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Abstract—Conventional yield optimization algorithms try to
maximize the success rate of a circuit under process variations.
These methods often obtain a high yield but reach a design
performance that is far from the optimal value. This paper
investigates an alternative yield-aware optimization for photonic
ICs: we will optimize the circuit design performance while
ensuring a high yield requirement. This problem was recently
formulated as a chance-constrained optimization, and the chance
constraint was converted to a stronger constraint with statisti-
cal moments. Such a conversion reduces the feasible set and
sometimes leads to an over-conservative design. To address this
fundamental challenge, this paper proposes a carefully designed
polynomial function, called optimal polynomial kinship function,
to bound the chance constraint more accurately. We modify
existing kinship functions via relaxing the independence and
convexity requirements, which fits our more general uncertainty
modeling and tightens the bounding functions. The proposed
method enables a global optimum search for the design variables
via polynomial optimization. We validate this method with a
synthetic function and two photonic IC design benchmarks,
showing that our method can obtain better design performance
while meeting a pre-specified yield requirement. Many other
advanced problems of yield-aware optimization and more general
safety-critical design/control can be solved based on this work in
the future.

Index Terms—Photonic design automation; yield-aware opti-
mization; chance constrained programming; uncertainty quan-
tification; process variation.

I. INTRODUCTION

The increasing process variations have resulted in significant
performance degradation and yield loss in semiconductor chip
design and fabrications [1, 2]. Compared with electronic ICs,
photonic ICs are more sensitive to process variations (e.g.,
geometric uncertainties) due to their large device dimensions
compared with the small wavelength. Therefore, yield model-
ing and optimization for photonic ICs are highly desired [3, 4].

The yield optimization and yield-aware robust design have
been investigated in the electronic design automation com-
munity for a long time and have been paid increasing atten-
tion in the photonic design automation [5–8]. Typical yield-
aware design techniques include geometric approaches [9],
geostatistics-motivated performance modeling [10], yield-
aware Pareto surface [11], yield-driven iterative robust de-
sign [12], computational intelligence assisted approaches [13],
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corner-based method [14], Bayesian yield optimization [15]
and so forth. Yield estimation is the key component in a
yield optimizer. Advanced yield estimators can be generally
classified as Monte-Carlo-based [16, 17] and non-Monte-
Carlo-based [18–20] methods. Among the non-Monte-Carlo
ones, surrogate modeling aims to approximate some circuit
behaviors under variations to speed up the sampling and
simulation process [21–23]. Typical surrogate models include
posynomial models [24], linear quadratic models [25], sup-
port vector machine [26, 27], Gaussian process [28, 29],
sparse polynomial [30], generalized polynomial chaos expan-
sions [31, 32], and some variants [33]. Focusing on generalized
polynomial chaos expansion, advanced techniques have also
been developed to handle high-dimensional [34–38], mixed-
integer [39] or non-Gaussian correlated [40] process varia-
tions. The polynomial-based modeling and optimization has
been widely used in both electronics [41–45] and photonic IC
design [46–49].

While most existing yield optimization approaches try to
maximize the yield of a circuit, the obtained design per-
formance (e.g., signal gain, power dissipation) may be far
from the achievable optimal solution. Recently, an alternative
approach was proposed in [50] to achieve both excellent
yield and design performance. Instead of simply maximizing
the yield, the work [50] optimizes a design performance
metric while enforcing a high yield requirement. Specifi-
cally, the yield requirement is formulated as some chance
constraints [51], which are further transformed to tractable
constraints of the first and second statistical moments. The
chance-constrained modeling itself has been widely used
in many engineering fields [52–54]. The moment bounding
method offers a provably sufficient condition of the chance
constraint. However, the bounding gap may be too large in
many applications [55]. The resulting overly-reduced feasible
region may lead to an over-conservative design.

Paper contributions. This paper proposes a novel
Polynomial Bounding method for chance-constrained yield-
aware Optimization (PoBO) under truncated non-Gaussian
correlated variations. Leveraging the recent uncertainty quan-
tification techniques [40, 50], PoBO employs and modifies
the idea of kinship functions [56] to approximate the original
chance constraints with a better polynomial bounding method.
PoBO provides a less conservative design than moment-based
bounding methods [50] while ensuring a pre-specified yield
requirement. The specific contributions of this paper include:
• A better bounding method of the chance constraints via
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optimal polynomial kinship functions. Compared with ex-
isting work in the control community [56], we avoid the
assumption of the independence among random variables
and the convexity of kinship functions. The relaxation allows
more general non-Gaussian correlated uncertainty model-
ing and tightens the bounding functions. Within a family
of polynomial functions, the optimal polynomial kinship
functions can be efficiently solved via semidefinite pro-
gramming. Our bounding method preserves the polynomial
formulation of the provided surrogate models. It enables the
advanced polynomial optimization solvers, which provide a
sequence of convex relaxations via semidefinite optimization
and searches for the global design.

• Numerical implementation of the PoBO framework. Based
on available uncertainty quantification solvers, we imple-
ment PoBO efficiently based on some pre-calculated optimal
polynomial kinship functions and quadrature samples and
weights without requiring any additional circuit simulations.

