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Abstract—Uncertainty quantification has become an efficient
tool for uncertainty-aware prediction, but its power in yield-
aware optimization has not been well explored from either theo-
retical or application perspectives. Yield optimization is a much
more challenging task. On one side, optimizing the generally non-
convex probability measure of performance metrics is difficult.
On the other side, evaluating the probability measure in each
optimization iteration requires massive simulation data, espe-
cially when the process variations are non-Gaussian correlated.
This paper proposes a data-efficient framework for the yield-
aware optimization of photonic ICs. This framework optimizes
the design performance with a yield guarantee, and it consists of
two modules: a modeling module that builds stochastic surrogate
models for design objectives and chance constraints with a few
simulation samples, and a novel yield optimization module that
handles probabilistic objectives and chance constraints in an
efficient deterministic way. This deterministic treatment avoids
repeatedly evaluating probability measures at each iteration, thus
it only requires a few simulations in the whole optimization flow.
We validate the accuracy and efficiency of the whole framework
by a synthetic example and two photonic ICs. Our optimization
method can achieve more than 30× reduction of simulation cost
and better design performance on the test cases compared with
a Bayesian yield optimization approach developed recently.

Index Terms—Photonic integrated circuits, photonic design au-
tomation, uncertainty quantification, yield optimization, chance
constraints, non-Gaussian correlations.

I. INTRODUCTION

THE demand for low-power, high-speed communications
and computing have boosted the advances in photonic

integrated circuits. Based on the modern nano-fabrication
technology, hundreds to thousands of photonic components
can be integrated on a single chip [1], [2]. However, process
variations persist during all the fabrication processes and can
cause a significant yield degradation in large-scale design and
manufacturing [3]–[6]. Photonic ICs are more sensitive to
process variations (e.g., geometric uncertainties) due to their
large device dimensions compared with the small wavelength.
To achieve an acceptable yield, uncertainty-aware design op-
timization algorithms are highly desired [7].

Yield optimization algorithms try to increase the success
ratio of a chip under random process variations, and they
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have been studied for a long time in the electronic cir-
cuit design [8]–[11]. However, it is still expensive to reuse
existing yield optimization solvers for photonic ICs. The
major difficulties include: 1) the quantity of interest (e.g.,
the probability distribution of a bandwidth) does not admit
an explicit expression. Instead, we only know the simulation
values at parameter sample points; 2) the design objectives
and constraints are defined in a stochastic way. They are hard
to compute directly and require massive numerical simulations
to estimate their statistical distributions; 3) practical photonic
IC designs often involve non-Gaussian correlated process
variations, which are more difficult to capture. To estimate the
design yield efficiently, one alternative is to build a surrogate
model. In [12]–[14], posynomials were used to model statisti-
cal performance, and geometric programming was employed
to optimize the worst-case performance. The reference [15]
proposed a Chebyshev affine arithmetic method to predict the
cumulative distribution function. The recent Bayesian yield
optimization [10] approximated the probability density of the
design variable under the condition of “pass” by a kernel
density estimation. The work [11] further approximated the
yield over the design variables directly by a Gaussian process
regression. However, these machine learning techniques may
still require many simulation samples. Furthermore, worst-case
optimization or only optimizing the yield can lead to non-
optimal (and even poor) chip performance.

Recently, uncertainty quantification methods based on gen-
eralized polynomial chaos have gained great success in mod-
eling the uncertainty caused by various process variations
in electronic and photonic ICs [16]–[27]. A novel stochas-
tic collocation approach was further proposed in [28], [29]
to handle non-Gaussian correlated process variations, which
shows significantly better accuracy and efficiency than [30]
due to the smooth basis functions and an optimization-based
quadrature rule. These techniques can construct stochastic sur-
rogate models with a small number of simulation samples, but
their power in yield optimization has not been well explored
or exploited despite recent robust optimization methods [31]
based on generalized polynomial chaos.

Paper Contributions. Leveraging the chance-constrained
optimization [32] and our recent uncertainty quantification
solvers [28], [29], this paper presents a data-efficient technique
to optimize photonic ICs with non-Gaussian correlated process
variations. Instead of just optimizing the yield, we optimize
a target performance metric while enforcing the probability
of violating design rules to be smaller than a user-defined
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threshold. Doing so can avoid performance degradation in
yield optimization. Chance-constrained optimization [32] has
been widely used in system control [33], autonomous vehicles
[34], and reliable power generation [35], [36], but it has
not been investigated for yield optimization of electronic or
photonic ICs. Our specific contributions include:
• A chance-constraint optimization framework that can

achieve high chip performance and high yield simultane-
ously under non-Gaussian correlated process variations.

• A surrogate model that approximates the stochastic ob-
jective and constraint functions with a few simulations.
Since both the objective function and constraints are only
available through a black-box simulator, we build a surro-
gate model based on the recent uncertainty quantification
solver [29]. The main step is to compute a quadrature
rule in the joint space of design variables and stochastic
parameters by a new three-stage optimization process.

• A deterministic reformulation. A major challenge of
chance-constrained problems is to reformulate the
stochastic constraints into deterministic ones [37]. We
reformulate the probabilistic objective function and con-
straints as non-smooth deterministic functions. Afterward,
we transform them into an equivalent polynomial opti-
mization, which can be solved efficiently.

• Validations on benchmarks. Finally, we validate the ef-
ficiency of our proposed framework on a synthetic ex-
ample, a microring add-drop filter, and a Mach-Zehnder
filter. Preliminary numerical experiments show that our
proposed framework can find the optimal design variable
efficiently. Compared with the Bayesian yield optimiza-
tion method [10], our proposed method can reduce the
number of simulations by 30×, achieve better perfor-
mance, and produce a similar yield on the test cases.

This work should be regarded as a preliminary result in this
direction, and many topics can be investigated in the future.

