
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Hardware-Enabled Efficient Data Processing with
Tensor-Train Decomposition

Zheng Qu, Lei Deng, Member, IEEE, Bangyan Wang, Hengnu Chen, Jilan Lin, Ling Liang,
Guoqi Li, Member, IEEE, Zheng Zhang, Member, IEEE, Yuan Xie, Fellow, IEEE

Abstract—In recent years, tensor computation has become a
promising tool for solving big data analysis, machine learning,
medical image and EDA problems. To ease the memory and com-
putation intensity of tensor processing, decomposition techniques,
especially Tensor-train Decomposition(TTD), are widely adopted
to compress the extremely high-dimensional tensor data. Despite
TTD’s potential to break the curse of dimensionality, researchers
have not yet leveraged its full computational potential, mainly
because of two reasons:(1) Executing TTD itself is time- and
energy-consuming due to the singular value decomposition(SVD)
operation inside each of TTD’s iteration; (2) Additional soft-
ware/hardware optimizations are often required to process the
obtained TT-format data in certain applications such as deep
learning inference.

In this paper, we address these challenges with two approaches.
Firstly, we propose an algorithm-hardware co-design with cus-
tomized architecture namely TTD Engine to accelerate TTD. We
use MRI image compression as a demo application to illustrate
the efficacy of the proposed accelerator. Secondly, we present a
case study demonstrating the benefit of TT-format data process-
ing and the efficacy of using TTD Engine. In the case study,
we use TT approach to realize convolution operation, which is
difficult and nontrivial for TT-format data. Experimental results
show that, TTD Engine achieves, on average, 14.9× ∼ 36.9×
speedup over CPU implementations and 4.1× ∼ 9.9× speedup
compared to the GPU baseline. The energy efficiency is also
improved by at least 14.4× and 5.4× over CPU and GPU,
respectively. Moreover, our hardware-enabled TT-format data
processing further leads to more efficient implementations of
complicated operations and applications.

Index Terms—Tensor-Train Decomposition, Algorithm Hard-
ware Co-design, TT-format Data Processing

I. INTRODUCTION

TENSOR is a high-dimensional generalization of vector
and matrix, and is a natural choice for efficiently solving

high-dimensional big data analysis problems. Compared with
matrix analysis, multiway data processing is more versatile
and has the potential to capture multiple interactions and
couplings [1]. Previous studies have demonstrated its use in
diverse branches of data analysis, such as EDA, signal and
image processing, biometrics, quantum computing, and so

This work was partially supported by National Science Foundation (Grant
No. 1725447, No. 1817037). Corresponding author: Lei Deng. Zheng Qu,
Bangyan Wang, Jilan Lin, Ling Liang, Zheng Zhang, and Yuan Xie are
with the Department of Electrical and Computer Engineering, University
of California, Santa Barbara, CA 93106, USA (email: {zhengqu, bangyan,
jilan, linglinag, zhengzhang, yuanxie}@ucsb.edu). Lei Deng, Hengnu Chen
and Guoqi Li are with the Department of Precision Instrument, Cen-
ter for Brain Inspired Computing Research, Tsinghua University, Bei-
jing 100084, China (email: leideng@ucsb.edu, chn18@mails.tsinghua.edu.cn,
liguoqi@mail.tsinghua.edu.cn).

forth [1]–[6]. Nevertheless, processing big data with tensor-
based approaches is challenging due to the high dimensionality
and large data size. Therefore, more and more attentions are
drawn to tensor decomposition to compress tensors in terms of
both dimension and size, which has been playing an important
role in data mining, pattern recognition, object detection and
classification [7]–[13].

Tensor-train decomposition (TTD) [14] is one of the most
popular tensor decomposition methods because of its ability
in providing highly compressed tensor data while keeping sig-
nificant computation accuracy with customizable constraints.
More importantly, it also enables efficient data processing on
the base of TT-format data. However, there are still challenges
existed in TT-format data processing. The reasons are of two
folds. First, obtaining the TT representation, the initial step
for TT-based data processing, is time consuming because of
the iterative decomposition procedure over large-scale tensor
data. In each of the TTD iteration, a truncated singular
value decomposition (SVD) is used to decompose a large
intermediate matrix, which is both memory- and compute-
intensive. Second, there is a big gap to adapt a typical
algorithm to the TT-based method. On one hand, normal
operations like addition and multiplication cause the TT-rank
to grow significantly [14], which require us to approximate
the TT result afterwards. On the other hand, some simple
element-wise operations like ReLU in neural networks, can
be very complicated for TT-format data, because each of
the original element is now represented as a sequence of
matrix multiplication. Therefore, additional efforts are needed
if we want to effectively take advantage of the TT-format data
analysis. Previous work have mainly focused on directly using
TT-format data to perform simple computations like matrix
multiplications [3], [13]. However, efficient execution of TTD
itself and implementing more complicated operations in TT
format are rarely touched.

In this work, we aim at addressing the mentioned prob-
lems with the following approaches. (1) To reduce the TTD
overhead, we propose TTD Engine, the first customized archi-
tecture for efficient execution of the TTD algorithm. Instead
of naively implementing the original TTD algorithm, we adapt
it by virtue of the special high-order tensor data structure as
well as data sparsity and symmetricity. (2) To bridge the gap
between TT-format data and application algorithms, we move
forward by proposing a decomposed computation pattern for
element-wise operations and resolving the rank-growth issue
with the help of TTD Engine. We conduct a case study on the
base of TTD Engine to implement convolutional operations

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

𝑗𝑗 = 1,⋯ , 𝐽𝐽

𝑖𝑖=
1,
⋯

,𝐼𝐼

𝑗𝑗 = 1,⋯ , 𝐽𝐽

𝑖𝑖=
1,
⋯

,𝐼𝐼

Fig. 1: A 3rd-order tensor.

over TT-format data, which are considered to be difficult
and inefficient for TT-based data processing. We show that
with specialized hardware support and algorithm design, it is
possible and beneficial to reformulate the existing operations
in various applications using the TT format to achieve better
efficiency.

Our contributions in this work are summarized as follows:
• We develop a hardware friendly computing scheme for

TTD by adjusting the computation pattern of SVD within
each TTD iteration. The modified SVD explores data
sparsity and symmetricity during the computation process
to reduce the overall compute cost.

• Based on the proposed scheme, we present the first TTD
accelerator with decoupled PE array design and optimized
dataflow. Experimental results show that TTD Engine
achieves up to 36.9× and 9.9× speedup over state-of-the-
art CPU and GPU implementations respectively, while
providing significant improvements on energy efficiency.
We further use a real-world MRI image dataset to perform
image compression as a demo application on the proposed
TTD accelerator.

• We demonstrate the benefit of hardware-enabled TT-
format data analysis by addressing the rank-growth is-
sue with TTD Engine and proposing a decomposed
computation pattern for element-wise operations. A case
study is presented to use TTD Engine to accelerate data
convolution which shows considerable speedup over CPU
when dealing with large-scale vectors.

II. BACKGROUND

A. Tensor Knowledge and Notations

Tensors are multidimensional data arrays, which can be
viewed as natural generalizations of vectors and matrices. Each
dimension has its own coordinates and length. An N -way
tensor, also called an Nth-order tensor, is a tensor with N
dimensions or modes. For example, a third-order tensor has
three indices, and can be visually described by Figure 1. Under
this setting, vectors can be viewed as first-order tensors and
denoted as a, while matrices are second-order tensors that we
denote as A. Finally, high-dimensional tensors are represented
with A in the further content. A real-valued tensor of order
N can be denoted as A ∈ RI1×I2×···×IN and its entry is
ai1,i2,...,iN .

(a) Mode-1 Fibers: x:jk (b) Frontal Slices: x::k

Fig. 2: Fibers and slices of a 3rd-order tensor.

By using only a subset of the indices in the original tensor
and fixing the rest, we can get a subtensor. Particularly, a
vector-valued subtensor, also termed as a fiber, is generated
by using only one index from the original tensor. A matrix-
valued subtensor uses two indices, and is therefore called a
slice as shown in Figure 2.

The unfolding matrix of a tensor is generated by reordering
the elements of the original N -way tensor into a matrix. In our
paper, we focus on the special case of the unfolding matrix,
which is called the mode-n unfolding matrix. Its definition
is concise. Specifically, for a tensor A ∈ RI1×I2×···×IN , its
mode-n unfolding matrix is generated by arranging the mode-
n fibers to be the column of the target matrix, and is denoted
as A(n). The notation of the unfolding matrix will be further
used when we describe the TTD algorithm.

Generalized from matrix multiplication, two tensors can also
be multiplied together to form up a new tensor, such process
is called tensor contraction. The full definition and procedure
of tensor multiplication is much more complicated than those
in the matrix case, which are detailed for example in [15].
Here in this work, we only consider the mode-n contraction,
i.e., multiplying a tensor by a matrix (or vector). Given tensor
A ∈ RI1×I2×···×IN and matrix M ∈ RJ×In , then the mode-n
product A×nM ∈ RI1×···×In−1×J×In+1×···×IN is obtained
by the contraction over the nth dimension, i.e. each element
of A×nM equals

∑In
in=1 xi1xi2 · · · iN ×mjin .