• Validations on a synthetic function and two photonic IC
design examples. Our method offers better design perfor-
mance while meeting the pre-specified yield requirements.
This method requires a small number of circuit simulations
due to its compatibility with recent data-efficient uncertainty
quantification methods [36, 40].
While this work focuses on the fundamental theory, algo-

rithms, and their validation on small-size photonic circuits, the
proposed method can be combined with sparse or low-rank
surrogate modeling methods [34, 36] to handle large-scale
design cases with much more design variables and process
variations.

II. BACKGROUND

This section reviews chance-constrained yield-aware opti-
mization and its implementation via moment bounding [50].

A. Chance-Constrained Yield-Aware Optimization

We denote the design variables by x = [x1, x2, . . . , xd1 ]
T ∈

X, and the process variations by random parameters ξ =
[ξ1, ξ2, . . . , ξd2

]T ∈ Ξ. Let {yi(x, ξ)}ni=1 denote n perfor-
mance metrics that are considered in yield estimation, {ui}ni=1

denote their corresponding upper bounds specifying the design
requirements. An indicator function is defined as

I(x, ξ) =

{
1, yi(x, ξ) ≤ ui,∀i = [n];

0, otherwise.
(1)

Here [n] = {1, 2, · · · , n}. The yield at a certain design choice
x is defined as

Y (x) = Pξ(y(x, ξ) ≤ u) = Eξ[I(x, ξ)]. (2)

In conventional yield optimization, one often tries to achieve
the best possible yield. This often requires losing remarkable
design performance f(x, ξ) in order to achieve a high yield.

Simply maximizing the yield may lead to an over-
conservative design. As an example shown in Fig. 1, one may
lose lots of performance (from 2.2 to 1.4) while just getting
marginal yield improvement from 99% to 100%. In order
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Fig. 1. The trade-off between yield and an objective design performance
for the example from V-A. Simply maximizing the yield can lead to over-
conservative performance.

to avoid an over-conservative design, a chance-constrained
optimization was proposed in [50]:

max
x∈X

Eξ[f(x, ξ)] (3a)

s.t. Pξ(yi(x,ξ) ≤ ui) ≥ 1− ϵi,∀i = [n]. (3b)

where f(x, ξ) is the performance metric that we aim to opti-
mize, and ϵi ∈ [0, 1] is a risk level to control the probability of
meeting each design constraint. Instead of simply maximizing
the yield, the chance-constrained optimization tries to achieve
a good balance between yield and performance: one can
optimize the performance f(x, ξ) while ensuring a high yield.
The circuit yield can be controlled by ϵi: reducing ϵi ensures
a lower failure rate and thus a higher yield.

The chance-constrained optimization (3) is generally hard
to solve. Firstly, the feasible set produced by the chance
constraints is often non-convex and hard to estimate. Secondly,
it is also expensive to estimate the design objective function
f(x, ξ) and design constraint function yi(x, ξ) due to the lack
of analytical expressions. Fortunately, a moment bounding
method was combined with uncertainty quantification tech-
niques in [50] to make the problem tractable.

B. Moment Bounding Method for (3)

Employing the Chebyshev-Cantelli inequality, one can en-
sure the chance constraint via a moment bounding tech-
nique [50, 57]. Specifically, with the first and second-order
statistical moments of the constraint function, one can convert
the probabilistic constraint in (3) to a deterministic one:

max
x∈X

Eξ[f(x, ξ)]

s.t. Eξ[yi(x, ξ)] + γϵi

√
Varξ[yi(x, ξ)] ≤ ui,∀i ∈ [n],

(4)

where constant γϵi =
√

1−ϵi
ϵi

. When the objective and con-
straint functions are described by certain surrogate models
such as generalized polynomial chaos [32, 40], one can easily
extract their mean and variances. This can greatly simplify the
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Fig. 2. The feasible set of an original chance constraint, moment bounding
(the cross region of two orange lines), and the proposed polynomial bounding.

problem and reduce the computational cost, as shown by the
yield-aware optimization of photonic IC in [50].

The moment constraint in (4) is a sufficient but unnecessary
condition of the original chance constraint in (3). Therefore,
any feasible solution of (4) should satisfy the probability con-
straint of (3). However, the feasible set produced by a moment
bounding can be much smaller than the exact one [55]. This
usually leads to an over-conservative design solution. When
the risk level is very small, the moment bounding method may
even produce an empty feasible set, leading to an unsolvable
problem (see Section V).

III. PROPOSED POLYNOMIAL BOUNDING METHOD

To avoid the possible over-conservative bounding of the
moment methods [50], we propose to bound the chance
constraint via a more accurate polynomial method. Fig. 2 plots
the feasible regions obtained by different bounding methods
for the synthetic example in Sec. V-A. For the same chance
constraints, the moment bounding method produces a feasible
set that is much smaller than the exact one, whereas our poly-
nomial bounding method generates a better approximation of
the feasible set. Due to the more accurate approximation of the
feasible set, our proposed polynomial bounding method can
provide a less conservative design in yield-aware optimization.
Now we describe how to generate the polynomial bounds via
kinship functions.

A. Kinship Function

The kinship function was first proposed to construct a
convex approximation of an indicator function in [56]. We
generalize the concepts of [56] with two relaxations:

• We do not require the convexity of a kinship function.
• We do not require the random variables ξ to be mutually

independent. Instead, we consider the more challeng-
ing cases where random parameters are truncated non-
Gaussian correlated.

We slightly modify the definition of a kinship function.
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Fig. 3. Different kinship functions. Black curve: an indicator function.

