tensors. For an arbitrary
prunable possible tensor TI which can be contracted by a
set of possible tensors T = {TIi | i = 0, 1, ...,m}, where
Ij ∩ Ik = φ and SOTIj

TIk
= 0 if j 6= k (note that all TIi

are not prunable possible tensors). Suppose vIj 6 vIi , for
i = 0, 1, ...,m. Obviously, vIj 6 vI/2 6 vI\Ij . Therefore,
each prunable possible tensor TI must be pruned during the
pruning stage of TIj . Our outer product pruning algorithm
will go through all possible tensors which can be contracted
without outer product and begin to search and remove the
prunable possible tensors from Set1. Therefore, it is sufficient
to find all prunable possible tensors. Next, we analyze the
complexity of finding a prunable possible tensor (i.e. the
recognition times for a prunable possible tensor). Based on
our pruning process, for an arbitrary prunable possible tensor
described previously, it will be found from the subset T ′ of T ,
where T ′ = {TIj | vIj 6 vIk , j, k = 0, 1, ...,m}. Apparently,
the number of elements in T ′ is smaller than or equals the
number of elements in the subscript I . Thus, the complexity
is vI .

The overall algorithm is shown in Algorithm 4. At the
initialization stage for each original tensor in Set1, besides the
data size Sτττv

, the row vector Rτττv
, and the lowest maximum

expense LMEτττv
, the outer product vector Oτττv

is also calcu-
lated and the first round of the outer product pruning is then
executed. During the search, for each iteration in the second
outer loop, only those possible tensors whose PTI

value equals
one will be selected to run the further contraction expense
counting. Also, for each split case of TI , if one of the split
source tensor (i.e. TI1 or TI2 ) has been marked to be pruned,
the current split case is bypassed since it will not appear in the
final optimal contraction sequence. In contrast to the vanilla
search algorithm, we need to update the outer product vector
OTI

for each possible tensor when we apply the outer product
pruning during search.

C. Parallelism Optimization
One advantage of our proposed algorithms is that all of

them are easy to execute in parallel. When we calculate
the contraction expense of possible tensors in a Setv , the
processing of each one is independent from others. Therefore,
there are opportunities for parallelism optimization. Figure 7
shows an example of two-thread parallel optimization when
calculating the contraction expense of possible tensors in Set3,
in the case of a network with four tensors.

In our vanilla search (without outer product pruning), for
each possible tensor we calculate the storage expense, row

Algorithm 4: Improved Search with Outer Product
Pruning

1 Initialize the adjacency matrix adjmat;
2 Initialize all elements in LME with MAX Float;
3 Copy adjmat to adjmatO and set diagonal elements to 1
4 Initialize all elements in P with 1;

5 for v = 0 : V − 1 do
6 Sτττv = sum(adjmat[v, :]) + sum(adjmat[:, v]) + FOτττv ;
7 Rτττv = adjmat[v, :];
8 Oτττv = adjmatO [v, :] + adjmatO [:, v]T ;

9 if to find the lowest MS then LMEτττv = Sτττv ; end
10 else if to find the lowest MC then LMEτττv = 0; end
11 OPP (Oτττv , 1); //Apply outer product pruning to τττv
12 end
13 //Traverse all sets
14 for v = 2 : V do
15 //Traverse all possible in each set
16 for all TI ∈ Setv and PTI

= 1 do
17 flag = False;

18 //Traverse all split cases
19 for all split cases of TI do
20 Get two split source tensors TI1 and TI2 ;

21 if PTI1
= 0 or PTI2

= 0 then Continue; end

22 if flag = False then
23 SOTI1

TI2
= SOC(RTI1

, RTI2
, I1, I2);

24 STI
= STI1

+ STI2
− 2SOTI1

TI2
;

25 RTI
= RTI1

+RTI2
;

26 OTI
= OTI1

+OTI2
;

27 if to find the lowest MS then
28 expense = STI

;
29 end
30 flag = True;
31 end
32 if to find the lowest MC then
33 SOTI1

TI2
= SOC(RTI1

, RTI2
, I1, I2);

34 expense = STI
+ SOTI1

TI2
;

35 end
36 MEtmp = max(expense, LMETI1

, LMETI2
);