B. Tensor Train Decomposition (TTD)

TTD is originally proposed by Oseledets in [14]. The overall
procedure of the naive TTD algorithm is given in Alg. 1. In
TTD, we try to approximately represent a given tensor A with
tensor B, which can be described as:

Bi1,i2··· ,id = G1(i1)G2(i2) · · ·Gd(id). (1)

Each Gk(ik) is an rk−1×rk matrix, where rk is called the TT-
rank that can be either predefined before the decomposition or
decided during runtime according to the required decomposi-
tion accuracy. Gk is an rk−1 × Ik × rk tensor core extracted
from the original high-order tensor. In each TTD iteration,
we need to perform Singular Value Decomposition (SVD) of
an auxiliary matrix to get a tensor core. Therefore, it takes
d sequential TTD iterations to finish the decomposition of
a given tensor. Besides, at the beginning of each iteration,
we need to reshape the given matrix into the required size

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

𝑖𝑖1𝛼𝛼1 𝛼𝛼1 𝛼𝛼2𝛼𝛼1𝑖𝑖2𝛼𝛼2 𝛼𝛼3𝛼𝛼2𝑖𝑖3𝛼𝛼3 𝛼𝛼3𝑖𝑖4

Fig. 3: A tensor-train network.

Algorithm 1 TT-SVD

Require: d-dimensional tensor A, approximation error ε.
Ensure: Tensor cores G1, ..., Gd of the TT-approximation B

in the TT format with TT-ranks rk equal to the δ-ranks of
the unfoldings Ak of A. The approximation error satisfies:

||A − B||F ≤ ε||A||F

1: {Initialization} Compute the truncation parameter:
δ = ε

√
d− 1||A||F

2: Temporary tensor: C = A, r0 = 1.
3: for k = 1 to d− 1 do
4: C =reshape(C, [rk−1Ik, numel(C)/(rk−1Ik)])
5: Compute δ-truncated SVD:

C = USV T + E, ||E||F ≤ δ, rk = rankδ(C)
6: New tensor core: Gk =reshape(U , [rk−1, Ik, rk])
7: C = SV T

8: end for
9: Gd = C

10: Return tensor B in the TT format represented by tensor
cores G1, ..., Gd.

before we can perform SVD. With the TT-format data, we can
simply contracting these tensor cores together to reconstruct
the approximated tensor which is close to the original tensor
A.

Notice that, the product of these parameter-dependent ma-
trices in Equation (1) is a matrix of size r0×rd, this indicates
the boundary condition of r0 = rd = 1. Moreover, since
r0 = rd = 1, TTD can also be visually represented by a graph
called linear tensor network, as shown in Figure 3. There are
two different types of nodes in this graphical representation.
The rectangles are the tensor cores with the spatial indices (ik
from the original tensor) and auxiliary indices αk. The circles
are indeed links to connect two adjacent tensor cores with
same auxiliary index αk. This means that these two tensor
cores are contracted together, and further being contracted
with the following tensor cores to form the final d-dimensional
tensor.

The most important step of TTD is how to extract these
tensor cores from the original high order tensor. In this work,
we focus on the classical TT-SVD approach, which computes
such TTD using d-sequential SVDs of auxiliary matrices.

III. SVD ALGORITHM ADAPTATION

As introduced above, the computation of TTD is dominated
by sequential SVD decompositions over the temporary auxil-
iary matrices. Therefore, reducing the SVD latency is vital for
accelerating TTD algorithm. In this section, we present our
observations of these auxiliary matrices that motivate us to
design an adapted SVD decomposition that directly reduces
the overall latency from algorithmic level. The proposed SVD

Algorithm 2 Adapted SVD Algorithm

Require: 2-dimensional matrix Am×n where n � m, total
iteration number N .

Ensure: Approximate decomposition of A = U × SV T with
an orthonormal matrix U and orthgonal matrix SV T .

1: {Initialization} i = 0, B = AAT , B ∈ Rm×m, QH = In
2: Compute Arnoldi Iteration: QTkHQk = B, where H is a

symmetric and tridiagonal matrix since B is symmetric.
3: while i ≤ N do
4: d = H[n− 1, n− 1]
5: H = H − dIn
6: QiRi = qr(H)
7: H = RiQi + dIn, H stays symmetric and tridiagonal.
8: QH = QHQi
9: end while

10: U = QkQH
11: SV T = UTA
12: Return U, SV T

also enables more efficient hardware implementation which
will be demonstrated in Section IV&V.

First, consider a given matrix A ∈ Rm×n, the singular value
decomposition of A is defined by:

A = USV T (2)

where U and V are orthogonal matrices of m× r and n× r,
as UUT = Im, V V T = In (Im is the identity matrix of
size m × m, same for In). S is a diagonal matrix such
that S = diag(σ1, σ2, · · · , σr), σk are the singular values of
A. Among the existing numerical methods to compute SVD
decomposition, one-sided Jacobi [16] is considered to be the
most hardware friendly because of its fast convergence rate and
good algorithm parallelism. The basic idea is to zero out off-
diagonal elements using a series of orthogonal transformations
between each pair of the matrix columns, and repeat this pro-
cedure for multiple iterations until convergence. Prior works
[17]–[19] have proposed several customized accelerators for
SVD using Jacobi method.

However, directly using the Jacobi method for TT-SVD is
inefficient. To be more specific, in TTD, the auxiliary matrices
to be decomposed are both large and unbalanced (i.e., one
dimension is significantly longer than the other). For example,
the first matrix to be decomposed is the first-mode unfolding
matrix whose size is I1 × I2I3 · · · IN . While Jacobi method
requires multiple iterations to converge, within each iteration,
we need to load and update the whole matrix. For tensor data,
the size of such matrix can easily exceeds the capacity of
caches (in CPU and GPU) and on-chip buffers (in customized
accelerators). As a consequence, significant latency and energy
consumption will be caused by excessive data access from
the main memory module (e.g., DRAM). Moreover, designing
multiple levels of memory hierarchy is also ineffective since
there are no data reuse between different iterations of the
Jacobi method.

Therefore, on the base of our observations and analysis,
we propose an adapted SVD algorithm targeted for the large-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

scale unbalanced matrix. As shown in Alg. 2, the modified
approach can be divided into three phases. Given an auxiliary
matrix A, we first compute a matrix transpose multiplication
B = A×AT . As a result, B is an m×m symmetric matrix
whose size is much smaller compared with A. Then, to obtain
A = USV T , we can instead compute the eigenvalue decom-
position (EVD) of B. In our approach, we use the Arnoldi
method [20] followed by the shifted QR algorithm to compute
the EVD result. Applying the Arnoldi method on matrix B
gives us an orthonormal basis Qk of B’s Krylov subspace, and
a symmetric tridiagonal matrix H where H = QkBQ

T
k . We

then apply the shifted QR algorithm to obtain the eigenvectors
of matrix H , which we denote as QH . Note that, QH is
called the Ritz vectors of B that can be used to compute the
eigenvectors of B. Finally, after we obtain the eigenvectors,
which are indeed the left singular vectors of matrix A, we can
compute SV T with SV T = UTA.

Mathematically, the proposed SVD provides same results
as typical Jacobi-based SVD. However, when dealing with
large unbalanced matrix, it has following advantages: (1) We
avoid constantly loading and updating (writing) matrix A.
Such operations are inefficient as matrix A is often stored in
high-cost memory, e.g., off-chip DRAM. (2) Both the Arnoldi
method and the QR algorithm can be implemented based
on modified Gram-Schmidt orthogonalization (MGS), which
can be efficiently mapped onto our proposed architecture in
Section IV. (3) The symmetric property of B greatly simplifies
the process of Arnoldi method and QR algorithm. For Arnoldi
method, when the input matrix is symmetric, the output ma-
trix H will automatically become symmetric and tridiagonal.
Therefore, we can directly skip the computations regarding
the zero elements in H (output sparsity). For QR algorithm,
since the input matrix H is symmetric and tridiagonal, the
complexity of each iteration is significantly reduced. More
importantly, matrix H will stay symmetric and tridiagonal
after each iteration, which means such characteristic will
benefit every QR iteration through out the whole process.

A. SVD Algorithm Evaluation

TABLE I: Computation complexity & external memory access

Method Computation Complexity Memory Access
Jacobi iter1×O(m2n) iter1×O(m2n)
Ours O(m2n) + iter2×O(m2) O(mn)

Table I lists the algorithm complexity and memory con-
sumption between the proposed SVD and standard one-sided
Jacobi SVD, where m,n are the matrix dimensions and
iter1, iter2 denote the number of iterations performed in
each approach. As we can see from Table I, our approach
is more computational efficient when iter2 is comparable or
smaller than iter1. We will demonstrate in Section III.B and
Section VII that, when we seek for a low-rank output tensor-
train(high compression ratio), which is normally the case of
using TTD, then we only need approximate SVD results.
Therefore, iter2 would be close to the number of iterations in
Jacobi method, which makes the above analysis reasonable.

Moreover, as for memory footprint, the Jacobi method
updates the whole matrix(A) within each iteration. Since A
is of large-scale, it needs to be stored in DRAM rather than
on-chip SRAM. Thus, constant access to matrix A will suffer
from lower off-chip memory bandwidth and cost higher energy
consumption. On the contrary, the proposed approach mainly
operates on matrix B, which is much smaller and can be stored
on-chip. Although the on-chip data movement will be more
frequent, we prove in Section VI with our experiments that
this benefits the overall performance while lowering the energy
consumption.

The final advantage of using the adapted SVD algorithm is
its impacts on the hardware design. By enabling symmetricity
and sparsity in matrix B, we open more hardware possibil-
ities to reduce the decomposition latency with a dedicated
accelerator. These properties are hard to be adopted by the
conventional computing platforms like CPU and GPU.