Definition 1 (Kinship function). A kinship function κ(z) :
[−1,∞) → R is a function that satisfies the following
constraints:

• κ(z) = 1 when z = 0;
• κ(z) ≥ 0 for any z ∈ [−1,+∞);
• κ(z1) ≥ κ(z2) for any z1 ≥ z2 in the range [−1,∞).

Based on kinship functions, the following theorem offers an
upper bound for any probability of constraint violations.

Theorem 1 (Risk integral [56]). Let κ(·) be a kinship
function, g(x, ξ) ≥ −1, µ(ξ) be the density function of random
vector ξ, and Vκ(x) be a risk integral quantity:

Vκ(x) :=

∫
Ξ

κ[g(x, ξ)]µ(ξ)dξ, (5)

then we have P{ξ ∈ Ξ : g(x, ξ) > 0} ≤ Vκ(x).

Proof. According to Definition 1, κ[g(x, ξ)] is nonnegative in
[−1,∞) and greater than 1 if g(x, ξ) ≥ 0. Therefore, for any
probability measure µ(ξ) on Ξ, we have:

Vκ(x) ≥
∫

{ξ∈Ξ,g(x,ξ)>0}

κ[g(x, ξ)]µ(ξ)dξ (6a)

≥
∫

{ξ∈Ξ:g(x,ξ)>0}

µ(ξ)dξ = P{ξ ∈ Ξ, g(x, ξ) > 0}. (6b)

There exist many possible choices of kinship functions.
Next, we will show how to pick some polynomial kin-
ship functions. We consider the polynomial function family
because it is compatible with existing surrogate modeling
techniques [32, 34, 36] to facilitate yield-aware optimization.

B. Optimal Polynomial Kinship Function

An optimal kinship function is defined as a kinship function
that minimizes its integral over [−1, 0] [56]:

κ⋆(·) := argmin
κ(·)∈K

∫ 0

−1

κ(z)dz. (7)
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Here K is the set of all possible kinship functions that satisfy
the constraints in Definition 1. Let z = g(x, ξ), then the above
definition can be understood as minimizing the gap between
the left- and right-hand sides of (6a).

Now we consider choosing a kinship function from a family
of order-ρ polynomials Kρ := {κ(z)|κ(z) =

∑ρ
i=0 ζiz

i}. The
optimal polynomial kinship function, denoted as κρ(·), can be
constructed by solving the following optimization problem:

min
ζ0,...,ζρ

0∫
−1

κρ(z)dz

s.t. κρ(z) = ζ0 + ζ1z + · · ·+ ζρz
ρ ∈ Kρ,

κρ(0) = 1, κρ(−1) = 0,
κ′
ρ(z) ≥ 0, ∀z ≥ −1.

(8)

The optimization problem can be reformulated as semidefinite
programming and the details are provided in Appendix A.
The obtained optimal polynomial kinship function κρ(·) with
different orders are visualized in Fig. 3. Since we relax the
convexity requirement, given the same polynomial order, the
proposed polynomial function is a tighter approximation to the
indicator function than a convex one [56] for z ∈ [−1, 0].

Based on the obtained optimal polynomial kinship function
κρ(·), we bound the original chance constraint (3b) by enforc-
ing the upper bound of the failure probability below ϵi:

Pξ(yi(x,ξ) > ui) ≤
∫
Ξ

κρ(yi(x, ξ)− ui)µ(ξ)dξ ≤ ϵi. (9)

The order of κρ(·) controls the upper bound of violation
probability. When ρ is small, the bounding gap in (6a) is large.
As ρ → ∞, the polynomial bounding leads to a worst-case
robust design optimization according to Theorem 3 in [56].
This is equivalent to setting a risk level ϵi = 0, which leads
to an extremely over-conservative design. Fortunately, this is
not a trouble in practice since we do not use a very high-
order polynomial due to the computational issues. In practice,
there exists an optimal order ρ⋆ for bounding the violation
probability most accurately. The optimal ρ⋆ is unknown a-
priori, but heuristically we find that setting ρ ∈ [5, 10] usually
offers an excellent bound.

The proposed bounding method can be extended to deal
with joint chance constraints by constructing a multivariate
polynomial kinship function. We plan to report the results in
a future paper.

IV. THE POBO FRAMEWORK

Based on the proposed polynomial bounding for chance
constraints, we further present the novel PoBO method to
achieve less conservative yield-aware optimization.

A. Workflow of PoBO

Our PoBO framework has two weak assumptions on the
design and random variables:

• The design variable x is box-bounded, i.e., x ∈ X =
[a, b]d1 . This is normally the case in circuit optimization.

• The process variations ξ are truncated and non-Gaussian
correlated with a joint probability density function µ(ξ).

The 2nd assumption is not strong at all. Many practical process
variations are correlated and not guaranteed to be Gaussian.
Additionally, the values of almost all practical geometric or
material parameters are bounded, although some simplified
unbounded distributions (e.g., Gaussian distributions) were
used in previous literature for ease of implementation.

The overall flow of PoBO is summarized below.

• Step 1: Surrogate modeling. We use the recent uncertainty
quantification solver [40] to construct polynomial surro-
gate models for the objective and constraint functions, i.e.,
f(x, ξ) ≈ f̂(x, ξ) and yi(x, ξ) ≈ ŷi(x, ξ),∀i = [n].