II. PRELIMINARIES

A. The Yield Optimization

The yield is defined as the percentage of qualified products
overall. For a photonic IC, denote the design variables by
x = [x1, x2, ..., xd1 ]T ∈ X and the process variations by
random parameters ξ = [ξ1, ξ2, ...ξd2 ]T ∈ Ω. Suppose x is
uniformly distributed in a bound domain and ξ follows a
probability distribution ρ(ξ). Let {yi(x, ξ)}ni=1 denote a set of
performance metrics of interest, ui denote its required upper
bound, and I(x, ξ) denote the indicator function:

I(x, ξ) =

{
1, if yi(x, ξ)≤ ui,∀i = 1, . . . , n;
0, otherwise. (1)

The yield at a certain design choice x is defined as

Y (x) = Probξ(y(x, ξ) ≤ u|x) = Eξ[I(x, ξ)]. (2)

The yield optimization problem aims to find an optimal design
variable x∗ such that

x∗ = argmax
x∈X

Y (x). (3)

There are three major difficulties in solving the above yield
optimization problem: 1) the indicator function I(x, ξ) does
not always admit an explicit formulation; 2) computing the
yield Y (x) involves a non-trivial numerical integration, which
requires numerous simulations at each design variable x; 3)
Y (x) is an implicit non-convex function and it is difficult to
compute optimal solution.

B. Chance Constraints

The chance constraint is a powerful technique in
uncertainty-aware optimization [32]. In comparison with the
deterministic constraints or the worst-case constraints where
the risk level ε is zero, a chance constraint enforces the
probability of satisfying a stochastic constraint to be above
a certain confidence level 1− ε (ε is usually not zero):

Probξ(y(x, ξ) ≤ u) ≥ 1− ε (4)

or equivalently, the probability of violating the constraint to
be smaller than the risk level ε:

Probξ(y(x, ξ) ≥ u) ≤ ε. (5)

Under strict conditions, such as the parameters being in-
dependent and y(x, ξ) being a linear function, (4) can be
reformulated into equivalent deterministic constraints [38]. In
other words, one can reformulate the left-hand side of (4)
by its probability density function and substitute the right-
hand side by a constant related to the cumulative density
function. However, these conditions rarely hold in practice.
Even if the conditions hold, computing the probability density
function or probability density function of an uncertain vari-
able can be intractable [17], [37]. In these cases, we seek
for deterministic reformulations that can well approximate
the chance constraints. There is a trade-off in choosing the
reformulation: if the reformulation is aggressive (the feasible
domain is enlarged), it may result in an infeasible solution;
Otherwise, if the reformulation is conservative (the feasible
domain is decreased), the solution may be degraded.

One popular method converts (4) to a deterministic con-
straint via the mean and variance of y(x, ξ) [37], [38]:

Eξ[y(x, ξ)] + κε

√
varξ[y(x, ξ)] ≥ u. (6)

Here Eξ[·] denotes the mean value, varξ[·] denotes the vari-
ance. The constant κε is chosen as κε =

√
(1− ε)/ε. The

detailed proof is shown in Appendix A. It is worth noting that
(6) is a stronger constraint than (4): every feasible point of (6)
is also a feasible point of the original chance constraint (4).

C. Stochastic Spectral Methods

Assume that y(ξ) is a smooth function satisfying
E[y2(ξ)] ≤ ∞. The stochastic spectral methods can approxi-
mate y(ξ) by orthonormal polynomial basis functions:

y(ξ) ≈
p∑

|α|=0

cαΨα(ξ), with E [Ψα(ξ)Ψβ (ξ)] = δα,β. (7)

Here |α| = α1 + . . . + αd2 , Ψα(ξ) is an orthonormal basis
function indexed by α, and cα is its corresponding coefficient.
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If the parameters ξ are independent, ρ(ξ) equals the prod-
ucts of its one-dimensional marginal density function ρi(ξi). In
this case, the basis function Ψα(ξ) is the product of multiple
one-dimensional orthogonal basis functions

Ψα(ξ) = ψ1(ξ1) . . . ψd2(ξd2). (8)

These one-dimensional basis functions ψi(ξi) can be con-
structed by the three term recursion [39]. Various stochastic
spectral approaches have been proposed to compute the coef-
ficients cα, including the intrusive (i.e., non-sampling) solvers
(e.g., stochastic Galerkin [40], the stochastic testing [16])
and the non-intrusive (i.e., sampling) solvers (e.g., stochastic
collocation [41]). In the past few years, there has also been
a rapid progress in handling high-dimensional parameters,
such as the tensor recovery method [19], the compressive
sensing technique [42], ANOVA (analysis of variance) or
HDMR (the high-dimensional model representation) [43], and
the hierarchical uncertainty quantification [18].

In practice, the random parameters may be correlated. If the
parameters ξ are non-Gaussian correlated, the computation is
more difficult. In such cases, Ψα(ξ) can be constructed by
the Gram-Schmidt approach in [28], [29] or the Cholesky fac-
torization in [44], [45]. The main difficulty lies in computing
high order moments of ξ, which can be well resolved by the
functional tensor train approach proposed in [45].

III. OUR YIELD-AWARE OPTIMIZATION MODEL

In this section, we will show our yield optimization model
defined by a stochastic measure in the probability space, and
will illustrate how to convert the stochastic formulation to a
deterministic one. We first present the basic assumptions in
this paper.

Assumption 1. We made the following assumptions:
1) The design variable x is bounded by a box, i.e., x ∈
X = [a,b]d1 ;

2) The stochastic parameter ξ ∈ Ω ∈ Rd2 admits a non-
Gaussian correlated density function ρ(ξ);

3) The yield is qualified by the following constraints:

yi(x, ξ) ≤ ui, ∀ i ∈ [n]. (9)

Here [n] = 1, . . . , n and E[yi(x, ξ)] ≤ ui. Each individ-
ual quantity {yi(x, ξ)}ni=1 is a black-box function, and
we can obtain its function values at given samples.

The design variables x are deterministic and without any
probability measures, and all samples of x are equally im-
portant in the optimization process. Therefore, we treat x as
some mutually independent random variables with a uniform
distribution and use some Legendre polynomials as their basis
functions. The process variations are non-Gaussian correlated,
which enables our model to handle generic cases.

A. The Probabilistic Yield Optimization Model

The yield at a given design variable x can be defined as the
probability that the yield conditions (9) are satisfied, i.e.,

Y (x) = Probξ(y(x, ξ) ≤ u).