B. Influence on TTD Accuracy

With the less computation complexity and memory foot-
prints for processing the targeted large-scale unbalanced ma-
trix, we further demonstrate the decomposition accuracy when
applying the proposed SVD in TTD decomposition. To do so,
we implement a customized TTD based on our adapted SVD
algorithm, and compare it with the standard TTD function
integrated in tntorch [21]. The accuracy of our proposed SVD
algorithm can be controlled by the iteration number N , which
further reflects on the end to end accuracy of the Tensor-Train
decomposition. In our experiments, we set N to be 5, 10 and
15. In contrast, the Jacobi-based-SVD typically requires more
rounds of iterations (around 30 or even higher) with longer per
iteration latency. We use randomly generated tensor data as the
input and decompose it using different TTD implementations.
Then, we contract the tensor cores together to reconstruct the
tensor data. The error between the reconstructed tensor and the
original tensor is defined by the following equation, where A′
is the reconstructed tensor, A is the original tensor and norm
is the Euclidean norm:

error =
norm(A′ −A)
norm(A)

. (3)

0.98

1

1.02

1.04

1.06

1.08

1.1

1.882 3.56 7.1 42.6

Re
la

tiv
e

Er
ro

r

Compression Ratio

TTD-Proposed-5 TTD-Proposed-10
TTD-Proposed-15 TTD-Standard

Fig. 4: Accuracy comparison between the proposed TTD and
the standard TTD.

We compare the accuracy of the proposed TTD and the
standard TTD by dividing their error values. Therefore, the
higher the number is, the larger error it has compared with the
standard TTD. We show the comparison in Figure 4, where
y-axis is the relative error and x-axis is the compression ratio.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

A higher compression ratio means that the TT ranks are set
to be lower to get smaller tensor cores. As we can see from
the results, the proposed approach can achieve comparable
accuracy with the standard TTD when the TT ranks are low
(i.e., high compression ratio). When the compression ratio is
up to 42.6, we can achieve nearly the same accuracy compared
with the standard TTD under all the three settings of N . For
N = 15, the relative error is even smaller than 1, indicating
that it even has less error than the standard TTD. As the
compression ratio decreases, the relative error will increase,
which implies that the proposed TTD is less accurate than
the standard TTD when the TT ranks are high. Fortunately,
such case rarely happens in practice because TTD is designed
to be used to compress high order tensor with low TT ranks
for good compression ratios. For example, when being used
to compress weight matrices in deep neural networks(DNNs),
prior work [22], [23] achieve acceptable accuracy loss with the
compression ratio to be 82.87× for CNNs on the CIFAR-10
[24] dataset.

C. Discussion
1) Numerical Stability: In order to increase the efficacy of

computing the QR factorization, we use the Gram-Schmidt
orthogonalization. However, the classical GS method can
be numerically unstable due to the rounding error when
processing with finite precision. We solve this problem by
using the stabilized modified Gram-Schmidt method (MGS).
Specifically, traditional GS method computes a new vector by
subtracting it with all of its projection vectors based on the
existing unit vectors. In the modified GS method, for a new
given vector, we start with eliminating the projection vector of
the first unit vector to get a new candidate vector. The second
projection vector to be eliminated is computed based on the
new candidate vector instead of directly using the original
vector. It is proved that this approach gives the same result
as the original formula in exact arithmetic and introduces
significantly smaller errors in finite-precision arithmetic.

2) Novelty: The problem of numerically computing singu-
lar value decomposition (SVD) has already been well studied.
However, in terms of implementing TTD, prior work have
not proposed the idea of transferring the large unbalanced
SVD problem to a symmetric small eigenvalue decomposition
(EVD) problem. Moreover, using the Arnoldi method and
the shifted QR algorithm to approximate the EVD result is
normally not suggested, as the number of iterations grows
rapidly when requiring a particularly high decomposition
accuracy. In our work, we take the advantage of the low-rank
property of TTD to explore more efficient implementations
while maintaining overall decomposition accuracy. Such low-
rank property comes from our observations across different
practical applications where TTD is adopted, like CNN/RNN,
image compression, and quantum analysis. In these applica-
tions, TTD is used to achieve very high compression ratio
without influencing much on the overall application accuracy.
Thus, this high-compression condition ensures the low-rank
settings for our previous analysis. Finally, as we mentioned
above, the objective of using our proposed SVD is to even-
tually benefit the hardware implementation and reduce the

Off-chip
DRAM

SVD Core

TMU

Permute

GLB

Top Level Control TTD Engine

PEPE PE
PEPE PE

PEPE PE

Fig. 5: TTD Engine architecture overview.

execution complexity, which will be further demonstrated in
Section IV-VI.

IV. TTD ENGINE OVERVIEW

Based on the analysis above, we present the overview of
our TTD Engine in this section. We focus on addressing
two key challenges during the hardware design. On one
hand, the hardware should efficiently implement the proposed
TTD algorithm, providing acceptable performance speedup
and efficiency improvement. We call this, the Specialization
of the hardware. On the other hand, it should also have the
flexibility to support general matrix/tensor and even tensor-
train operations, so that it can be further adopted to accelerate
different applications using the tensor-train processing scheme.
We call this, the Generality of the hardware.

With these two design objectives, we show the top-level
architecture of TTD Engine in Figure 5. The off-chip DRAM
stores the original tensor data that are unable to be fitted
on-chip. Therefore, the accelerator communicates with the
external DRAM through a bidirectional data bus and stores
intermediate data in the Global Buffer (GLB) for on-chip
data reuse. The computing resources are mainly organized
into two modules, the Tensor Multiplication Unit (TMU) and
the SVD Core. Both of the two modules adopt a spatial 2D
processing element (PE) array architecture. TMU efficiently
handles regular matrix/tensor operations, including matrix-
matrix, matrix-tensor multiplications and so forth. TMU and
SVD core can work together to execute the modified TTD
algorithm proposed in Section III. The Permute Unit reshapes
the auxiliary matrices to be decomposed between each TTD
iteration.

As illustrated in Figure 5, TTD Engine applies the Spa-
tial Architecture (SA) design of domain specific accelerators
(DSAs) [25]. The SA-style DSAs exploit high compute paral-
lelism by direct communication between the PE array. Besides,
the hierarchical memory organization from GLB to the PE’s
local memory further improves data reuse, achieving higher
bandwidth utilization and energy efficiency. Therefore, SAs
are widely used to accelerate deep learning algorithms like
Convolutional Neural Networks (CNNs) [26], [27], Recurrent
Neural Networks (RNNs) [28], [29] and Personalized recom-
mendations [30]. In TTD Engine, while such generality is
well preserved, we further add specialized Permute Unit and
SVD Core to achieve the efficient execution of Tensor-train
Decomposition.

In the rest of this section and Secion V, we focus on
illustrating the specialized architecture and dataflow design
of TTD Engine when processing Tensor-train Decomposition

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

SVD Core

TMUGLB

TTD Engine

1
2
2

3

4

3

5

PEPE PE
PEPE PE

PEPE PE

Off-chip
DRAM

A*AT

GEMM

P����Q�

TTD Algorithm

Operator

Data Characteristic

Arnoldi Shifted-
QR

%�LV�V\PPHWULF
+�LV�V\PPHWULF�DQG�WULGLDJRQDO

B H

MGS+GEMM/GEMV

U U*A
T

GEMM

$�!!�8

�E��D�

Fig. 6: TTD algorithm abstraction and TTD Engine execution dataflow. (a) shows the key operators and data characteristics;
(b) illustrates the data movement with arrow indicating the direction, color indicating specific data, and the number indicating
the order.

algorithm. We will dive more into the generality with real
world application demos presented in Section VII.

A. Overall Dataflow
We use Figure 6 to illustrate how we implement the pro-

posed TTD algorithm. To do so, we first provide an abstraction
of the algorithm to extract the key operators as shown in
Figure 6(a). We also mark the special characteristics of these
operators’ input/output data, which can further simplify the
hardware design. Corresponding to the key operators, Fig-
ure 6(b) demonstrates the data movement in TTD Engine.

In each decomposition iteration, we first compute Bi =
A(i)A

T
(i), where 1 A(i) is the current auxiliary matrix. This

step is essentially matrix-matrix multiplication, but the input
matrix has unbalanced size where its width n is much longer
than its height m. To execute this step on TTD Engine, we load
A(i) patch by patch from off-chip memory to GLB. Tensor
Multiplication Unit (TMU) and SVD Core work together as a
larger PE array to compute matrix 2 Bi.

During the EVD decomposition of matrix Bi, both the
Arnoldi iteration and the Shifted QR algorithm can be rep-
resented by a two-step process: column orthogonalization &
data update. While the former step is realized using modified
Gram-Schmidt (MGS), the latter step is nothing but matrix-
vector/matrix-matrix multiplication. In TTD Engine, we use
SVD core to perform MGS, the resulting matrix will be
generated column by column, and will be sent to TMU
immediately to perform data update. We use such decoupled
design of TMU and SVD core to pipeline the two-step EVD
while increasing local data reuse.

After we obtain the left singular matrix of Bi, which we
denote as 3 Ui, we can directly permute and output Ui as
the extracted tensor core. We then load matrix 4 A(i) again
to compute 5 SiV

T
i = UTi A(i). The result will be reshaped

by the permute unit and sent out as the auxiliary matrix to be
decomposed in the next TTD iteration.

As the iteration continues, the matrix to be decomposed
would become smaller and more balanced. TTD Engine can
also support these cases by storing the matrix completely in
GLB and using the Jacobi method for SVD decomposition.

V. TTD ENGINE ARCHITECTURE

In this section, we present the detailed architectures of dif-
ferent modules in TTD Engine. We also discuss how we take
advantages of the data’s special characteristics to efficiently
map the algorithm onto hardware.

TMU PEPE Control

x

Partial
Sum
Reg 0

+

Data
Reg

PEPE PE

PEPE PE

PEPE PE

Fig. 7: TMU architecture. The blue-colored logic only exists
in PEs inside SVD Core.