• Step 2: Bounding the chance constraints via the proposed
optimal polynomial kinship functions. This transforms a
chance-constrained probabilistic optimization problem into
a tractable deterministic one with a high-quality solution.

• Step 3: Design optimization. We use a polynomial opti-
mization solver, e.g., the semidefinite programming relax-
ation [58], to obtain a globally optimal solution.
The PoBO framework reformulates the original chance-

constrained optimization (3) to the following optimization:

max
x∈X

Eξ[f̂(x, ξ)] (10a)

s.t. V (i)
κ (x) =

∫
Ξ

κρ(υi(x, ξ))µ(ξ)dξ ≤ ϵi, ∀i ∈ [n]. (10b)

Here υi(x, ξ) := ŷi(x, ξ) − ui, f̂(x, ξ) and ŷi(x, ξ) are
the polynomial surrogate models of f(x, ξ) and yi(x, ξ),
respectively.

In the following subsections, we will describe the imple-
mentation details of this PoBO framework.

B. Building Surrogate Models

High-quality performance models are important to speed up
design optimization. We employ the advanced stochastic col-
location method with non-Gaussian correlated uncertainty [40,
50] in Step 1. This method approximates a smooth stochastic
function as the linear combination of some orthogonal and
normalized polynomial basis functions:

f(x, ξ) ≈ f̂(x, ξ) =

p∑
|α|+|β|=0

cα,βΦα(x)Ψβ(ξ). (11)

Here α and β are two index vectors, Φα(x) and Ψβ(ξ)
are two series of orthogonal polynomial basis functions, and
p upper bounds the total order of the product of two basis
functions. The corresponding coefficients cα,β are calcu-
lated via a projection method using some optimization-based
quadrature samples and weights of x and ξ [40]. When the
parameter dimensionality is not high, this method only needs
a small number of simulation samples to produce a highly
accurate surrogate model with a provable error bound. When
the number of dimensions becomes high, we could utilize
many existing advanced uncertainty quantification techniques
to model the performance more efficiently [38, 59]. It is
also possible to extend the proposed chance-constrained yield-
aware method to other types of performance models.
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Fig. 4. An example of optimized quadrature rule for a two-dimensional
truncated Gaussian mixture model (GMM) with two components. The color
bar of the right figure represents the weights of all samples. The shown
quadrature rule satisfies the exact integration up to order 6.

C. Scaling the Yield Metrics υi(x, ξ)

To bound the failure probability P{ξ ∈ Ξ : υi(x, ξ) > 0}
via the optimal kinship function, υi(x, ξ) must be in the range
[−1,∞) according to Definition 1. Once υi(x, ξ) is lower
bounded, we can always scale it to meet this requirement.

Since υi(x, ξ) is a polynomial function in our problem
setting, and both x and ξ are assumed bounded, we can
compute the minimum value υ−

i := min
x∈X,ξ∈Ξ

υi(x, ξ). Then

we change the lower bound of υi(x, ξ) to -1 as follows:

υi(x, ξ)←− − 1
υ−
i

υi(x, ξ), ∀i ∈ [n]. (12)

The scaling factor − 1
υ−
i

is positive as long as the problem (10)
is solvable. This is because the existence of x ∈ X and ξ ∈ Ξ
such that υi(x, ξ) < 0 is the necessary condition to satisfy
the yield constraint. We can easily avoid υ−

i = 0 by adding a
sufficiently small perturbation.

D. Calculating Risk Integral V (i)
κ (x)

In order to upper bound the probability of violating a
design constraint, we need to calculate the integration in (10b).
This can be a challenging task for a truncated non-Gaussian
correlated random vector ξ since classical numerical quadra-
ture rules [60, 61] do not work for non-Gaussian correlated
variables. Fortunately, we can reuse the quadrature rule of ξ as
the by-product of building the surrogate models in Sec. IV-B.
Specifically, the quadrature points and weights {ξl, wl}Ml=1

compute the exact integration up to order 2q, obtained by
solving the following optimization problem [40]:

min
ξl,wl≥0

2q∑
|β|=0

(
Eξ [Ψβ(ξ)]−

M∑
l=1

Ψβ(ξl)wl

)2

. (13)

An example of the solved quadrature is shown in Fig. 4. The
number of quadrature samples could be controlled by tuning
the optimization precision. The detailed accuracy analysis and
the bound of M are provided in [40], which is omitted here.

Theoretically, we need a quadrature rule to exactly calculate
the integration up to order pρ in (10b). The exact quadrature
rule can be computed offline via solving (13) with q = ⌈ρp2 ⌉.
In practice, a low-order quadrature rule, like q = p, often offers
sufficient numerical accuracy. Therefore, we can directly use

Algorithm 1: Flow of the proposed PoBO.
Input: Box-bounded design variable x ∈ X, truncated

non-Gaussian correlated variations ξ ∈ Ξ, risk levels ϵ
Output: Optimized design x⋆

1: Formulate the chance-constrained problem (3).
2: Obtain surrogate models for the design objective

function f(x, ξ) ≈ f̂(x, ξ) and constraint functions
yi(x, ξ) ≈ ŷi(x, ξ),∀i ∈ [n].

3: Scale the yield metrics υi(x, ξ) via Eq. (12).
4: Compute the optimal polynomial kinship function κρ(·)

via (8).
5: Calculate risk integral V (i)

κ (x) via the quadrature rule
obtained from (13).