Here, y(x, ξ) = [y1(x, ξ), . . . , yn(x, ξ)]T and u =
[u1, . . . , un]T . Consequently, the yield optimization problem
can be described as:

max
x∈X

Probξ(y(x, ξ) ≤ u). (10)

However, the above yield maximization often contradicts
with our performance goals. For instance, one may have to
reduce the clock rate of a processor significantly in order to
achieve a high yield. As a result, directly optimizing the yield
may lead to an over-conservative design. In practice, the design
variables that provide the best yield is often non-unique, and
we hope to chose a design that achieves good performance
and high yield simultaneously. Therefore, we ensure the yield
with a chance constraint

Probξ(y(x, ξ) ≤ u) ≥ 1− ε, (11)

and optimize the expected value of an uncertain performance
metric f(x, ξ) by the following yield-aware optimization:

min
x∈X

Eξ[f(x, ξ)]

s.t. Probξ(y(x, ξ) ≤ u) ≥ 1− ε. (12)

Here ε is a risk level to control the yield. The above formula-
tion is not equivalent to (10). It can describe, for instance, the
following design optimization problem: minimize the average
power consumption of a photonic IC while ensuring at least
95% yield (i.e., with 5% probability of violating timing
and bandwidth constraints) under process variations. Note
that f(x, ξ) may also be the function (e.g., weighted sum)
of several performance metrics that we intend to optimize
simultaneously. The parameter ε can help designers balance
between the yield and a target performance goal (i.e., power
consumption). A small ε results in a higher yield but possibly
a worse performance metric. Therefore, the value of ε can be
chosen adaptively and case-dependently by the users based on
on their specific requirements on the performance and yield.

When the yield function Y (x) and the objective function
f(x, ξ) are available, we may solve the above optimization
problem directly. However, this is rarely true. Normally, one
has to estimate the yield and objective at a given x by the
Monte Carlo method [8], [9] which requires a huge number of
simulation samples at each design variable x. This is infeasible
for many simulation-expensive photonic IC design problems.

Due to the ease of implementation, we reformulate the joint
chance constraint in (11) into individual chance constraints:

Probξ(yi(x, ξ) ≤ ui) ≥ 1− εi,∀ i ∈ [n]. (13)

In this formulation, εi means the risk tolerance of violating
the i-th design specification. Since Probξ(y(x, ξ) ≤ u) =
Probξ(∩ni=1yi(x, ξ) ≤ ui) = 1 − Probξ(∪ni=1yi(x, ξ) ≥ ui),
the probability of the joint chance constraint can be upper and
lower bounded by the individual chance constraints:

max
i=1,...,n

Probξ(yi(x, ξ) ≥ ui)

≤Probξ(∪ni=1yi(x, ξ) ≥ ui) ≤
n∑
i=1

Probξ(yi(x, ξ) ≥ ui).
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Build the chance
constrained model (12)

Reformulate (12) into
(14) with n constraints

Reformulate (14) into
deterministic model (17)

Derive the polynomial
optimization model (31)

Solve (31) and output
the optimal design

Input the range of
x and the PDF of ξ

Solve (28) to compute
the quadrature rule

Call the simulator at
the quadrature points

Construct the surrogate
model by (25)

Fig. 1. The flowchart of our proposed framework for solving the chance
constrained yield-aware optimization.

When εi = ε for all i, (13) is a relaxation of (11) (e.g.,
the feasible domain is enlarged); when

∑n
i=1 εi ≤ ε, (13)

becomes more conservative than (11) (e.g., the feasible domain
is decreased). In this paper, we do not give the universal
best choice of εi. Instead, the users can tune the parameters
adaptively based on their requirements.

Consequently, we have the following chance-constrained
yield-aware optimization model

min
x∈X

Eξ[f(x, ξ)]

s.t. Probξ(yi(x, ξ) ≤ ui) ≥ 1− εi,∀ i ∈ [n]. (14)

B. Reformulate the Stochastic into Deterministic Model

The chance-constraint optimization in problem (14) is diffi-
cult to solve directly. This problem is more challenging when
yi(x, ξ) is nonlinear. In this case, it is almost impossible
to formulate the chance constraints in (14) to equivalent
deterministic formulations. A naive approach is to replace
the stochastic constraints by inequality constraints over the
expected constraints:

min
x∈X

Eξ[f(x, ξ)]

s.t. Eξ[yi(x, ξ)] ≤ ui,∀ i ∈ [n]. (15)

However, this treatment will lose the probability density infor-
mation and may not provide a high-quality solution, although
it can help improve the yield in practice. We will illustrate
this phenomenon in numerical experiments in Section V-A.

Therefore, we do not use the formulation in (15). Instead,
we adopt the second-order moment approach in [37], [38] and
replace (13) by

Eξ[yi(x, ξ)] + κεi

√
varξ[yi(x, ξ)] ≤ ui,∀ i ∈ [n]. (16)

Here, κεi =
√

1−εi
εi

is a scaling parameter. We present the
detailed proof in Appendix A and point out the following:
• Constraint (16) is a stronger condition than (13). In other

words, each feasible point of (16) is also a feasible
solution of the chance constraint (13);

• The parameter εi is a user-defined risk tolerance. When εi
decreases, the feasible set will become smaller. However,
the optimal solution may result in a higher yield;

• When the variance varξ[yi(x, ξ)] is small enough, the
feasible set of (16) is close to the deterministic constraint
Eξ[yi(x, ξ)] ≤ ui.

Consequently, the probabilistic optimization model (14) is
reformulated into a deterministic optimization problem:

min
x∈X

Eξ[f(x, ξ)]

s.t. Eξ[yi(x, ξ)] + κεi

√
varξ[yi(x, ξ)] ≤ ui,∀ i ∈ [n].

(17)

IV. ALGORITHM AND IMPLEMENTATION DETAILS

We cannot solve problem (17) directly because we do
not know the mean values and variances for the black-box
functions {yi(x, ξ)}ni=1 and f(x, ξ). A direct approach is to
apply a Monte Carlo method to estimate the mean values and
variances for every iterate x. However, this is not affordable
because of the large number of numerical simulations.