A. Tensor Multiplication Unit (TMU)

Figure 7 presents the 2D PE architecture of TMU. Each
PE could communicate with its neighbors and also the GLB
through an NoC. FIFOs are used at the I/O interface of each
PE to balance the data movement between the NoC and the
computation. The PE consists of a MAC unit for Multiply-
and-Accumulate (MAC) operation, local buffers for matrix and
partial sum data, and the PE’s local control logic. For normal
matrix multiplication, TMU can work as a systolic array to
provide high computation throughput with simplified control
flow. However, apart from the general matrix multiplication,
we still need to consider the following special cases during
the computation of TTD.

1) Large-scale matrix × small-scale matrix: Each of the
TTD iteration ends up with a matrix-matrix multiplication
between the current auxiliary matrix A(i) and the left singular
matrix Ui. In most cases, A(i) is much larger than Ui and
is stored off-chip. Therefore, in order to reduce the high-
cost memory access, we keep a patch of A(i) stationary in
TMU and load the corresponded blocks of Ui from the GLB.
After finishing all the computations associated with the current
patch, we load another patch of A(i) and repeat the process.
In this way, although we need to traverse matrix Ui several
times in GLB, the large-scale matrix A(i) is loaded only one
time from the off-chip DRAM. Therefore, the high-cost off-
chip memory access is replaced with low-cost local memory
access.

2) Large-scale matrix transpose multiplication: The first
step of the proposed SVD algorithm is to perform a matrix
transpose multiplication using the unbalanced matrix A(i).
Since we already know that the result will be a symmetric
matrix, we can save almost half of the redundant compu-
tations by only calculating the upper triangular part of the
output matrix. For illustrative purpose, we use Figure 8 to
demonstrate the matrix transpose multiplication for a matrix

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

PEPE

PEPE

PE-Set-1

PEPE

PEPE

PEPE

PEPE

PE-Set-3

PEPE

PEPE

PE-Set-2

PE-Set-4

4*4 PE Array, A is a 8 by 16 matrix

(a)

(3,4)(1,2)

(5,6)(7,8)

PE-Set-1/Loop1

(2,6)(1,4)

(3,8)(5,7)

PE-Set-1/Loop2

(4,8)(1,6)

(2,7)(3,5)

PE-Set-1/Loop3

Each number represents
a single element in A’s first column

(b)

PE-Set-1 computes the first submatrix

PE-Set-1

(c)

Sum up all the submatrices

PE-Set-2

PE-Set-3 PE-Set-4

Final Result
B

Partial
Sum

Partial
Sum

Partial
Sum

Sum-up Submatrix
1,5,9,13

Sum-up Submatrix
2,6,10,14

Sum-up Submatrix
4,8,12,16

Sum-up Submatrix
3,7,11,15

Fig. 8: Using TMU to compute large-scale matrix multipli-
cation: (a) Several PEs are grouped together to compute a
specific submatrix; (b) The data movement between different
PEs after each computation loop; (c) Summing up all the
submatrices across the PE array.

A = {a1, a2, ...a16} ∈ R8×16 with a 4 × 4 TMU PE array.
The resultant matrix B can be considered as the sum of 16
submatrices where each submatrix Bi = ai × aTi . Therefore,
we can group up 4 PEs as a PE set to compute a specific
submatrix. The reasons for us to choose outer product to
compute B are of two folds. First, using outer product only
requires a single traversal through the original matrix to finish
the computation. This is especially beneficial as matrix A
is stored in high-cost off-chip DRAM. Second, in normal
cases, buffering the output submatrices for accumulation can
be expensive, but since the columns of matrix A are short, the
submatrices computed by these columns become much smaller
and easier to buffer on chip.

As shown in Figure 8(b), inside the PE set, each PE is
distributed with two elements of a specific column ai. During
each loop, the PE multiplies these two elements together to
generate a single element in the submatrix. After each loop,
different PEs from the same PE set will exchange data between
each other. The data exchanging order is predetermined ac-
cording to the column length. In this example, the red arrow in-
dicates the data movement direction after each multiplication.
Such order avoids all the redundant computations. Finally, all
the submatrices are accumulated together to get the result.
Note that, if the column is too long, each PE may contain
multiple elements of the column. In such case, the PE will
generate a small block of the output submatrix after each
computation loop.

3) Tensor core contraction: TTD Engine is also designed
to be able to perform tensor core contraction to recover the
original tensor data. For tensor core contraction, each time we
contract the last mode of the current tensor with the first mode
of the next tensor core. Therefore, we only need to permute the
tensor core and load the existing tensor in its original order.

We assume the tensors are always stored by incrementing the
mode-1 index, then the second mode index, and so on. To be
more specific, suppose we have finished contracting the first m
tensor cores which gives us tensor Ĝ ∈ RI1×I2···×Im×rm . The
next step is to contract Gm+1 ∈ Rrm×Im+1×rm+1 with Ĝ.
Thus, we first permute Gm+1 using TTD Engine’s permute
unit and store it in the GLB as Ĝm+1 = rm × Im+1rm+1.
Then, we can treat both of them as matrices and perform
matrix-matrix multiplication.

B. SVD Core

As introduced previously, the process of the adapted SVD
algorithm can be represented by MGS and data update. Data
update is essentially matrix-vector/matrix-matrix multiplica-
tion that can be efficiently mapped onto TMU. As for MGS,
there are two problems need to be addressed. First, the
orthogonalization between two columns requires the division
operation. Thus, as shown in Figure 7, PEs inside the SVD
core are further facilitated with dividers for the operation.
Second, the MGS algorithm consists of multiple column
orthogonalizations between different pairs of columns that
have inter data dependency. Thus, it is important to design a
mapping strategy that can maximize the computation resource
utilization without breaking the data dependency.

Here we use Figure 9 to demonstrate the data dependency
and mapping strategy. As shown in Figure 9, each parenthesis
indicates an orthogonalization operation between two columns.
For instance, (2, 1) means to orthogonalize column 2 over the
reference column 1. Therefore, only column 2 will be updated
after this operation. According to MGS, there are two types
of data dependency during the computation.

The first type is that, we cannot use a column as a reference
column until it is finalized. For example, column 3 needs to
be orthogonalized with column 2 and column 1. Therefore,
we need to perform (3, 1) and (3, 2) before we can perform
operations that use column 3 as the reference column, e.g.,
(4, 3), (5, 3) · · · . The first type is marked by red arrows in
Figure 9. The second type of data dependency is that, we
cannot simultaneously orthogonalize the same column with
two different reference columns. For example, (3, 1) and (3, 2)
cannot be executed at the same time. The second type is
represented by blue lines in Figure 9. It also shows that each
time we cannot choose more than one operations from the
same line.

Based on the analyses above, we propose the mapping of the
MGS algorithm as shown in Figure 9. The idea is to choose
as many operations as possible from the same vertical line.
When we reach the end of one line and have to move across
another line, we move to its adjacent line and start from the
top. Both two types of data dependencies are avoided to the
utmost extent using this mapping. In this example, suppose
the SVD core can at most orthogonalize 3 pairs of columns
in the same cycle. Then, we first choose (2, 1), (3, 1), (4, 1),
and then (5, 1), (3, 2), (4, 2). Due to the second type of data
dependency, we can only execute (5, 2), (4, 3) at the third
cycle, (5, 3) in the fourth cycle, and (5, 4) in the final cycle.
Thus, it takes 5 cycles to finish the MGS process. If we

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

(2,1)

(3,1)

(4,1)

(5,1)

(3,2)

(4,2) (4,3)

(5,2) (5,3) (5,4)

(2,1) (3,1) (4,1)

(3,2) (4,2)(5,1)

(4,3)(5,2)

(5,3) (5,4)

Fig. 9: Mapping the GS orthogonalization onto SVD Core.
Operations in the same dotted rectangle are executed simulta-
neously.

increase the computation resources to support 4 pairs of
columns. We can reach a maximum throughput of 4 cycles
to finish the MGS process. However, the resource utilization
will be lower. Therefore, we design a lightweight SVD core
that can achieve near-optimal performance with better resource
utilization. Also, choosing most operations from the same
vertical line increases the data reuse of the reference column
that can further improve energy efficiency.

C. Permute Unit

The tensor permute unit is located between the GLB and
external DRAM to reshape the input/output tensor/matrix
data. It is used in the below cases: (1) During tensor core
contraction, we use the permute unit to reshape the small
tensor core; (2) After we compute the left singular matrix U ,
we permute it into a 3-mode tensor core. (3) After we multiply
the current auxiliary matrix A with UT , we need to permute
the result to be the input matrix for the next TTD iteration.

VI. EVALUATION

A. Evaluation Methodology

Evaluation Platform. The proposed TTD Engine is imple-
mented in RTL and synthesized in Synopsys Design Compiler
with TSMC 45nm standard cell library to obtain the area and
power estimation. The timing and energy of on-chip memory
are simulated with CACTI [31]. We also develop a cycle-
accurate simulator based on RTL implementations to evaluate
the performance of TTD Engine.

Baselines. We compare our TTD Engine with the state-of-
the-art CPU and GPU. The CPU baseline is an Intel Core
i7 8700 processor (14nm), which has 12 SMT cores running
at 3.2GHz and 12MB LLC. For GPU comparison, we use
NVIDIA Titan V GPU (12nm) that is equipped with 5120
tensor cores and 12GB HBM2. We choose the Tensor Toolbox
[32] as the software implementation on CPU and TnTorch [21]
on GPU.