6: Seek the optimal design of problem (14) via a global
polynomial optimization solver.

the quadrature rule used when building surrogate model (11)
to calculate the risk integral V

(i)
κ (x). Since the quadrature

points will not be simulated, it does not introduce any addi-
tional computational burdens. Based on the quadrature rule,
problem (10) can be converted to the following deterministic
constrained polynomial optimization (14):

max
x∈X

Eξ[f̂(x, ξ)]

s.t.

M∑
l=1

wlκρ(υi(x, ξl)) ≤ ϵi, ∀i ∈ [n].
(14)

Note that the expectation value in the objective function can
be easily obtained since f̂(x, ξ) is a generalized polynomial-
chaos expansion [32, 40].

E. Algorithm Summary

We summarize PoBO in Alg. 1. Below are some remarks:
• In line 4 of Alg. 1, the optimal polynomial kinship

functions (8) can be computed offline and stored as a
look-up table.

• In line 5 of Alg. 1, the optimization-based quadrature rule
in [40] can be used to calculate the risk integral without
any additional simulations. The quadrature rule can be
computed offline as well.

• This method enables a global polynomial optimization
solver to obtain the optimal design of (14).

The curse of dimensionality could be a challenge for Line
2 and Line 6. For the surrogate modeling step, we can
utilize some high-dimensional uncertainty quantification tech-
niques [38, 59] to reduce the cost. In the design optimiza-
tion step, the current limitation comes from the polynomial
optimization solver. Typically, the polynomial optimization
problem can be reformulated as a convex moment prob-
lem. Under very mild assumptions, we can build a series
of semidefinite programming problems whose solutions are
proved to converge monotonically and asymptotically to the
global optimum [62–64]. The relaxed semidefinite program-
ming problems have the size of O(d1

p) with the number
of design variables d1 and polynomial order p. Although it
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TABLE I
OPTIMIZATION RESULTS FOR SYNTHETIC FUNCTION

Risk level ϵ Method Objective ∆1 (%) ∆2 (%) Yield (%)

0.01 Moment [50] N/A* N/A* N/A* N/A*

Proposed 1.14 1.01 0.99 99.98

0.05 Moment [50] 1.88 5.25 5.26 99.98
Proposed 2.11 5.21 3.97 98.76

0.1 Moment [50] 2.19 10.47 10.98 99.36
Proposed 2.26 10.67 7.98 97.08

* The algorithm fails with no feasible solution.
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Fig. 5. Yield of (16) given different risk levels ϵ and polynomial kinship
orders ρ.

grows polynomially with the number of design variables, it
can be challenging when p is high. Fortunately, the design
optimization does not suffer from the number of dimensions
of process variations d2. The challenge caused by the high
dimensionality of x may be addressed in the future by using
other nonlinear optimization solvers, or a better polynomial
optimization solver (e.g. a sparse polynomial solver) that can
exploit the sparse structure of the polynomial surrogate.

V. NUMERICAL RESULTS

In this section, we validate the proposed PoBO framework
via the synthetic example and two realistic photonic IC
examples from [50]. The polynomial optimization is solved
via GloptiPoly 3 [58], which is a global optimization solver
based on hierarchical semidefinite programming. Our codes
are implemented in MATLAB and run on a computer with a
2.3 GHz CPU and 16 GB memory.

Baseline Methods. We choose the moment-bounding
chance-constrained optimization [50] as the baseline for com-
parison. On the photonic IC benchmarks, we further compare
our method with the Bayesian yield optimization (BYO)
method [15], a recent state-of-the-art yield optimization ap-
proach.

Gap of chance constraints. We modify the indicator
function (1) to define an indicator function Ii(x, ξ) for each
individual design constraint in yield definition:

Ii(x, ξ) =

{
1, ŷi(x, ξ) ≤ ui;

0, otherwise
,∀i = [n].

Fig. 6. The schematic of a third-order Mach-Zehnder interferometer.

With N random samples, the individual success rate for each
design constraint is evaluated as Yi(x) =

∑N
j=1 Ii(x, ξj)/N.

The gap for the i-th chance constraint is the relative difference
between Yi and the pre-specified success rate 1− ϵi:

∆i =
Yi(x)− (1− ϵi)

1− ϵi
, ∀i = [n]. (15)

The chance-constrained optimization can always provide a
solution to certify the yield requirement controlled by ϵi’s if a
feasible solution exists. Therefore, ∆i is always non-negative.
Typically, a tighter probabilistic constraint bounding leads to
a larger feasible region and allows us to explore the optimal
design in a larger space, which is more likely to utilize more
risk budgets. Therefore, we use Eq. (15) to measure the gap
of feasible regions and the bounding quality. Notice that we
do not attempt to achieve the highest yield. Instead, our goal
is to avoid over-conservative design while ensuring the pre-
specified yield requirement. Therefore, given a certain risk
level, we prefer a smaller gap ∆i and a less conservative
design solution with better objective performance.

A. Synthetic Function

We first consider a synthetic function with design
variables x ∈ X = [−1, 1]2 and random parame-
ters ξ following a truncated Gaussian mixture model.
Specifically, we assume µ(ξ) = 1

2T N (µ̄1,Σ1,a1,b1) +
1
2T N (µ̄2,Σ2,a2,b2), with µ̄1 = −µ̄2 = [0.1,−0.1]T ,

Σ1 = Σ2 = 10−2

[
1 −0.75

−0.75 1

]
, a1 = −[0.2, 0.4]T ,

a2 = −[0.4, 0.2]T , b1 = [0.4, 0.2]
T and b2 = [0.2, 0.4]

T .
Here T N (µ̄,Σ,a,b) denotes a distribution that is a normal
distribution with mean µ̄ and variance Σ in the box [a,b].