In this section, we build the surrogate model for f(x, ξ)
and {yi(x, ξ)}ni=1 by using generalized polynomial chaos [46]
and our recent developed uncertainty quantification solver
[28], [29]. Once the surrogate models are constructed, we can
perform deterministic optimization. The main task is to build
the orthogonal basis functions Φα(x), Ψβ(ξ) and compute the
coefficients ciα,β and hα,β such that

yi(x, ξ) ≈
p∑

|α|+|β|=0

ciα,βΦα(x)Ψβ(ξ), (18)

and

f(x, ξ) ≈
p∑

|α|+|β|=0

hα,βΦα(x)Ψβ(ξ). (19)

Once the above surrogate models are obtained, the mean value
of yi(x, ξ) can be approximated by

Eξ[yi(x, ξ)] ≈
p∑

|α|=0

ciα,0Φα(x), (20)

and the variance is approximated by

varξ[yi(x, ξ)] ≈
p∑

|β|=1

p−|β|∑
|α|=0

ciα,βΦα(x)

2

. (21)

Equation (21) is obtained based on the orthonormal prop-
erty of the basis functions. The detailed proof is shown in
Appendix B. The mean value and variance of the objective
function f(x, ξ) can be evaluated in the same way. Finally,
the deterministic yield optimization model (17) has a explicit
expression and can be solved.

The overall framework is summarized in Algorithm 1. In
the following, we explain the implementation details.
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A. Basis Functions for Design and Uncertain Variables

For the uniform-distributed design variables x, their basis
functions Φα(x) can be decoupled into the products of one-
dimensional basis functions:

Φα(x) = φ1α1
(x1) . . . φd1αd1

(xd1). (22)

Here, φiαi
(xi) is a Legendre polynomial [46] and can be

constructed by the three-term recurrence relation [39].
For the random vector ξ describing non-Gaussian correlated

process variations, we construct its basis functions Ψβ(ξ) by
the Gram-Schmidt approach proposed in [28], [29]. Specifi-
cally, we first reorder the monomials ξβ = ξβ1

1 . . . ξ
βd2

d2
in the

graded lexicographic order, and denote them as {pj(ξ)}Np

j=1.
Here, Np =

(
d2+p
p

)
is the total number of basis functions

for ξ ∈ Rd2 bounded by order p. Then we set Ψ1(ξ) = 1

and generate the orthonormal polynomials {Ψj(ξ)}Np

j=2 in the
correlated parameter space recursively by

Ψ̂j(ξ) = pj(ξ)−
j−1∑
i=1

E[pj(ξ)Ψi(ξ)]Ψi(ξ),

Ψj(ξ) =
Ψ̂j(ξ)√
E[Ψ̂2

j (ξ)]
, j = 2, . . . , Np. (23)

These basis functions {Ψj(ξ)}Np

j=1 can be re-ordered into the
graded lexicographic order {Ψβ(ξ)}p|β|=0.

B. How to Build the Surrogate Models?

By a projection approach, the coefficient ciα,β for the basis
function can be computed by

ciα,β = Ex,ξ[yi(x, ξ)Φα(x)Ψβ(ξ)]. (24)

The above integration can be well computed given a suitable
set of quadrature points and weights {xk, ξk, wk}Mk=1:

ciα,β ≈
M∑
k=1

yi(xk, ξk)Φα(xk)Ψβ(ξk)wk. (25)

We need to design a proper quadrature rule. The main chal-
lenge here is that x is a independent vector but ξ describes
non-Gaussian correlated uncertainties.

In this paper, we propose a three-stage optimization method
to compute the quadrature points and weights:
• Firstly, we compute the quadrature rule {xl, vl}M1

l=1 for
the independent design variables x.

• Secondly, we employ the optimization approach pro-
posed in [28], [29] to calculate the quadrature points
and weights {ξl, ul}M2

l=1 for the non-Gaussian correlated
parameters ξ.

• Finally, we use their tensor products (M1M2 points)
as an initialization and recall the optimization approach
proposed in [28], [29] for the coupled space of x and
ξ to compute M ≤ M1M2 joint quadrature points
{xk, ξk, wk}Mk=1.

The details are described below.

1) Initial Quadrature Points for x: One could employ the
sparse grid approach [47], [48] to compute the quadrature
samples and weights for the independent uniform-distribution
variables x ∈ Rd1 . However, the quadrature weights from a
sparse grid method can be negative, and the number of quadra-
ture points is not small enough. Therefore, after obtaining the
sparse-grid quadrature rule, we propose refining the quadrature
rule by the least square optimization solver

min
a≤xl≤b,vl≥0

N2p∑
j=1

(
E[Φj(x)]−

M1∑
l=1

Φj(xl)vl

)2

. (26)

Here, the expectations E[Φj(x)] = δ1j are already known
from the orthogonality of basis functions. This model is similar
to that of [28], [29], which provides the quadrature points and
weights to compute the numerical integral of all basis func-
tions upper bounded by order 2p. If the optimized objective
in (26) is small, the numerical integral of any functions in
the p-th order polynomial space will also be accurate. Further,
the number of points M1 can also be updated adaptively. The
theoretical proofs for the number of quadrature points and the
numerical approximation error are provided in [29].

2) Initial Quadrature Points for ξ: For the non-Gaussian
correlated parameters ξ, we adopt the optimization-based
quadrature rule in [28], [29]. Specifically, we compute M2

quadrature points ξl and weights wl via solving the following
optimization problem

min
ξl,ul≥0

N2p∑
j=1

(
E[Ψj(ξ)]−

M2∑
l=1

Ψj(ξl)ul

)2

. (27)

3) Optimized Joint Quadrature Points for x and ξ: The
tensor product of the two sets of quadrature points {xl, vl}M1

l=1

and {ξl, ul}M2

l=1 result in M1M2 simulation points in total,
which may be still unaffordable for large-scale photonic design
problems. In order to further reduce the simulation cost of
building surrogate models, we propose an optimization model
to compute the joint quadrature rule for both the design
variables x and the uncertain parameters ξ:

min
a≤xk≤b
ξk,wk≥0

N2p∑
j1=1

N2p−j1∑
j2=1

(
δ1j1δ1j2 −

M∑
k=1

Φj1(xk)Ψj2(ξk)wk

)2

.

(28)

Here δ1j1δ1j2 = 1 if j1 = j2 = 1 and zero otherwise. Our
numerical experiments show that the total number of optimized
quadrature points is M is significantly smaller than M1M2.

Remark: We can also solve (28) directly to obtain the
optimized quadrature points. However, (28) is a non-convex
optimization problem and is hard to optimize in general. The
subproblems (26) and (27) help to provide a good initial guess
for the joint optimization.