Benchmarks. We use synthetic data for the performance
evaluation, with tensor sizes of 64KB, 4MB, 256MB, 1GB,
and 8GB. The synthetic data are generated with built-in func-
tions in each open-source library. For example, in TnTorch,
we use torch.rand()/torch.randn() to generate the tensor data.
For the decomposition speed comparison, we don’t care about
the actual value and distribution of the synthetic data. But
for accuracy comparison, we keep the data identical across
different implementations. We also set different decomposition
parameters to examine how the performance is sensitive to the
ranks of tensors. It is worth mentioning that, using synthetic

data does not affect the generality of the experiments at all.
Instead, it is because of the flexibility of synthetic benchmarks
that enables us to evaluate TTD Engine’s performance over
various input patterns, including the cases that are frequently
or rarely encountered in practical applications.

B. TTD Engine Summary

Table II presents the summary of the TTD Engine specifica-
tions. We use 16-bit fixed point arithmetics to implement our
design. As listed in the table, with 16×16 PEs in TMU and
8×8 PEs in SVD Core running at 400MHz, our accelerator
yields a peak performance of 128GMAC/s. Each PE has a
128B register, therefore, TMU and SVD core together have a
40KB of SRAM capacity. The global SRAM buffer is 1MB.
Therefore, the total on-chip memory capacity is 1064KB.
We show the area and power breakdown in Figure 10, from
which we can see that the power is dominated by fixed-
point operators as a fraction of 76%, while the total area is
dominated by on-chip SRAM with a ratio of 62%.

TABLE II: TTD configuration summary.
Item Specification

Technology TSMC 45nm GP standard VT
Total Area 6.94mm2

Total Power 2.89W
Number of PEs 256 (TMU) + 64 (SVD Core)
Global Buffer 1MB (SRAM)

Register per PE 128B
Arithmetic Precision 16-bit fiexed-point

Frequency 400MHz
Peak Performance 128GMAC/s

Fixed-Point
Arithmetic

76%

Global Buffer
16%

Local Register
7%

Controller and Other
1%

Power BreakdownFixed-Point Arithmetic

Global Buffer

Local Register

Controller and Other

Fixed-Point Arithmetic
23%

Global Buffer
62%

Local Register
13%

Controller and Other
2%

Area Breakdown Fixed-Point Arithmetic

Global Buffer

Local Register

Controller and Other

Fig. 10: Power and area breakdown.

C. Overall Performance and Energy Efficiency

We compare the performance of our TTD Engine with CPU
and GPU over synthetic data that have different sizes ranging
from 64KB to 8GB. For each fixed input tensor size, we
manually set the targeting output tensor ranks to 3 different
levels to adjust the compression ratio. For example, for a single
4MB tensor, a low-rank decomposition means we generate
a low-rank tensor-train from the original tensor data, which
indicates a higher compression ratio with larger decomposition
error compared with a high-rank result. Usually in real world
applications, the rank matches with the low-rank and medium-
rank cases in our experiments.

We first evaluate the decomposition accuracy among dif-
ferent implementations. The accuracy is measured with the
absolute reconstruction error as expressed by equation (3),

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Section III. Figure 11 shows the reconstruction error under dif-
ferent rank-levels averaging over all sizes of the input tensors.
As we can see from the figure, in all three different rank levels
referring to different compression ratios, the reconstruction
accuracy scores among the implementations are comparable.
Also, the proposed approach performs closer to (or even better
than) the standard TTD when we are expecting a low-rank
output tensor-train.

R
ec

on
st

ru
ct

io
n

E
rr

or

0.0

0.1

0.2

0.3

0.4

0.5

Low-Rank Medium-Rank High-Rank

CPU/GPU TTD Engine

Fig. 11: Average reconstruction error of CPU/GPU and TTD
Engine under different rank-levels(compression ratio).

Then, we compare the decomposition speed of TTD Engine
with CPU and GPU. As we can see from the results in
Figure 12(a), TTD Engine significantly outperforms CPU’s
performance. On average, it is 14.9× ∼ 36.9× faster than the
CPU implementation. Compared with GPU, TTD Engine can
achieve speedup on benchmarks that are smaller than 1GB. If
the input tensor size exceeds this limit, the speedup over GPU
decreases. The reason is because when the tensor size keeps
growing, the whole computation process tends to be dominated
by the matrix transpose multiplication of the first few TTD
iterations. For extremely large-scale matrix multiplication,
TTD Engine is limited by computation resource and memory
bandwidth, which dilutes the benefit of the proposed algorithm
and dataflow optimization. However, in real cases, datasets are
usually large for its number of samples rather than the size of
each sample. Therefore, typically we do not need to consider
a single tensor with a size of 8GB or even larger. Besides, the
good scalability of TTD Engine makes it efficient to improve
the performance by increasing the on-chip resources.

Also, for a given tensor, the lower the needed TT-ranks are,
the higher speedup TTD Engine can achieve. This is because
TTD Engine computes the singular vectors in the order of
the singular values, and stops the computation as soon as the
first r vectors are obtained. Whereas a typical truncated-SVD
computes the complete SVD first, and then choose r vectors
to output. This makes TTD Engine particularly suited for low-
rank decompositions of a tensor.

Finally, we compare the energy efficiency of TTD Engine
with CPU and GPU implementations over the same bench-
marks. As shown in Figure 13, TTD Engine consumes, on
average, 47.2x and 231.6x less energy than CPU and GPU,
respectively. Such improvement is mainly gained from two
aspects. First, we exploit low-cost data movement through
the algorithm-hardware co-design while reducing high-cost
external memory access. Second, we exploit the data sparsity
and symmetricity during the computation process that helps
to reduce both compute and memory consumption. Besides,

when dealing with larger tensor, the energy efficiency im-
provements over GPU tends to be lower and less separable
between different bars. Similar with the above analysis, when
the decomposition process is more dominated by the matrix-
transpose multiplication, the savings that come from adopting
symmetricity and sparsity during the computation contributes
less to the overall improvements.

0

5

10

15

20

25

64KB 4MB 256MB 1GB 8GB

Sp
ee

d
u

p

Tensor Size

Low-rank
Medium-rank
High-rank

0

10

20

30

40

50

60

64KB 4MB 256MB 1GB 8GB

Sp
ee

d
u

p

Tensor Size

Low-rank
Medium-rank
High-rank

(a) Speedup over CPU (b) Speedup over GPU

Fig. 12: Speedup of TTD Engine over CPU and GPU.

1

10

100

1000

64KB 4MB 256MB 1GB 8GB

En
er

gy
 E

ffi
ci

en
cy

Tensor Size

Low-rank
Medium-rank
High-rank

1

10

100

1000

64KB 4MB 256MB 1GB 8GB
En

er
gy

 E
ffi

ci
en

cy
Tensor Size

Low-rank
Medium-rank
High-rank

(a) Over CPU (b) Over GPU

Fig. 13: Energy reduction of TTD Engine over CPU and GPU.

23.5

2.7

1

0 5 10 15 20 25

TTD-Proposed
TTD Engine

TTD-Proposed
CPU

TTD-Standard
CPU

Relative Speedup

Fig. 14: Performance contribution breakdown

D. Benefits Breakdown

In Section VI.C, we compare the overall performance
between TTD Engine and CPU/GPU implementations. Here,
we further decouple the contribution of the proposed SVD
algorithm and accelerator design to separately demonstrate
their benefits. We first run the proposed TTD and standard
TTD algorithm on the same CPU to collect the decomposition
time. Then, the proposed TTD algorithm is executed on TTD
Engine to be compared with the other two cases. As we can see
from Figure 14, by using the adapted SVD algorithm alone,
we are able to achieve, on average, 2.7× speedup over the
original CPU baseline. This speedup mainly comes from the
computation reduction brought by the algorithm modification
with a small number of iterations(iter2). However, without
dedicated architecture design and specialized dataflow, the
sparsity and symmetricity of the matrices are hard to be
utilized to benefit the overall performance. This introduces
unnecessary computations which dilutes the final speedup.
Thus, when TTD Engine is finally used, it further brings
another 8.7× times speedup over the TTD-proposed-CPU and

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

provides a final 23.5× speedup over the TTD-standard-CPU
baseline.

VII. APPLICATION DEMO

Through Section III to Section VI, we demonstrated the
effectiveness of TTD Engine when processing TTD with
the proposed algorithm-hardware co-design approach. In this
section, we will further illustrate how TTD Engine can be
extended to accelerate different applications.

The first application we choose is medical image compres-
sion. TTD is now being used in a wide range of disciplines,
including EDA design and simulation, machine learning, med-
ical imaging, etc. One of the direct benefits of TTD is that,
it saves considerable amount of memory space for storing
the big data required by these applications. Moreover, with
the decomposed results, many previous complex computations
could be executed much faster and easier. To demonstrate such
effectiveness, we first choose medical image compression as
an example demo. We use the proposed accelerator to generate
TTD results for a real-world magnetic resonance imaging
(MRI) image benchmark, which significantly reduces the size
of the benchmark while preserving good image quality.

In addition, we further illustrate the benefits of using TT-
format data by proposing a TT-based convolution scheme.
The proposed TT-convolution algorithm directly uses the TT-
format data as input and performs convolution operations
based on the convolution kernel. With the decomposed TT-
format data, we can greatly reduce the overall computational
complexity as well as memory consumption.

A. Medical Image Compression

We take medical imaging application as our first example.
MRI is a safe and painless technique and is therefore widely
used to generate detailed images of the brain and the brain
stem. For general research purpose, numerous brain images
are required and the data can easily reach to several gigabytes
and even terabytes. Thus, it is very memory consuming to store
the dataset. In our experiment, we choose a typical brain image
dataset that contains 766 brain images of size 512×512 and is
in total about 420MB large. The image dataset is compressed
with TTD Engine and other open-source libraries running on
CPU and GPU. We compare the decomposition performance
between different architectures in terms of compression time
and reconstruction error under a specific compression ratio of
7.1×.