We consider the following chance-constrained optimization:

max
x∈X

Eξ[3(x1 + ξ1)− (x2 + ξ2))]

s.t. Pξ((x1 + ξ1)
2
+ (x2 + ξ2) ≤ 1) ≥ 1− ϵ1,

Pξ((x1 + ξ1)
2 − (x2 + ξ2) ≤ 1) ≥ 1− ϵ2,

(16)

where the two risk levels are set to be equal ϵ1 = ϵ2 = ϵ.
Remark that we do not require ϵ1 = ϵ2 since our method
naturally handles the individual constraints.

We use 2nd-order polynomials to approximate the three
analytical functions and bound the chance constraint with an
order-10 optimal polynomial kinship function. As shown in
Table I, compared with the moment method [50], the proposed
PoBO method produces a better objective value and smaller
gaps for chance constraints while meeting the pre-specified
yield requirement. Clearly, a smaller ϵi produces a higher
yield. The moment bounding method fails to work when
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Fig. 7. The transmission curves of the MZI. The grey lines show the performance uncertainties. The orange and blue curves show the transmission rates
at the drop and through ports, respectively. The mean values of the bandwidth, crosstalk, and attenuation are denoted as BW, XT, and α, respectively. (a)
The initial design: x=[150, 150, 150]; (b) Design after Bayesian yield optimization [15]: x=[286.63, 170.59, 299.3]; (c) Design with the moment-bounding
yield-aware optimization [50]: x=[300, 149.67, 300]; (d) Design with the proposed PoBO method: x=[300, 112.15, 300].

TABLE II
OPTIMIZATION RESULTS FOR MZI BENCHMARK

Risk level ϵ Method Eξ[BW] (GHz) ∆1 (%) ∆2 (%) Yield (%) Simulation #

0.05 Moment [50] 184.53 5.26 5.26 100 35
Proposed 190.99 5.26 5.26 100 35

0.07 Moment [50] 187.02 7.53 7.53 100 35
Proposed 192.10 7.53 7.2 99.7 35

0.1 Moment [50] 189.35 11.11 11.11 100 35
Proposed 193.28 11.11 4.22 93.8 35

N/A* BYO [15] 182.82 N/A* N/A* 100 2020
* No risk level is defined for BYO method. Correspondingly, no gap ∆ is defined.
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Fig. 8. The probability density function of the optimized bandwidth of the
MZI by Bayesian yield optimization [15], moment bounding [50] and the
proposed PoBO (with ϵ = 0.1).

ϵ = 0.01 while our PoBO can still solve this problem. Fig. 5
shows the obtained yield under different risk levels ϵ and
polynomial kinship orders. The kinship order influences the

Fig. 9. The schematic of a microring add-drop filter.

bounding quality and leads to different yield. However, the
results are all of the high quality, leading to certified designs.
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Fig. 10. The probability density function of the optimized bandwidth of the
microring filter by Bayesian yield optimization [15], moment bounding [50]
and the proposed PoBO (with ϵ = 0.1).

B. Mach-Zehnder Interferometer

We consider a third-order Mach-Zehnder interferometer
(MZI) which consists of three port coupling and two arms, as
shown in Fig. 6. The coupling coefficients τ between the MZ
arms play an important role in the design, whose relationship
with the the gap g (nm) is τ = exp(− g

260 ). The gap variables
x = [g1, g2, g3] have the design space of X = [100, 300]

3.
Their corresponding process variations ξ follows a truncated
Gaussian mixture distribution (see Appendix B). We aim to
maximize the expected 3-dB bandwidth (BW, in GHz) with
probability constraints on the crosstalk (XT, in dB) and the
attenuation (α, in dB) of the peak transmission. Therefore,
the yield-aware chance-constrained design is formulated as

max
x∈X

Eξ[BW(x, ξ)]

s.t. Pξ(XT(x, ξ) ≤ XT0) ≥ 1− ϵ1,

Pξ(α(x, ξ) ≤ α0) ≥ 1− ϵ2.

(17)

The two risk levels are set to be equal ϵ1 = ϵ2 = ϵ. The
thresholds of the crosstalk (XT0) and the attenuation (α0) are
-4 dB and 1.6 dB, respectively.

We build three 2nd-order polynomial surrogate models for
BW, XT, and α, respectively. We further bound the proba-
bilistic yield constraints via an order-5 optimal polynomial
kinship function. The optimized results and comparisons are
listed in Table II. It shows that at the same risk level, the
proposed PoBO method can achieve larger bandwidth while
meeting the yield requirements and having smaller gaps for
the chance constraints. The simulation samples are the ones
used for building surrogate models. We list the number of
samples to reveal the simulation cost since the simulation time
per sample may vary from seconds to hours, which depends
on the problem size (small circuits or large circuit) and sim-
ulator types (e.g., circuit-level simulation or EM-based PDE
simulator). The proposed PoBO requires the same number of
simulations as the moment bounding method [50], and both of
them require much fewer simulation samples than the Bayesian
yield optimization due to the efficient surrogate modeling.