For all optimization subproblems (26), (27), and (28), we
use the block coordinate-descent optimization method de-
scribed in [29] to compute the quadrature points and weights
alternatively. The following theorem ensures high accuracy for
our surrogate model considering the unavoidable numerical
optimization error and function approximation error.
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min
x∈X

p∑
|α|=0

hα,0Φα(x)

s.t. κ2εi

p∑
|β|=1

p−|β|∑
|α|=0

ciα,βΦα(x)

2

≤

ui − p∑
|α|=0

ciα,0Φα(x)

2

,

p∑
|α|=0

ciα,0Φα(x) ≤ ui, ∀ i ∈ [n]. (31)

Theorem 1. [29] Assume that {xk, ξk, wk}Mk=1 are the
numerical solution to (28).

1) Suppose that the objective function of (28) decays to zero.
The required number of quadrature points is upper and
lower bounded by

Np =
(d+ p)!

p!d!
≤M ≤ N2p =

(d+ 2p)!

2p!d!
; (29)

2) For any smooth and square-integrable function y(ξ), the
approximation error of its p-th order stochastic approxi-
mation ỹ(ξ) satisfies

‖y(x, ξ)− ỹ(x, ξ)‖2 ≤ α1δ1 + α2δ2. (30)

Here, ỹ(x, ξ) =
∑p
|α|+|β|=0 cα,βΦα(x)Ψβ(ξ), δ1

is the `1-norm of the objective function of (28)
evaluated at its final numerical solution, δ2 is the
distance of y(x, ξ) to the p-th order polynomial space,
α1 = NpLT , α2 = 1+NpW , L = max ‖y(x, ξ)‖2, T =
maxj1+j2,l1+l2=1,...,N2p ‖Φj1(x)Ψj2(ξ)Ψl1(x)Ψl2(ξ)‖2,
and W = sup |I[y(ξ)]|E[|y(ξ)|] are constants.

Remark : This subsection focuses on the theory and imple-
mentation for building a surrogate model for low-dimensional
problems. For high-dimensional problems that are more costly
in both surrogate modeling and optimization, we may apply
a high-dimensional solver such as the compressive sensing
method [44] to build the surrogate model. Our framework
shown in Fig. 1 is still applicable.

C. The Proposed Polynomial Optimization

With the formula for the mean value (20) and the variance
(21), we obtain the following deterministic formula for the
chance-constrained optimization:

min
x∈X

p∑
|α|=0

hα,0Φα(x)

s.t. κεi

√√√√√ p∑
|β|=1

p−|β|∑
|α|=0

ciα,βΦα(x)

2

+

p∑
|α|=0

ciα,0Φα(x) ≤ ui, ∀ i ∈ [n]. (32)

However, the constraints are non-smooth because of the
square-root terms, and may not admit a gradient at some
points [49]. Instead, we use the equivalent smooth polynomial
formula:

κ2εivarξ[yi(x, ξ)] ≤ (ui − Eξ[yi(x, ξ)])2. (33)

Algorithm 1: Our Proposed Chance-Constrained Yield-
aware Optimization Solver
Input: The range of the design variable x, probability

density function of the non-Gaussian correlated
random parameters ρ(ξ), the polynomial order p,
the upper bounds of performance metrics {ui}ni=1,
and the chance constraint thresholds {εi}ni=1.

1. Construct the basis functions Φα(x) and Ψβ(ξ) based on
(22) and (23) independently.

2. Initialize the quadrature points for design variables
{xl, vl}M1

l=1 by (26), and quadrature points for stochastic
parameters {ξl, ul}M2

l=1 by the optimization problem (27),
respectively. Then co-optimize the quadrature rule to
obtain {xk, ξk, wk}Mk=1 by (28).

3. Call the simulator to compute f(xk, ξk), yi(xk, ξk) for
all i = 1, . . . , n and k = 1, . . . ,M .

4. Build the coefficients hα,β and ciα,β by equation (25).
5. Set up the optimization problem (31), and then solve it

via a global polynomial optimization solver, e.g., [52].
Output: The optimized design variable x∗

Consequently, (17) can be reduced to a deterministic and
smooth optimization problem of x in (31).

Noting that both the objective function and the constraints
of (31) are polynomials, we can obtain the optimal solution
by using any polynomial solvers. In this paper, we use the
semi-definite relaxation based approaches [50], [51] because
they can find the global optimal solution.

V. NUMERICAL EXPERIMENTS

In this section, we verify our proposed approach by a
synthetic example and two photonic IC examples. The poly-
nomial optimization sub-problem (31) is solved by the global
optimization solver GloptiPoly 3 [52]. The yield is defined as

yield(x) =
the number of ξj s.t. yi(x, ξj) ≤ ui,∀ i ∈ [n]

the total number of random parameters ξj
.

(34)
We set all risk thresholds to ε, i.e., ε = εi,∀ i ∈ [n]. For
the synthetic example, we will compare our method with the
deterministic formulation (15). For the photonic IC examples,
we will compare our method with the state-of-the-art Bayesian
yield optimization method [10]. We summarize the key idea of
the Bayesian yield optimization in Appendix C. The MATLAB
codes and a demo example can be downloaded online 1.

1https://www.dropbox.com/sh/stvpiz0aa14pmpm/AABKrCGKjWzQY8OrrD-
GNLJAa?dl=0
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Fig. 2. The feasible set of the synthetic example with risk tolerance levels ε ∈ [10−2, 10−0.1] under different uncertainty distributions. (a): a positive-
correlated non-Gaussian distribution; (b): a Gaussian independent distribution; (c): a negative correlated non-Gaussian distribution. The domain between the
red lines are the deterministic feasible set x21 ± x2 ≤ 1, and the blue lines demonstrate the effects of chance constraints.
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Fig. 3. The quadrature points and weights in the synthetic experiment. (a) and (b): The initial 2-D quadrature points for the design variable x and uncertain
parameters ξ by solving (26) and (27), respectively. (c) and (d): The optimized quadrature points for the joint 4-D space of x and ξ by solving (28). Here
we project the optimized 4-D quadrature points to the 2-D sub-space of x and ξ, respectively. The quadrature weights are shown in colors.