The experimental results are shown in Table III. As for
decomposition time, TTD Engine achieves 20.4× and 13.9×
speedup over CPU and GPU, respectively. The speedup is
close to the 4MB bar in Figure 12 even though the dataset
is 420MB. This is because we compress each 512×512
image (1MB) separately, which gives us a higher performance
speedup compared with compressing the dataset as a large
single tensor. As for the reconstruction error presented in
Table III, the proposed TTD achieves slightly better decompo-
sition accuracy compared with standard TTD library given the
same targeting compression ratio. This matches the conclusion
we presented in Section III.A, that the proposed approach is

Fig. 15: Comparison between original and decomposed MRI
images.

able to generate comparable result when the compression ratio
is not very low. Here, we also use equation (3) to measure the
absolute reconstruction error.

Finally, to provide an intuitive comparison, four pairs of
original images and reconstructed images are randomly se-
lected from the dataset and presented in Figure 15.

TABLE III: Decomposition Performance&Accuracy

Hardware Comp. Ratio Speedup over CPU Error
CPU 7.1× 1x 0.158
GPU 7.1× 1.47x 0.158

TTD Engine 7.1× 20.40x 0.157

Compression ratio

R
ec

on
st

ru
ct

io
n

E
rr

or

0.0

0.2

0.4

0.6

0.8

1638x 455.1x 120.5x 28.8x 7.1x

SVD PCA TTD

Fig. 16: Comparing TTD with PCA and SVD for MRI image
compression.

Finally, TTD is compared with other compression tech-
niques like PCA and SVD under this specific application
scenario. We sweep through different compression factors and
compare the reconstruction error between different methods.
Figure 16 delivers the results and implies several conclusions.
Firstly, TTD achieves lower absolute error compared with
SVD in all the test cases. Secondly, when being compared
with PCA, TTD tends to perform better in the cases with
larger compression ratios, while doing worse in the low-
compression cases. This indicates its advantage for providing
highly compressed data with rather low error, which matches
our previous analysis. Finally, PCA and SVD cannot deliver
highly compressed images. As shown in the figure, no matter
how we reduce the SVD/PCA parameters, SVD cannot deliver
the two highest compressed cases and PCA cannot reach the
compression ratio as high as 1638×. This is because SVD and
PCA are pure 2D data processing techniques and are limited
by the dimensions of the original image. On the contrary,
TTD is able to first consider the 2D image (matrix) as a

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

high-dimension tensor and then perform decomposition on all
of its dimensions to achieve aggressive compression. In real
applications, we can flexibly choose the desired compression
technique based on different requirements for accuracy and
compression ratio.

B. One-Dimensional Convolution

As aforementioned, there is a gap between decomposing
a tensor and using the decomposed data to develop TT-
based algorithms for practical applications. Previous work
[14] has proved that basic TT operations like TT-Addition,
TT-Multiplication, TT-GEMV, and scalar product have less
complexity than directly operating on original large-scale
tensor data. Moving forward, for the first time, we introduce
how to use TTD Engine as the base architecture to perform TT-
format data convolution on the decomposed data. We believe
data convolution is a promising example to demonstrate the
potential and benefit of using TTD for more complicated oper-
ations and applications. On one hand, element-wise operations
are commonly used but rarely studied for TT-format data. On
the other hand, multidimensional convolution stands at the core
of many important applications including image processing,
machine learning, and EDA.

For illustrative purpose, we first consider an 1D data con-
volution with an 1× 3 convolution window sliding over an 8-
element vector v. The vector is reshaped into a 2×2×2 tensor
V and then represented with 3 TT-cores, G1, G2, G3. As
shown in Figure 17, if we reverse core G3’s second dimension
by exchanging the purple column with the pink column, the
order of tensor V’s third dimension is also reversed. This is
further equivalent to switching every two consecutive elements
in v. Similarly, if we reverse core G2’s second dimension,
it is equivalent to switching every two consecutive pairs of
elements in v.

a b c d e f g h
G1

1*2*2 2*2*2 2*2*1

G2 G3

n1
n2

n3

G1

1*2*2 2*2*2 2*2*1

G2 G3’
n1

n2

n3’

b a d c f e h g

Original Space TT Space

Fig. 17: Demonstration of TT data and its characteristics.

Therefore, we demonstrate the process of TT-based 1D
convolution in Figure 18. Without loss of generality, we
assume all the weights to be equal to one. We already know
that, we can operate on a specific dimension by modifying its
corresponding tensor core. Thus, we can represent the final
convolution result by the sum of several sub-vectors. The
principle is to ensure that the TT-format of each sub-vector
can be efficiently obtained from the original tensor-train format
data.

As shown in Figure 18, for this specific 1D convolution
example, the final result is represented with the sum of 3

1 1 1

a+b+c b+c+d c+d+e d+e+f e+f+g f+g+h

G1

1*2*2 2*2*2 2*2*1

G2 G3’

Original Space TT Space
a b c d e f g h

a+b b c+d d e+f f g+h h

c c+d 0 0 g g+h 0 0

0 0 e e+f 0 0 a a+b

*

+

+

G3 +

Fig. 18: 1D Convolution in TT-format.

sub-vectors. Taking the first one as an example, in every
consecutive pair, the first element is the sum of the original
two elements, and we keep the second element unchanged.
Therefore, to get the TT-format of this sub-vector, we can
simply sum up G3’s second dimension to form up a new
column and replace the first one, while leaving the second
column the same as before. The other sub-vectors require
similar operations. After this, we add the 3 tensor-train for-
mat sub-vectors to obtain the final convolution result. Note
that, TT-Addition requires no computations but to merge the
corresponding tensor cores together.

Vector Size

0

25

50

75

100

0

5

10

15

128KB 512KB 4MB 256MB 1GB

Speedup/CPU Speedup/GPU

Fig. 19: Speedup over CPU and GPU when performing 1D
convolution.

In TTD Engine, we first load or compute the original tensor-
train format data. Then, the remaining operations are simple
vector/matrix additions and multiplications over the tensor
cores. TMU and SVD core can work together as an efficient
2D PE array to handle these operations. This idea can be
further generalized to vectors with longer length and with
different convolutional kernel sizes. Moreover, even if the vec-
tor’s length increases dramatically, the tensor cores stay small,
which makes the TT-format processing much more efficient.
We implement the TT-format 1D convolution based on our
TTD Engine, and compare it with baseline 1D convolution
kernel running on CPU and GPU. As shown by the results in
Figure 19, when comparing with CPU, TTD Engine achieves
significant speedup ranging from 38.7× to 21725×. Also, the
speedup almost scales linearly after the 4MB bar. This is
because as soon as the vector’s size reaches a certain limit, the
processing time of CPU grows proportional to the size of the
tensor. However, with TT-format convolution scheme, the total
computation is greatly reduced and much less influenced by
the size of the vector. Therefore, the speedup of TTD Engine
over CPU will grow rapidly for larger tensor. On the contrary,
the speedup over GPU is more stable, ranging from 9.0× to

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

14.2×. This is because when the vector’s size is small, the
GPU execution time is not dominated by the computation, but
other non-computation cost like kernel launching time. Only
when the size is large enough, like from 256MB to 1GB, the
computation time increases and the advantage of TTD Engine
will be more obvious. For even larger input vector, we believe
TTD Engine can achieve higher speedup over GPU as long as
the TT representation of the vector is available.

C. Generalization to high-order convolution

Using the same idea, the TT-based 1D convolution scheme
can be further generalized to high-order convolutions so that
it can support various applications such as image processing
and machine learning. Here we show how to apply the TT-
based data processing to the 2D convolution problem. Firstly,
the TT-format representation of a matrix W ∈ RM×N is given
as follow:

W = G1 ∗G2 ∗ · · · ∗Gd (4)

Where Gi ∈ Rri−1×mi×ni×ri ,
∏
mi =M,

∏
ni = N .

Different from TT-format vectors, each tensor core now
has four dimensions, including two rank-dimensions, an m-
dimension and an n-dimension. Using an example shown
in Figure 20, suppose we have an M × N image where
M = N = 8, and we want to perform a 2D convolution
with a kernel of size 3 × 3. First, we can decompose this
matrix into 3 tensor cores with a shape of 1 × 2 × 2 × r1,
r1×2×2×r2 and r2×2×2×1, respectively. We know that,
a 2D convolution can be considered as two 1D convolutions
along each of the dimension. This can be directly applied to
TT-based convolution. Thus, we first perform a 1D convolution
along the m dimension. In the 1D case, reversing the third
core’s second dimension is equivalent to switching every two
consecutive pairs in the original vector. Here, as illustrated in
Figure 20, if we reverse the m-dimension of the third core,
every two consecutive rows in the original matrix will be
exchanged. In other words, modifying the m-dimension of the
tensor core is equivalent to operating on the whole rows of
matrix W .

After changing the m-dimension, we indeed get several sub-
matrices with modified rows. Similarly, we can further modify
the columns of these sub-matrices by operating on the n-
dimensions of the tensor cores. As illustrated in the example
in Figure 20, if we reverse the n-dimension of core G1, the
left half of the matrix will be exchanged with the right half.
Finally, we add these sub-matrices together, to get the 2D
Convolution result. Similar to the 1D convolution, the high
order convolution can also be efficiently executed on TTD
Engine once the original tensor-train is obtained. After this, the
proposed TT-convolution ensures the remaining computations
to be executed only on certain slides of the few tensor cores.
More importantly, if operations like TT-Addition cause the
result tensor-train to have high TT-ranks, we can directly re-
decompose the tensor-train with TTD Engine to get a new
approximation with much lower TT-ranks.