Regarding the CPU time of solving the design optimization
problem (17), the proposed method takes 15.28 s, 18.19 s,
and 15.2 s for the three risk levels, respectively. The moment
method takes 0.39 s, 2.11 s, and 2.21 s, respectively. Our
Kinship-based optimization is slower than the moment-based
method because our method uses higher-order polynomials to
bound the probabilistic constraints. However, the optimization
overhead is negligible compared with the sample simulation
time (especially when a PDE-based simulator is employed).
The BYO takes even less than 0.1 s in the optimization steps,
but it requires a huge number of simulation samples, causing
a much larger overall CPU time than chance-constrained
optimization. Fig. 7 compares the frequency response before
and after the yield-aware optimization with ϵ = 0.1. Our PoBO
method has a higher expected bandwidth compared with the
Bayesian yield optimization, the moment bounding method,
and the initial design. Fig. 8 further shows the probability
density of the optimized bandwidth by different models. It
clearly shows that our proposed method produces the highest
bandwidth while meeting the yield requirement.

C. Microring Add-Drop Filter

We further consider the design of an optical add-drop
filter consisting of three identical silicon microrings coupled
in series, as shown in Fig. 9. The design variables are the
coupling coefficients x = [K1,K2,K3,K4] that are to be
optimized within the interval of X = [0.3, 0.6]

4. The process
variations ξ are described by a truncated Gaussian mixture
model (see Appendix B). The design problem is to maximize
the expected 3-dB bandwidth (BW, in GHz) with constraints
on the extinction ratio (RE, in dB) of the transmission at the
drop port and the roughness (σpass, in dB) of the passband that
takes its standard deviation, formulated as:

max
x∈X

Eξ[BW(x, ξ)]

s.t. Pξ(RE(x, ξ) ≥ RE0) ≥ 1− ϵ1,

Pξ(σpass(x, ξ) ≤ σ0) ≥ 1− ϵ2.

(18)

The two risk levels are set to be equal ϵ1 = ϵ2 = ϵ. The
thresholds of the extinction ratio (RE0) and the roughness of
the passband (σ0) are 20 dB and 0.65 dB, respectively.

Similarly, we build three 2nd-order polynomial surrogate
models for BW, RE, and σpass and bound the chance constraints
via an order-5 optimal polynomial kinship function. The
optimized results and comparisons are shown in Table III. The
moment bounding [50] fails when ϵ = 0.05 since no feasible
solution is found under its over-conservative bounding. For
three risk levels, the optimization time for the moment method
is N/A (no feasible solution), 5.89 s, 5.5 s, respectively. The
proposed method takes 100.58 s, 110.58 s, and 103.74 s,
respectively, but the overhead is negligible compared with
the simulation cost. The BYO takes less than 0.1 s in the
optimization step, but it takes the most overall time due
to the high cost of simulating many samples. At all risk
levels, the proposed method can achieve larger bandwidth
while meeting the yield requirements and having smaller
gaps for the chance constraints. As shown in Fig. 10, the
proposed PoBO has a higher expected bandwidth compared to
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Fig. 11. The transmission curves of the microring add-drop filter. The grey lines show the performance uncertainties. The orange and blue curves show the
transmission rates at the drop and through ports, respectively. The mean values of the extinction ratio, bandwidth, and roughness are denoted as RE, BW, and
σpass, respectively. (a) The initial design (infeasible): x=[0.45, 0.45, 0.45, 0.45]; (b) Design after Bayesian yield optimization [15]: x=[0.5758, 0.3718, 0.3720,
0.5746]; (c) Design with the moment-bounding yield-aware optimization [50]: x=[0.6, 0.3751, 0.3642 0.6]; (d) Design with the proposed PoBO optimization:
x=[0.6, 0.3971, 0.3642, 0.6].

TABLE III
OPTIMIZATION RESULTS FOR MICRORING ADD-DROP FILTER BENCHMARK

Risk level ϵ Method Eξ[BW] (GHz) ∆1 (%) ∆2 (%) Yield (%) Simulation #

0.05 Moment [50] N/A* N/A* N/A* N/A* 65
Proposed 116.85 5.26 4.84 99.6 65

0.07 Moment [50] 112.64 7.53 7.42 99.9 65
Proposed 120.05 7.53 6.67 99.2 65

0.1 Moment [50] 118.47 11.11 10.78 99.7 65
Proposed 123.05 11.11 8.33 97.5 65

N/A BYO [15] 117.42 N/A N/A 95.1 2020
* The algorithm fails with no feasible solution.

Bayesian yield optimization and existing yield-aware chance-
constrained optimization via moment bounding [50]. Fig. 11
shows the frequency response before and after the yield-aware
optimization with ϵ = 0.1. For this microring filter benchmark,
we further consider a special case where design objective and
constraints are the same quantity. For this case, our method
still outperforms others (see the details in Appendix C).