37 if MEtmp < LMETI
then

38 LMETI
=MEtmp;

39 sq = [I1, I2];
40 end
41 if to find the lowest MS and MEtmp == expense

then
42 break;
43 end
44 end
45 OPP (OTI

, vI); //Apply outer product pruning to TI
46 end
47 end

Thread2

Thread1
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Figure 7: Illustration of the multithread optimization.
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vectors, and update the LME by traversing all split cases. Ap-
parently, these operations do not have memory access conflicts
between the possible tensors in the same set. When we apply
the outer product pruning in the search process, one additional
operation is to update the outer product vector. Fortunately,
each possible tensor only updates its own outer product
vector. Another operation during search space reduction is to
determine whether a possible tensor will be excluded out from
final optimal contraction sequence or not. Although different
possible tensors may write the same PTI

simultaneously, the
values of them are identical without incurring incorrect results.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

Most of our experiments were conducted on an Intel Core i7
processor (2.8 GHz) with 16 GB DDR3 DRAM (1600 MHz),
similar with [27] for fair comparison. Moreover, to validate the
parallelism optimization in Section IV-D, we further tested on
an Intel Xeon processor (2.5GHz) with 384GB DDR4 RAM
(2133MHz) for the support of more threads. We evaluate on
tensor networks with three basic topologies: chain, binary
tree, and radial network, as presented in Figure 9. Since the
basic topology is not sophisticated enough, we further injected
random edges. In short, our network construction includes two
stages: (1) initializing a connective network with V − 1 edges
based on one of the basic topologies; (2) adding edges with
random locations into the network. All the FO and SO values
are positive. In our experiments, we set all SO with the same
value which is five times larger than all FO values.

B. Vanilla Search without Space Reduction
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Ti
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Figure 8: Search time under different measurement metrics
without search space reduction.

Table II: Search time (s) under different network scale (i.e.
the number of tensors) and measurement metrics.

Net. Scale 15 16 17 18 19 20

MS Vanilla 0.30 1.17 3.25 10.61 35.85 105.89

MC Vanilla 0.58 1.71 5.80 23.44 70.54 254.43

In this subsection, the tensor networks we evaluate are dense
networks, i.e. fully connected networks. In the vanilla BFS
search without space reduction, we apply exhaustive search,
which means that the LME of all possible tensors will be
searched. Figure 8 shows the result of search time under

different measurement metrics as the number of tensors in
the network increases. Table II provides detailed time data in
the cases of more than 15 tensors.

The first observation is that finding the lowest MS is
cheaper than finding the lowest MC. One reason is that in the
calculation of CE, we need the sharing order between split
source tensors in all split cases; however, in the calculation
of SE we only need the sharing order once from an arbitrary
split case. Another reason is due to the proposed early stop
mechanism in searching the lowest MS (see line 32-34 in
Algorithm 2). The second observation is that when the number
of tensors in the network increases by one, the search time
grows about three times. This increment relies on the number
of split cases during the entire search, which is

Splittotal =

V∑
v=1

CvV ·Splitv =
V∑
v=1

CvV ·O(2v) = O(3V ) (10)

where we assume the network contains V tensors. It can be
seen that the search space is O(3V ).

C. Improved Search with Space Reduction

In this subsection, we evaluate the performance benefited
from the search space reduction via outer product pruning.
As aforementioned in Section IV-A, we test on three kinds of
tensor networks with different portion of extra edges. In order
to guarantee the reproducibility and fairness across different
network topologies, we adopt the same random seed in all
experiments.

Table III: Search time (s) with and without outer product prun-
ing under different evaluation metrics and basic topologies.
Here each tensor network contain 19 tensors.

MS Vanilla MS Pruning MC Vanilla MC Pruning

Chain 0.83 0.27 70.54 0.30

Tree 2.45 1.28 70.54 2.03

Radial 28.70 26.63 70.54 27.50

We first investigate the performance gain from applying the
outer product pruning for tensor networks with different basic
topologies. Here each tensor network contains 19 tensors and
does not include extra edges. The comparison is shown in
Table III. Apparently, our pruning strategy can reduce the
search time for all networks under both evaluations metrics
when compare to the vanilla search. Another observation is
that for the vanilla search, when the evaluation metric is MS,
the search time significantly varies across different network
topologies. The reason is caused by the variance of the early
stop mechanism that has variable effects on different network
topologies.