G1

1*2*2*r1

Original Space TT Space

M = 8

N = 8 G3

r2*2*2*1

G2

r1*2*2*r2

G1

1*2*2*r1

G3

r2*2*2*1

G2

r1*2*2*r2

G1

1*2*2*r1

G3

r2*2*2*1

G2

r1*2*2*r2

Dim-M
1D Conv

Dim-N
1D Conv

Fig. 20: TT-based 2D Convolution.

In this section, we present three case studies using TTD
Engine for different applications. Medical image compression
shows the straightforward benefits to decompose high order
data using TTD to reduce memory consumption. Furthermore,
we propose tensor-train data convolution to show the effec-
tiveness of the TT-based data processing in terms of reducing
computational complexity.

VIII. RELATED WORK

Tensor Decomposition Algorithms. Tensor decomposition
attempts to compress and represent a high-dimensional tensor
with a smaller number of factor tensors. In this work, we
aims at accelerating the TTD algorithm. In fact, there are also
other efficient tensor decomposition methods apart from TTD.
Polyadic Decomposition (PD) expresses an n-way tensor as
the sum of r rank-1 terms. Particularly, when r is the minimal
rank, the decomposition is called Canonical Polyadic Decom-
position (CPD) . It is also called Canonical Decomposition
(CANDECOMP) or Parallel Factor (PARAFAC) in the tensor
community [33], [34]. Tucker decomposition [35]–[37] treats
a tensor as a multilinear transformation of a core tensor G
by the factor matrix B. It can be considered as an expansion
in rank-1 terms that is not necessarily canonical. Among all
the decomposition methods, TTD is preferred for high-order
tensors since its resulting tensor factors have a low storage
requirement linearly dependent on the number of orders and
the dimension depth. Moreover, TT has a unique feature, that is
it can be implemented with cross approximation [38] without
knowing the whole tensor.

SVD Hardware Accelerators. To the best of our knowl-
edge, TTD Engine is the first work to accelerate TTD. In
fact, the whole tensor hardware community is still lacking
exploration. Previous work have more focused on the accel-
eration of matrix decomposition. Accelerator design for SVD
is a huge fraction [17]–[19]. However, these works have some
restrictions that motivate us to conduct the algorithmic adap-
tion together with our TTD hardware design. First, many of
previous SVD accelerators target only matrices with a certain

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

shape or size. For instance, some can only support the square-
shape matrices, while others cannot work when the input
matrix’s dimension exceeds the predefined dimension length.
Second, directly applying Hestenes-Jacobi method to large-
scale unbalanced matrices is extremely memory-inefficient, as
it requires constant reads and writes for the original matrix
that cannot be stored in local memory.

Tensor Hardware Accelerator. As aforementioned, the
study of the tensor hardware, especially tensor-decomposition
hardware is still at the early stage. [39] proposes the first
FPGA-based accelerator for tucker decomposition. It focuses
purely on the acceleration of Tucker decomposition, while the
data processing techniques using Tucker-format tensor data are
not covered. Other work [40], [41] mainly address the problem
of designing general computation kernels for dense/sparse
tensor data. While efficient hardware implementations for
general Tensor-Tensor multiplications, Tensor-matrix multipli-
cations are proposed, these work still suffer from the curse
of dimensionality essentially due to the lack of decomposed
tensor data.

IX. CONCLUSION

This paper presented the first customized architecture to ac-
celerate TTD, a promising tensor technique that is increasingly
used in EDA optimization, big data analysis, and machine
learning. Experimental results show the proposed TTD Engine
is at least 14.9× and 4.1× faster than its CPU and GPU
counterparts, respectively. We scale a demo of our TTD Engine
on an FPGA board and perform medical imaging compression
tasks to demonstrate the application potential. Moreover, we
have conducted a case study to use TT-method to implement
convolutional operations. The TT-based convolution has shown
significant advantages when dealing with large-scale data.
With customized algorithm design and specialized hardware
support, TTD has the potential to break the curse of dimen-
sionality of big data processing, and this work may stimulate
more efforts on this topic.

In the future, we plan to extend TTD Engine following
two directions. 1) Since advanced TT Decomposition employs
cross-approximation for low-rank matrix factorization, we plan
to add the corresponding support in TTD Engine. Therefore,
the users can choose the specific matrix factorization method
they want to adopt when decomposing the tensor. 2) We plan
to further demonstrate the effectiveness of TTD Engine when
performing end-to-end applications using the introduced TT-
format data processing pattern.

REFERENCES

[1] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. PHAN. Tensor decompositions for signal processing appli-
cations: From two-way to multiway component analysis. IEEE Signal
Processing Magazine, 32(2):145–163, March 2015.

[2] Z. Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong. Tensor
computation: A new framework for high-dimensional problems in eda.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(4):521–536, April 2017.

[3] Zheng Zhang, Xiu Yang, Ivan V. Oseledets, George E. Karniadakis,
and Luca Daniel. Enabling high-dimensional hierarchical uncertainty
quantification by ANOVA and tensor-train decomposition. CoRR,
abs/1407.3023, 2014.

[4] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[5] Andrzej Cichocki. Era of big data processing: A new approach via tensor
networks and tensor decompositions. CoRR, abs/1403.2048, 2014.

[6] Andrzej Cichocki, Rafal Zdunek, Anh-Huy Phan, and Shun-ichi Amari.
Nonnegative Matrix and Tensor Factorizations: Applications to Ex-
ploratory Multi-Way Data Analysis and Blind Source Separation. 10
2009.

[7] Stefan Klus, Patrick Gelß, Sebastian Peitz, and Christof Schütte. Tensor-
based dynamic mode decomposition. Nonlinearity, 31(7):3359–3380,
jun 2018.

[8] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer.
Optimization-based algorithms for tensor decompositions: Canonical
polyadic decomposition, decomposition in rank-(lr, lr, 1) terms, and a
new generalization. SIAM Journal on Optimization, 23:695–720, 2013.

[9] P. Comon and C. Jutten. Handbook of Blind Source Separation. 2010.
[10] Lieven De Lathauwer, Pierre Comon, and Nicola Mastronardi. Special

issue on tensor decompositions and applications. SIAM J. Matrix
Analysis Applications, 30, 01 2008.

[11] Andrzej Cichocki. Tensor networks for big data analytics and large-scale
optimization problems. CoRR, abs/1407.3124, 2014.

[12] I. Oseledets and S. Dolgov. Solution of linear systems and matrix
inversion in the tt-format. SIAM Journal on Scientific Computing,
34(5):A2718–A2739, 2012.

[13] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry P.
Vetrov. Tensorizing neural networks. CoRR, abs/1509.06569, 2015.

[14] I. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

[15] Brett W. Bader and Tamara G. Kolda. Algorithm 862: Matlab tensor
classes for fast algorithm prototyping. ACM Trans. Math. Softw.,
32(4):635–653, December 2006.

[16] P. de Rijk. A one-sided jacobi algorithm for computing the singular
value decomposition on a vector computer. SIAM Journal on Scientific
and Statistical Computing, 10(2):359–371, 1989.

[17] X. Wang and J. Zambreno. An fpga implementation of the hestenes-
jacobi algorithm for singular value decomposition. In 2014 IEEE
International Parallel Distributed Processing Symposium Workshops,
pages 220–227, May 2014.

[18] Richard Brent, Franklin T. Luk, and CHARLES VAN LOAN. Com-
putation of the singular value decomposition using mesh-connected
processors. Journal of VLSI and Computer Systems, 1, 01 1985.

[19] L. M. Ledesma-Carrillo, E. Cabal-Yepez, R. d. J. Romero-Troncoso,
A. Garcia-Perez, R. A. Osornio-Rios, and T. D. Carozzi. Reconfigurable
fpga-based unit for singular value decomposition of large m x n matrices.
In 2011 International Conference on Reconfigurable Computing and
FPGAs, pages 345–350, Nov 2011.

[20] W. E. ARNOLDI. The principle of minimized iterations in the solution
of the matrix eigenvalue problem. Quarterly of Applied Mathematics,
9(1):17–29, 1951.

[21] R. Ballester. tntorch: Tensor network learning with pytorch.
https://github.com/rballester/tntorch.

[22] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry
Vetrov. Tensorizing neural networks. In Advances in Neural Information
Processing Systems 28 (NIPS). 2015.

[23] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry
Vetrov. Ultimate tensorization: compressing convolutional and FC layers
alike. arXiv preprint arXiv:1611.03214, 2016.

[24] Alex Krizhevsky. Learning multiple layers of features from tiny images.
University of Toronto, 05 2012.

[25] Y. Chen, J. Emer, and V. Sze. Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
pages 367–379, 2016.

[26] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam. Shidiannao: Shifting vision processing closer to the
sensor. In 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), pages 92–104, 2015.

[27] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE
Journal of Solid-State Circuits, 52(1):127–138, 2017.

[28] Tian Zhao, Yaqi Zhang, and Kunle Olukotun. Serving recurrent neural
networks efficiently with a spatial accelerator, 09 2019.

[29] Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry
Tambe, Alexander Rush, Gu-Yeon Wei, and David Brooks. Masr: A
modular accelerator for sparse rnns, 08 2019.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

14

[30] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Cen-
taur: A chiplet-based, hybrid sparse-dense accelerator for personalized
recommendations. ArXiv, abs/2005.05968, 2020.

[31] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman Jouppi.
Cacti 6.0: A tool to model large caches. HP Laboratories, 01 2009.

[32] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebedeva,
P. Zhlobich, T. Mach, and L. Song. Tt-toolbox. 2011.

[33] J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences
in multidimensional scaling via an n-way generalization of “eckart-
young” decomposition. Psychometrika, 35(3):283–319, Sep 1970.