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a novel Polynomial Bounding
method for chance-constrained yield-aware Optimization
(PoBO) of photonic ICs with truncated non-Gaussian cor-
related uncertainties. In PoBO, we first construct surrogate
models with a few simulation samples for the interested
quantities based on available uncertainty quantification solvers.
To avoid over-conservative design, we have proposed an
optimal polynomial kinship function to tightly bound the
chance constraints. This bounding method can be efficiently
implemented without additional simulations. It also preserves
the polynomial form and enables seeking a globally optimal
design. The proposed PoBO is verified with a synthetic

function, a Mach-Zehnder interferometer, and a microring add-
drop filter. In all experiments, the proposed PoBO has achieved
the yield requirements, produced tighter bounds on the chance
constraints than the state-of-the-art moment bounding method,
and led to better design objective performances with a few
simulation samples. On the two photonic IC examples, the
proposed method has also reduced the simulation samples by
58× and 31× compared with Bayesian yield optimization.

The theoretical and numerical results of this work have
laid the foundation of many future topics. Possible extensions
of this work include, but are not limited to: (1) improved
algorithms to handle many design parameters and process
variation, (2) formulations and algorithms to handle joint
chance constraints for yield descriptions, (3) PoBO with
non-polynomial surrogates. The proposed framework is very
generic, and it can also be employed in other applications be-
yond EDA, including probabilistic control of energy systems,
safety-critical control of autonomous systems, and so forth.
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APPENDIX A
SOLUTION TO OPTIMAL POLYNOMIAL KINSHIP (8)

Given a ρ-order optimal kinship function κρ(·), we intro-
duce two positive semidefinite matrices Y1 ∈ R(n1+1)×(n1+1)

and Y2 ∈ R(n2+1)×(n2+1) with n1 = ⌊(ρ − 1)/2⌋ and n2 =
⌊(ρ− 2)/2⌋. We further define two series of Hankel matrices
H1,m ∈ R(n1+1)×(n1+1) and H2,m ∈ R(n2+1)×(n2+1) as

Hk,m (i, j) =

{
1, i+ j = m+ 1

0, otherwise
, k = 1, 2. (19)

Based on the sum-of-square representation of a nonnegative
univariate polynomial, we can reformulate (8) as a finite
dimensional semidefinite programming (20), which can be
handled by many efficient solvers and toolboxes [65]. The
detailed proof will be similar to the Corollary 1 of [56], where
the difference is the order of nonnegative polynomial.

minζ0,...,ζρ,Y1,Y2

∑ρ
i=0

(−1)i

i+1 ζi
s.t. ζ0 = 1,∑ρ

i=0(−1)iζi = 0,
Tr(Y1H1,m) + Tr(Y2H2,m) =∑ρ

i=m+1
i!(−1)i−m−1

k!(i−m−1)! ζi,m = 0, 1, . . . , ρ− 2,

Yk ⪰ 0, k = 1, 2.

(20)

We list some examples of the solved polyno-
mial as below: for ρ = 5, the polynomial
coefficients are [1, 7.87, 24.62, 37.49, 27.74, 8.00].
For ρ = 8, the polynomial coefficients are
[1, 13.4, 75, 223.71, 384.3, 381.57, 203.57, 45.19].

APPENDIX B
DETAILS ABOUT BENCHMARK SETUP

In the MZI benchmark (Sec. V-B), the process variations on
the coupling coefficients are described by a truncated Gaussian
mixture model with two components:

µ(ξ) =
1

2
T N 1(µ̄1,Σ1,a1,b1) +

1

2
T N 2(µ̄2,Σ2,a2,b2),

(21)
where µ̄1 = −µ̄2 = [3, 3, 3]

T , Σ1 = Σ2 =

32

 1 0.4 0.1
0.4 1 0.4
0.1 0.4 1

 ,a1 = −b2 = [−6,−6,−6]T ,a2 =

−b1 = [−12,−12,−12]T .
In the microring benchmark (Sec. V-C), the

process variations on the coupling coefficients are
described the same as Eq. (21) with different
parameters µ̄1 = −µ̄2 = [0.03, 0.03, 0.03, 0.03]

T ,

Σ1 = Σ2 = 0.032


1 0.4 0.1 0.4
0.4 1 0.4 0.1
0.1 0.4 1 0.4
0.4 0.1 0.4 1

 ,a1 =

−b2 = [−0.06,−0.06,−0.06,−0.06]T ,a2 = −b1 =
[−0.12,−0.12,−0.12,−0.12]T .

TABLE IV
BANDWIDTH-CONSTRAINED OPTIMIZATION RESULTS FOR MICRORING

ADD-DROP FILTER

Risk level ϵ Method Eξ[BW] (GHz) ∆ (%) Yield (%) Simulation #

0.05 Moment [50] N/A* N/A* N/A* 65
Proposed 105.66 3.89 98.7 65

0.07 Moment [50] 93.96 7.53 100 65
Proposed 107.28 4.09 96.8 65

0.1 Moment [50] 98.88 11.11 100 65
Proposed 109.01 3.67 93.3 65

N/A BYO [15] 102.05 N/A 99.8 2020
* The algorithm fails with no feasible solution.

APPENDIX C
ADDITIONAL CASE STUDY

In this case study, for the same microring add-drop filter in
section V-C, we aim to optimize its bandwidth while holding a
constraint on the bandwidth as well. The yield-aware chance-
constrained design is formulated as

max
x∈X

Eξ[BW(x, ξ)]

s.t. Pξ(BW(x, ξ) ≤ BW0) ≥ 1− ϵ,
(22)

where the bandwidth threshold BW0 is 120 GHz. The design
solutions and comparisons are summarized in Table IV. Simi-
lar to the cases in section V, our method still works when the
objective and constraint are the same quantity and outperforms
the other approaches.
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