A. Synthetic Example

Firstly, we consider a synthetic example with two design
variables and two non-Gaussian correlated random parameters.
The design variable x admits a uniform distribution U [−1, 1]2

and the uncertain parameter ξ follows a Gaussian mixture
distribution. We define the yield criterion as (x1+ξ1)2±(x2+
ξ2) ≤ 1 and our goal is to maximize Eξ[3(x1+ξ1)+(x2+ξ2)].
We formulate the yield into chance constraints and derive the
following problem

max
x

Eξ[3(x1 + ξ1)− (x2 + ξ2)]

s.t. Probξ
(
(x1 + ξ1)2 − (x2 + ξ2) ≤ 1

)
≥ 1− ε,

Probξ
(
(x1 + ξ1)2 + (x2 + ξ2) ≤ 1

)
≥ 1− ε. (35)

To illustrate the effects of different parameter distributions,
we study three probability density functions: the independent
distribution N (0, 10−4I), the non-Gaussian positive correla-
tions 1

2N (0.01, 10−4Σ) + 1
2N (−0.01, 10−4Σ) with Σ =(

1 0.75
0.75 1

)
, and the non-Gaussian negative correlations

1
2N ([0.01,−0.01]T , 10−4Σ) + 1

2N ([−0.01, 0.01]T , 10−4Σ)

with Σ =

(
1 −0.75

−0.75 1

)
. The feasible sets under three

probability density distributions are shown in Fig. 2. The com-
parison clearly shows that the effects of different uncertainties.
For all three density functions, the feasible regions are reduced
when the risk level ε decreases.

TABLE I
THE OPTIMAL SOLUTION FOR THE SYNTHETIC EXPERIMENT UNDER

DIFFERENCE RISK THRESHOLD ε.

Algorithm x∗ Objective Yield (%)
Proposed (ε = 0.01) 0.8630 -0.1172 2.4717 100
Proposed (ε = 0.05) 0.9379 -0.0522 2.7616 100
Proposed (ε = 0.10) 0.9587 -0.0402 2.8360 99.42
Proposed (ε = 0.15) 0.9689 -0.0351 2.8717 93.84
Proposed (ε =0.20) 0.9751 -0.0293 2.8959 87.49

(15) 0.9999 0 2.9997 41.66

Next we take the non-Gaussian positive correlated distribu-
tion as an example to compute the optimal solution of (35).
We first build the surrogate models for both the objective and
constraints by the second-order polynomial basis functions.
The optimized quadrature points {xl, vl}6l=1 for the design
variables by (26) and {ξl, ul}6l=1 for the random parameter
by (27) are shown in Fig. 3 (a) and (b), respectively. Directly
tensorizing the two sets of quadrature points generates 36
samples. We further solve (28) to reduce them to M = 19
optimized samples and weights. According to Theorem 1,
the number of quadrature samples for d = 4, p = 2 should
be in the range [15, 70]. Our optimization algorithm obtains
M = 19, which is close to the theoretical lower bound.

We further show the results for different risk tolerance levels
ε in Table I. A smaller ε results in a smaller feasible domain
(as shown in Fig. 2), and generates a higher yield but a smaller
objective value. In practice, ε can be chosen case-by-case
based on the trade-off between the performance and yield
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Fig. 4. An optical add-drop filter with three microrings coupled in series.

requirements. Compared with the solution x̃ = [0.9999, 0]T

from solving (15), our method can achieve a significantly
higher yield: our optimized yield is above 87% while solving
(15) only leads to a yield of 41.66%.

B. Microring Add-drop Filter

We continue to consider the design of an optical add-drop
filter consisting of three identical silicon microrings coupled
in series, as shown in Fig. 4. In designing such a broadband
optical filter, the coupling coefficients play an important role in
determining key performance metrics, such as the bandwidth
and extinction ratio [53], [54]. A broad and flat passband
with a high extinction ratio can be achieved by optimizing
the coupling strengths between the microrings [53]. In this
example, we employ silicon as the waveguide material and
assume the effective refractive index to be neff = 2.44 and the
effective group index to be ng = 4.19 near the wavelength of
1.55 µm. The design variables are the coupling coefficients
x = [K1,K2,K3,K4] that are to be optimized within the
interval of [0.3, 0.6]. The random variables are set as small
deviations of the coupling coefficients. We assume that ξ
follows a non-Gaussian correlated distribution

p(ξ) =
1

2
N (µ1,Σ) +

1

2
N (µ2,Σ), (36)

where µ1 = −µ2 = 0.006[1, 1, 1, 1]T , and the variance is

defined as Σ = 0.0062


1 0.4 0.1 0.4

0.4 1 0.4 0.1
0.1 0.4 1 0.4
0.4 0.1 0.4 1

 .
We mainly focus on three metrics of the microring filter:

the 3dB bandwidth (BW, in GHz), the extinction ratio (RE,
in dB) of the transmission at the drop port, and the roughness
(σpass, in dB) of the passband that takes a standard deviation
of the passband. The yield-aware optimization problem of the
microring filter design can be formulated as:

max
x∈X

Eξ[BW(x, ξ)]

s.t. Probξ(RE(x, ξ) ≥ RE0) ≥ 1− ε,
Probξ(σpass(x, ξ) ≤ σ0) ≥ 1− ε, (37)

TABLE II
OPTIMIZATION RESULTS FOR THE MICRORING ADD-DROP FILTER.

Algorithm Simulations Eξ[BW] (GHz) Yield (%)
Proposed (ε = 0.03) 64 113.4 100
Proposed (ε = 0.05) 64 115.6 99.8
Proposed (ε = 0.07) 64 117.2 99.5
Proposed (ε = 0.10) 64 118.4 98.1

BYO [10] 2020 112.3 99.8

where the yield is defined via some chance constraints on the
extinction ratio and the roughness of the passband. In our sim-
ulation, the threshold extinction ratio (RE0) and the roughness
of the passband (σ0) are 25dB and 0.5dB, respectively.

We first build the second-order polynomial surrogate model
by our proposed Algorithm 1. We only need 17 initial quadra-
ture points for the variable x by solving (26), 16 quadrature
points for the parameters ξ by solving (27), and 64 quadrature
points for the joint optimization of x and ξ by solving (28).
Fig. 5 shows that our surrogate model can well approximate
the probabilistic distributions of the performance metrics with
the comparison of 103 Monte Carlo simulations, although our
method only needs 64 simulation samples for this example.