[34] Richard A. Harshman, Peter Ladefoged, Heinrich Graf von Reichenbach,
Robert I. Jennrich, Dale Terbeek, Lee Cooper, Andrew L. Comrey,
Peter M. Bentler, Jeanne Yamane, and Diane Vaughan. Foundations
of the parafac procedure: Models and conditions for an ”explanatory”
multimodal factor analysis. 1970.

[35] L.R Tucker and C.W Harris. Implications of factor analysis of three
way matrices for measurements of change. In Problems in measuring
change. University of Wisconsin Press, Madison, 1963.

[36] L. R. Tucker. The extension of factor analysis to three-dimensional
matrices. In H. Gulliksen and N. Frederiksen, editors, Contributions to
mathematical psychology., pages 110–127. Holt, Rinehart and Winston,
New York, 1964.

[37] Ledyard R. Tucker. Some mathematical notes on three-mode factor
analysis. Psychometrika, 31(3):279–311, Sep 1966.

[38] Ivan Oseledets and Eugene Tyrtyshnikov. Tt-cross approximation for
multidimensional arrays. Linear Algebra and its Applications, 432(1):70
– 88, 2010.

[39] Kaiqi Zhang, Xiyuan Zhang, and Zheng Zhang. Tucker tensor decom-
position on FPGA. CoRR, abs/1907.01522, 2019.

[40] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. Herr, C. Hughes,
T. Mattson, and P. Dubey. T2s-tensor: Productively generating high-
performance spatial hardware for dense tensor computations. In 2019
IEEE 27th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 181–189, 2019.

[41] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang.
Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 689–702, 2020.

Zheng Qu received the B.S. degree from Ts-
inghua University, Beijing, China, in 2018. He is
currently working toward the Ph.D. degree at the
Scalable Energy-efficient Architecture Lab (SEAL),
Department of Electrical and Computer Engineering,
University of California at Santa Barbara, Santa
Barbara, CA, USA. His current research interests
include artificial intelligence (AI) accelerator and
architecture, field-programmable gate array (FPGA)
design, algorithm and hardware co-design for high-
dimensional data processing.

Lei Deng received the B.E. degree from University
of Science and Technology of China, Hefei, China
in 2012, and the Ph.D. degree from Tsinghua Uni-
versity, Beijing, China in 2017. He is currently a
Postdoctoral Fellow at the Department of Electrical
and Computer Engineering, University of California,
Santa Barbara, CA, USA. His research interests
span the areas of brain-inspired computing, machine
learning, neuromorphic chip, computer architecture,
tensor analysis, and complex networks. Dr. Deng has
authored or co-authored over 60 refereed publica-

tions. He was a PC member for ISNN 2019. He currently serves as a Guest
Associate Editor for Frontiers in Neuroscience and Frontiers in Computational
Neuroscience, and a reviewer for a number of journals and conferences. He
was a recipient of MIT Technology Review Innovators Under 35 China 2019.

Bangyan Wang received his B.E. degree from
Tsinghua University, Beijing, China in 2017. He
is currently a Ph.D. student at the Department of
Electrical and Computer Engineering, University of
California, Santa Barbara, CA, USA. His current re-
search interests include domain-specific accelerator
design and tensor analysis.

Hengnu Chen received his B.E. degree from Ts-
inghua University, Beijing, China in 2017. He is
currently pursuing the Ph.D. degree at the Center
for Brain Inspired Computing Research (CBICR),
Tsinghua University, Beijing, China. His current
research interests include high-order tensor decom-
position methods, tensor network based algorithms
and architectures, compression and acceleration for
neural networks, etc.

Jilan Lin received the B.S. degree from Tsinghua
University, Beijing, China, in 2018. He is currently
pursuing the Ph.D. degree at the Scalable Energy-
efficient Architecture Lab (SEAL), Department of
Electrical and Computer Engineering, University of
California at Santa Barbara, Santa Barbara, CA,
USA. His current research interests include accelera-
tor design for graph analytics and machine learning.

Ling Liang received the B.E. degree from Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 2015, and M.S. degree from Univer-
sity of Southern California, CA, USA, in 2017. He
is currently pursuing the Ph.D. degree at Department
of Electrical and Computer Engineering, University
of California, Santa Barbara, CA, USA. His current
research interests include machine learning security,
tensor computing and computer architecture.

Guoqi Li received the B.E. degree from the Xi’an
University of Technology, Xi’an, China, in 2004, the
M.E. degree from Xi’an Jiaotong University, Xi’an,
China, in 2007, and the Ph.D. degree from Nanyang
Technological University, Singapore, in 2011. He
was a Scientist with Data Storage Institute and the
Institute of High Performance Computing, Agency
for Science, Technology and Research (ASTAR),
Singapore, from 2011 to 2014. He is currently
an Associate Professor with the Center for Brain
Inspired Computing Research (CBICR), Tsinghua

University, Beijing, China. His current research interests include machine
learning, brain-inspired computing, neuromorphic chip, complex systems and
system identification.

Dr. Li has authored or co-authored over 80 journal and conference papers.
He has been actively involved in professional services such as serving as
the International Technical Program Committee Member, the PC Member,
the Publication Chair, the Tutorial/Workshop Chair, and the Track Chair for
international conferences. He is currently an Editorial-Board Member for
Control and Decision and Frontiers in Neuroscience, Neuromorphic Engineer-
ing, and an Associate Editor for Frontiers in Neuroscience, Neuromorphic
Engineering. He is a reviewer for Mathematical Reviews published by the
American Mathematical Society and serves as a reviewer for a number of other
prestigious journals and conferences. He was the recipient of the 2018 First
Class Prize in Science and Technology of the Chinese Institute of Command
and Control, Best Paper Awards (EAIS 2012 and NVMTS 2015), and the 2018
Excellent Young Talent Award of Beijing Natural Science Foundation.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3058317, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

15

Zheng Zhang (M’15) has been an Assistant Profes-
sor of Electrical and Computer Engineering with the
University of California at Santa Barbara (UCSB),
since July 2017. He received his Ph.D in Electri-
cal Engineering and Computer Science from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, in 2015, M.Phil from the University of
Hong Kong in 2010, and B. Eng from Huazhong
University of Science and Technology in 2008. His
industrial experiences include Coventor Inc., Cam-
bridge, MA, and Maxim-IC, Colorado Springs, CO,

USA; academic visiting experiences include the University of California
at San Diego, Brown University, and Politechnico di Milano, Milan, Italy;
government laboratory experiences include the Argonne National Laboratory,
Lemont, IL, USA. His research interests include uncertainty quantification and
tensor computation with multi-domain applications including CAD of nano-
scale IC/MEMS/photonics, data analytics, machine learning and autonomous
systems.

Dr. Zhang received three Best Paper Awards from IEEE Transactions:
the Best Paper Award of IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems in 2014, two Best Paper Awards of IEEE
Transactions on Components, Packaging and Manufacturing Technology in
2018 and 2020, respectively. He also received two Best Paper Awards and
three additional Best Paper Nominations at international conferences. His
PhD dissertation was recognized by the ACM SIGDA Outstanding Ph.D
Dissertation Award in Electronic Design Automation in 2016, and by the
Doctoral Dissertation Seminar Award (i.e., Best Thesis Award) from the
Microsystems Technology Laboratory of MIT in 2015. He received the NSF
CAREER Award in 2019.

Yuan Xie received the B.S. degree in Electronic En-
gineering from Tsinghua University, Beijing, China
in 1997, and M.S. and Ph.D. degrees in Electrical
Engineering from Princeton University, NJ, USA in
1999 and 2002, respectively. He was an Advisory
Engineer with IBM Microelectronic Division, VT,
USA from 2002 to 2003. He was a Full Professor
with Pennsylvania State University, PA, USA from
2003 to 2014. He was a Visiting Researcher with In-
teruniversity Microelectronics Centre (IMEC), Leu-
ven, Belgium from 2005 to 2007 and in 2010. He

was a Senior Manager and Principal Researcher with AMD Research China
Lab, Beijing, China from 2012 to 2013. He is currently a Professor with the
Department of Electrical and Computer Engineering, University of California
at Santa Barbara, CA, USA. His interests include VLSI design, Electronics
Design Automation (EDA), computer architecture, and embedded systems.

Dr. Xie is an expert in computer architecture who has been inducted to
ISCA/MICRO/HPCA Hall of Fame and IEEE/AAAS/ACM Fellow. He was
a recipient of Best Paper Awards (HPCA 2015, ICCAD 2014, GLSVLSI
2014, ISVLSI 2012, ISLPED 2011, ASPDAC 2008, ASICON 2001) and Best
Paper Nominations (ASPDAC 2014, MICRO 2013, DATE 2013, ASPDAC
2010-2009, ICCAD 2006), the 2016 IEEE Micro Top Picks Award, the
2008 IBM Faculty Award, and the 2006 NSF CAREER Award. He served
as the TPC Chair for ICCAD 2019, HPCA 2018, ASPDAC 2013, ISLPED
2013, and MPSOC 2011, a committee member in IEEE Design Automation
Technical Committee (DATC), the Editor-in-Chief for ACM Journal on
Emerging Technologies in Computing Systems, and an Associate Editor for
ACM Transactions on Design Automations for Electronics Systems, IEEE
Transactions on Computers, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on VLSI, IEEE Design
and Test of Computers, and IET Computers and Design Techniques. Through
extensive collaboration with industry partners (e.g. AMD, HP, Honda, IBM,
Intel, Google, Samsung, IMEC, Qualcomm, Alibaba, Seagate, Toyota, etc.),
he has helped the transition of research ideas to industry.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on February 10,2021 at 19:12:05 UTC from IEEE Xplore. Restrictions apply.