Also, with our pruning strategy, the search time similarly
varies across different network structures under both metrics.
The detailed analysis is presented in Figure 9, which provides
the search time with the outer product pruning on networks
under different basic topologies and tensor numbers. From the
results, we can get several observations. First, with the same
reduction strategy, finding the lowest MS is still faster than
finding the lowest MC, which is similar with the observation
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Figure 9: Search time comparison on different network topologies without extra edges after applying the outer product pruning:
(a) Chain topology; (b) Tree topology; (c) Radial topology. In order to keep the same time range across all cases, we do not
show the search time larger than 150 seconds.
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Figure 10: Search time comparison on different network topologies with different portions of extra edges: (a) Chain topology;
(b) Tree topology; (c) Radial Topology. Here each network contains 19 tensors.

in the vanilla search. Second, with our reduction optimization,
the search on the chain topology goes the fastest while on
the radial topology is the slowest. On the chain topology,
it has the most prunable possible tensors, leading to a high
reduction ratio of the search space; in contrast, the number
of prunable possible tensors greatly decreases on the radial
topology, which still has a large search space after applying
the outer product pruning.

The results after applying our pruning strategy on the
networks with different portions of extra edges are shown
in Figure 10. We first analyze the performance when the
measurement metric is MC. We find that the search time
is similar among the tensor networks with different basic
topologies after we introduce extra edges. The reason is that
when we add extra edges, the basic topology impacts less
on the number of prunable possible tensors. Moreover, the
vanilla algorithm goes through all possible tensors and all split
cases no matter if the possible tensors can be pruned from the
search space. Thus, the search time keeps unchanged even
if with different portions of extra edges in the network. The
last observation is that when the portion of extra edges is
smaller than 50%, the search can take benefit from applying
our search space reduction; however, as the portion of extra
edges becomes larger, the search time with space reduction
even exceeds the vanilla algorithm without space reduction.
This is because the reduction overhead fails to cover its benefit
when the network is sufficiently dense with a very limited
reduction ratio.

Also in Figure 10, we analyze the performance when the
measurement metric is MS. Different from the results of
the observation in searching the lowest MC, the search time
of the vanilla search varies as extra edges increase. This is
because the vanilla search of the lowest MS does not go
through all split cases due to the early stop mechanism, and the
increased edges can impact the early stop time. Second, there
is no benefit from applying the outer product pruning after we
introduce extra edges into the network. This is because the
calculation under the MS metric is cheaper, which makes the
overhead introduced by the outer product pruning relatively
more heavy than that under the MC metric. At last, when the
basic topology is radial, the search time is reduced when we
introduce <20% extra edges. This phenomena is again caused
by the early stop mechanism. For the radial topology with a
small number of extra edges, the center tensor in the original
network often consumes the largest SE. Thus, there is no early
stop for the possible tensors which involve the center tensor
during search (i.e. the conditions of line 32-34 in Algorithm 2
or line 41-43 in Algorithm 4 will not happen). This situation
can be alleviated by introducing more extra edges.

Except the above network topologies, we also evaluate our
search methods on grid topology which is an important case in
both physics and machine learning communities. We estimate
the performance on three different grid sizes in Figure 11(a).
Based on the search time result, the search complexity of
the grid topology lies between the tree topology and radius
topology which is determined by the number of prunable
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possible tensors. Then we introduce different portions of extra
edges in the network under the grid size of 3× 8. The result
is depicted in Figure 11(b), which presents similar characters
as on aforementioned topologies.
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Figure 11: Search time for the network with grid topology
after applying outer product pruning: (a) Search time without
extra edges under different grid sizes; (b) Search time with
different portions of extra edges under grid size of 3× 8.
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Figure 12: Search time breakdown on a tree network with
19 tensors under different portions of extra edges. Here the
measurement metric is MC and we include the outer product
pruning during search.

Figure 12 presents the search time breakdown on a tree net-
work with 19 tensors under different portions of extra edges.
The calculation part includes the sharing order calculation and
the contraction expense calculation, and the overhead includes
other operations like traversing all possible tensors and split
cases, finding prunable possible tensors, data loads, etc. When
the measurement metric is MS, the sharing order calculation
and the contraction expense calculation only happen once for
each possible tensor. So we only evaluate the time breakdown
when the measurement metric is MC. The total overhead
time can be acquired by removing line 32-35 in Algorithm 4.
From the results, the portion of calculation time increases from
3.9% to 53.8% as more extra edges are added into the tensor
network. More extra edges can reduce the number of prunable
possible tensors and increase the search space. Hence, more
search time will be spent on calculation. Also, we find that
the ratio of calculation time is close when we add 65% and
85% extra edges. The reason is that the number of prunable
possible tensors in later Sets are similar in these two cases,
and the possible tensors in later Sets occupy majority of the

search time since they have a larger number of split cases
compared with the possible tensors in earlier Sets.