We summarize the results of our proposed method with
different choices of ε and the results obtained by the Bayesian
yield optimization (BYO) in Table II. It shows that when risk
tolerance level ε decreases, our proposed method can achieve
higher yield and lower bandwidth. This is corresponding to our
theory that a lower risk level ε results in a smaller feasible
region. Our proposed method can always achieve a large
bandwidth because it computes the global optimal solution
of the polynomial optimization problem. When ε = 0.05, we
get a bandwidth Eξ[BW] = 115.6 GHz with 99.8% yield at
the optimal solution x∗ = [0.5582, 0.4208, 0.3000, 0.6000],
while BYO takes 2020 simulations to achieve the result of
Eξ[BW] = 112.3 GHz with the yield 99.8%. Fig. 6 compares
the frequency response before and after the yield-aware opti-
mization. Both our proposed method and BYO can achieve a
higher bandwidth with a smoother passband compared to the
design before optimization. In Fig. 7, we plot the probability
density of the bandwidth at the optimal design by our chance-
constrained optimization with ε = 0.05 and by the BYO,
respectively. It clearly shows that our proposed method can
increase the bandwidth while achieving the same yield.

C. Mach-Zehnder Interferometer

We apply the same framework to optimize a third-order
Mach-Zehnder interferometer (MZI) which consists of three
port coupling and two arms, as shown in Fig. 8. The coupling
coefficients between the MZ arms play the most important
role in the design. The relationship between the coupling
coefficient κ and the gap g (nm) is

κ = exp(− g

260
). (38)

In this experiment, the design variables x = [g1, g2, g3] are
optimized in the interval of [100 nm, 300 nm]3. The random
variable ξ follows the Gaussian mixture distribution

p(ξ) =
1

2
N (µ1,Σ) +

1

2
N (µ2,Σ), (39)



9

110 112 114 116 118 120

Bandwidth (GHz)

0

0.05

0.1

0.15

0.2

0.25
P

D
F

(a)

25 26 27 28

Extinction ratio  (dB)

0

0.2

0.4

0.6

0.8

1

P
D

F

(b)

0.2 0.3 0.4 0.5 0.6

Bandpass (dB)

0

5

10

15

20

P
D

F

(c)

MC

Proposed

Fig. 5. The probability density functions (PDF) of the bandwidth, extinction ratio and roughness for the microring add-drop filter at the optimal solution
x∗ = [0.5582, 0.4208, 0.3000, 0.6000] by our proposed optimization with ε = 0.05. Our surrogate model uses only 64 simulations, and Monte Carlo (MC)
uses 103 simulations.

Fig. 6. The transmission curves of the microring add-drop filter at different design choices. The grey lines show the uncertainties caused by the process
variations. The orange and blue curves show the mean transmission rates at the drop port and the through port, respectively. Here RE, BW and σpass denote
the mean values of extinction ratio, bandwidth and roughness, respectively. (a) The transmission at x0 = [0.45, 0.45, 0.45, 0.45] without any optimization.
It doesn’t have a clear passband because σpass is too large. (b) The results after the Bayesian yield optimization; (c) The results obtained from our chance-
constrained optimization with ε = 0.05.
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Fig. 7. The optimized bandwidth probability density distribution of the
microring filter. Our chance-constrained optimization obtain an expected value
of 115.6 GHz while the Bayesian yield optimization (BYO) only produces an
expected value of 112.3 GHz.

where µ1 = −µ2 = [1, 1, 1]T , and Σ =

 1 0.4 0.1
0.4 1 0.4
0.1 0.4 1

 .
We consider three performance metrics of the MZI: the 3dB

Fig. 8. The schematic of a third-order Mach-Zehnder Interferometer.

bandwidth (BW, in GHz), the crosstalk (XT, in dB), and the
attenuation (α, in dB) of the peak transmission. The yield is
defined through the crosstalk and the attenuation. The yield-
aware optimization is formulated as:

max
x

Eξ[BW(x, ξ)]

s.t. Probξ(XT(K, ξ) ≤ XT0) ≥ 1− ε,
Probξ(α(x, ξ) ≤ α0) ≥ 1− ε, (40)

where the yield risk level is ε. The threshold crosstalk (XT0)
and attenuation (α0) are -4 dB and 2 dB, respectively.
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Fig. 9. The probability density functions (PDF) for the bandwidth, crosstalk, and attenuation of the MZI at our optimized design parameters x∗ =
[0.300, 0.5036, 0.300]. Our surrogate model uses only 36 simulations and Monte Carlo (MC) uses 1000 simulations.

Fig. 10. The transmission curves of the MZI. The grey lines show the performance uncertainties. The orange and blue curves show the transmission rates at
the drop and through ports, respectively. The mean values of the bandwidth, crosstalk and attenuation are denoted as BW, XT and α, respectively. (a) The
initial design x0 = [150, 150, 150]; (b) Design after Bayesian yield optimization; (c) Design with the proposed chance-constrained yield optimization.

We first build three second-order polynomial surrogate
models for BW, XT and α by our proposed Algorithm 1. We
generate 11 initial quadrature points for the design variable
x, 10 initial quadrature points for the uncertainty parameter
ξ. Then we apply the tensor product of those 110 points to
problem (28) and eventually get 36 quadrature points for the
joint space after co-optimization. Fig. 9 shows that our sur-
rogate models constructed with 36 quadrature points can well
approximate the density functions of all three performance
metrics compared with Monte Carlo with 103 samples.

We also compare our proposed method and BYO in Ta-
ble III. Similar to the result in Table II, lower risk tolerance
results in higher yield and lower expected value of bandwidth.
Our method requires 56× fewer simulation points than BYO,
which is a great advantage for design cases with the time-
consuming simulations. For ε = 0.05, the optimized nominal
design is x∗ = [300, 111.2, 300] and its expected bandwidth
is 192.2GHz. In Fig. 10, we compare the frequency response
before and after the yield-aware optimization. Our proposed
method can have a higher bandwidth and a smaller crosstalk
compared to Bayesian yield optimization and the initial design.
Fig. 11 further shows the probability density of the optimized
bandwidth by our chance-constrained optimization and the
Bayesian yield optimization, respectively. It clearly shows that
our proposed method produces higher bandwidth.

TABLE III
OPTIMIZATION RESULT FOR THE MZI.

Algorithm Simulations Eξ[BW] (GHz) Yield (%)
Proposed (ε = 0.03) 36 188.8 100
Proposed (ε = 0.05) 36 192.2 100
Proposed (ε = 0.07) 36 194.5 100
Proposed (ε = 0.10) 36 195.0 87.7

BYO [10] 2020 175.0 100

VI. CONCLUSIONS AND REMARKS

This paper has presented a data-efficient framework for the
yield-aware optimization of photonic ICs under non-Gaussian
correlated process variations. We have proposed to reformulate
the stochastic chance-constrained optimization into a deter-
ministic polynomial optimization problem. Our framework
only requires simulation at a small number of important points
and admits a surrogate model for yield-aware optimization. In
the experiments by the microring filter and the Mach Zehnder
filter, we have demonstrated that our optimization scheme can
give high yield and high bandwidth. Compared with Bayesian
yield optimization, our method has consumed much fewer
simulation samples and produced better design performance
while achieving the same yield.

This work should be regarded as a presentation of prelimi-
nary results in this direction. Many problems are worth further
investigation in the future, for instance:
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Fig. 11. The optimized bandwidth of the MZI by the Bayesian yield opti-
mization and our proposed method, respectively. The expectation bandwidth
of the Bayesian yield optimization is 175.4 GHz while our proposed method
with ε = 0.05 can get 186.4 GHz.

• Non-Smoothness. Similar to generalized polynomial
chaos [46], the surrogate modeling techniques in [28],
[29] require the stochastic functions to be smooth. How-
ever, performance metrics of a photonic IC may be
non-smooth with respect to the design variables and
process variations. How to handle non-smoothness in this
optimization framework is a critical issue.

• High Dimensionality. Large-scale photonic ICs may have
a huge number of design variables and process variation
parameters. This brings new challenges to the surrogate
modeling and the resulting polynomial optimization in
our framework.
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APPENDIX A
DETAILED DERIVATION OF EQUATION (6)

We show that for u > Eξ[y(x, ξ)] the following determin-
istic constraint

Eξ[y(x, ξ)] +
√

(1− ε)/ε
√

varξ[y(x, ξ)] ≤ u

is a sufficient but not necessary condition for the following
probability constraint:

Probξ(y(x, ξ) ≤ u) ≥ 1− ε.

In other words, we want to show that each feasible point of
(16) is a feasible point of the chance constraint (13).

Denote the random variable as X = y(x, ξ). Cantelli’s
inequality [55] states that for any random variable X with
a mean value E[X] = Eξ[y(x, ξ)] and variance σ2 =
varξ[y(x, ξ)], it holds that the probability of a single tail can
be bounded as follows:

Prob(X − E[X] ≤ λ) ≥ 1− σ2

σ2 + λ2
if λ > 0. (41)

Therefore, for any constant u ≥ E[x] we have

Prob(X ≤ u) = Prob(X − E[X] ≤ u− E[X])

≥ 1− σ2

σ2 + (u− E[X])2
.

For any ε, a sufficient condition for Prob(X ≤ u) ≥ 1− ε is
1− σ2

σ2+(u−E[x])2 ≥ 1− ε, i.e.,

E[X] +
√

(1− ε)/εσ ≤ u. (42)

Substituting X = y(x, ξ) into the above equation we get (6).
The proof is completed.

APPENDIX B
DETAILED DERIVATION OF EQUATIONS (20) AND (21)

Suppose that the smooth function y(x, ξ) is already repre-
sented by a linear combination of some basis functions,

y(x, ξ) =

p∑
|α|+|β|=0

cα,βΦα(x)Ψβ(ξ), (43)

where E[Ψβ(ξ)Ψγ(ξ)] = δβ,γ . The mean value of y(x, ξ) is

Eξ[y(x, ξ)] =

p∑
|α|=0

p−|α|∑
|β|=0

cα,βΦα(x)E[Ψβ(ξ)]

=

p∑
|α|=0

cα,0Φα(x),

where the last equality is due to Ψ0(ξ) = 1 and E[Ψβ(ξ)] =
E[Ψβ(ξ)Ψ0(ξ)] = 0, ∀β 6= 0. The variance is

varξ[y(x, ξ)] = Eξ[(y(x, ξ)− Eξ[y(x, ξ)])2]

= Eξ


 p∑
|β|=1

p−|β|∑
|α|=0

cα,βΦα(x)

Ψβ(ξ)

2


=

p∑
|β|=1

p−|β|∑
|α|=0

cα,βΦα(x)

2

,

where the last equality is due to the basis functions {Ψβ(ξ)}
are orthogonal in the stochastic parameter space.

APPENDIX C
BAYESIAN YIELD OPTIMIZATION (BYO)

Bayesian yield optimization (BYO) is a state-of-the-art
tool for the yield optimization of electronic devices and
circuits [10]. This method approximates and optimizes the
posterior distribution of design variable under the condition
of “pass” events

S = {(x, ξ) : (x, ξ) satisfies all performance constraints}.

With the Bayes’ theorem, it holds that Prob(S|x) =
Prob(S)
Prob(x)Prob(x|S). In our problem setting, Prob(x) is a con-
stant because we assume that x follows a uniform distribution
and Prob(S) should also be a constant without the dependence
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on the variable x. Therefore, Prob(S|x) ∝ Prob(x|S) and the
original yield optimization problem (3) is equivalent to

xBY O = argmax
x∈X

Prob(x|S). (44)

The paper [10] proposed an expectation-maximization frame-
work to solve problem (44). At the t-th iteration, the expecta-
tion step approximates the probability by the kernel density
estimation. Specifically, N = 100 samples are generated
randomly and a simulator is called to compute the quantity
of interests at those samples. Then choose M ≤ N “pass”
samples to perform the kernel density estimation

Prob(x|S) ≈ 1

M

M∑
i=1

1√
2πh

exp (− 1

2h
(x− µi)T (x− µi)),

where {µi}Mi=1 ∈ S are design samples that satisfies the
performance constraints and h = 0.3 is a bandwidth parameter.
Afterward, the maximization step returns an updated design
variable xBY O,t. We will call the simulator again at this design
variable to record its objective value and “pass” status. We
terminate the algorithm if the maximal iteration number 20 is
reached, or the residue of two consecutive iterations is below
10−6. After the whole optimization process, we return the
design variable that can pass the yield constraints with the
highest bandwidth

xBY O = arg max
x∈xBY O,t

BW(x) s.t. pass(xBY O,t) = 1.
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