D. Parallelism Analysis
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Figure 13: Speedup over the single-thread implementation
through parallelism optimization on a binary tree with 19
tensors and 25% extra edges.

We evaluate the speedup after using the multithread opti-
mization in Figure 13. The testing network is a binary tree
with 19 tensors and 25% extra edges, and the outer product
pruning is used during search. As aforementioned, different
from other subsections, here we adopt an Intel Xeon processor
to support more threads. We find that multithread optimization
gains a higher speedup when the measurement metric is MC
since the portion of overhead in MC is smaller. Furthermore,
as the number of threads increases, the speedup grows but
eventually saturated. This is because other overhead caused
by the multithread implementation begins to matter when the
number of threads reaches a threshold.

E. Comparison with Prior Work

Some prior work try to find an approximate optimal con-
traction sequence of a tensor network [29], [32] or target on
a specific network topology [31]. Our algorithms can find
the exactly optimal solution for arbitrary network. For the
prior work that consider the compute cost of the contraction
sequence also have some constraints on the tensor network.
For example, the search on networks without free orders is
targeted in [30]; although a polynomial solution is provided
in [31], the networks are restricted in the tree topology.

One of the closest prior work is OP & µCap [27], which
considers the compute cost of a given contraction sequence.
Instead of finding a sequence with the least MC, the measure-
ment metric in [27] is the total CE of a contraction sequence.
Note that maximum CE is usually close to total CE as the
maximum CE is often much larger than the CE in other
steps. Since the measurement metrics of this work and the
prior work in [27] are actually different, we just present a
coarse comparison for interesting insights in this subsection
rather than intending to beat it.

We compare our pruning method with OP & µCap on a
binary tree without extra edges. The comparison is shown
in Figure 14. Here we define the order set as OS =
{O1, O2, ..., On}. Each free or share order is randomly chosen
from OS. We use |OS| to denote the size of order set, and
we have |OS| = n here. We find that the size of OS affects
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Figure 14: Search time comparison between our method and
the OP & µCap [27] on a binary tree (a) without and (b) with
25% extra edges.

the search time of OP & µCap a lot. Although when |OS|
is very small, e.g., |OS| = 1, OP&µCap is faster than our
method, the performance degrades dramatically and becomes
much worse than ours as |OS| increases. Compared with [27],
our method will not be affected by the value of |OS|. This is
because, when we consider MS, the search time is affected
by the number of prunable possible tensors rather than |OS|.
When we include 25% extra edges, all the performance results
degrade due to the larger search space. Notice that in this case,
our method behaves faster at all |OS| settings. This indicates
that when the tensor network structure does not follow a
regular pattern, our search algorithm can be a better choice.

V. CONCLUSION

In this work we focus on the acceleration of searching an
optimal contraction sequence with the lowest MS or MC.
A data format based on logk representation and data structure
based on adjacency matrix with additional intermediate vectors
are designed for efficient computation. We further incorporate
the outer product pruning into the BFS search to reduce the
search space. At last, in the execution level, we implement the
multithread optimization to improve the parallelism.

From the performance analyses under different basic topol-
ogy, network scale, and portion of extra edges, we provide
several insights as follows. (1) The evaluation metric impacts
the search algorithm and the search time. For example, the
search time would become smaller when the evaluation metric
of the contraction sequence is the maximum storage expense,
due to the less computation and the early stop mechanism.
(2) The data structure and hardware-level support indeed
help. The adjacency matrix based design gains acceleration

and the parallel execution further improves the performance.
Moreover, the data access in our design is discontinuous,
which may decrease the cache hit rate when the network
scales up. The hardware-level architectural design might help
in the future. (3) The tensor network topology also matters. In
sparse networks, when the measurement metric is MC, the
outer product pruning method can gain more benefits, and
the chain/tree topology with fewer connections gives more
benefits than the radial topology. However, in dense networks
with increased connections, we recommend not to use any
space reduction technique that usually pays unaffordable extra
overhead, and the performance gap between basic topologies
will be narrowed. In reality, it is possible to design specific
algorithms according to the practical topologies.
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