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Abstract— Many systems such as autonomous vehicles and
quadrotors are subject to parametric uncertainties and external
disturbances. These uncertainties can lead to undesired perfor-
mance degradation and safety issues. Therefore, it is important
to design robust control strategies to safely regulate the dy-
namics of a system. This paper presents a novel framework
for chance-constrained stochastic model predictive control of
dynamic systems with non-Gaussian correlated probabilistic
uncertainties. We develop a new stochastic Galerkin method to
propagate the uncertainties using a new type of basis functions
and an optimization-based quadrature rule. This formulation
can easily handle non-Gaussian correlated uncertainties that
are beyond the capability of generalized polynomial chaos ex-
pansions. The new stochastic Galerkin formulation enables us to
convert a chance-constraint stochastic model predictive control
problem into a deterministic one. We verify our approach by
several stochastic control tasks, including obstacle avoidance,
vehicle path following, and quadrotor reference tracking.

I. INTRODUCTION

Model predictive control (MPC, also known as receding
horizon control) has been widely used to predict and control
the future events of a system in an uncertain environment.
The representative applications of MPC include chemical
process control [1], economics [2], path planning and ob-
stacle avoidance of vehicles and robots [3]–[8], and air
traffic management [9]. One popular strategy for MPC is
the robust MPC formulation. With the assumption that un-
certainty belongs to a bounded set, robust MPC analyzes the
stability and performance of the system against worst-case
perturbations [10], [11]. However, design based on worst-
case uncertainties can be over-conservative in practice and
may lead to in-feasibility in real applications.

In contrast to robust MPC, stochastic MPC with prob-
abilistic constraints (also known as chance constraints) in-
corporates probabilistic descriptions of constraint violations,
and allows for acceptable levels of risk during opera-
tions [12]–[14]. Chance-constraint stochastic MPC avoids
over-conservative decision making by directly incorporating
the trade-offs between closed-loop performance and control
constraints. One challenge in stochastic MPC is the computa-
tional cost of propagating uncertainties. A common approach
is to use random sampling methods [15], [16] such as Monte
Carlo. The system model is simulated repeatedly based on
the samples to predict the time evolution of the uncertainty.
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Even though sampling-based approaches are applicable to
most problems, these techniques can be extremely expensive
due to the large number of samples required to achieve
accurate uncertainty propagation.

Polynomial chaos expansions provide an efficient alterna-
tive to propagate the uncertainties through the system dynam-
ics [17]–[20]. Based on the generalized polynomial chaos
theory [21], some popular distributions such as Gaussian dis-
tributions and independent uniform distributions have been
handled successfully in stochastic MPC. These techniques
have been applied in the trajectory optimization of quadrotors
and oscillators [20], and chemical process control [19].
However, uncertainties are often non-Gaussian correlated in
practice and do not follow the common probability distribu-
tions described in [21]. Probabilistic reachable sets have been
used by [22] to overestimate the impact caused by correlated
external disturbances. However, accurate uncertainty propa-
gation for systems with non-Gaussian correlated parametric
uncertainties has not been considered.

Paper Contributions. Inspired by a new stochastic collo-
cation technique described in [23], [24], this paper presents
an efficient stochastic MPC framework that can deal with
more realistic non-Gaussian correlated uncertainties. Our
specific contributions include:

• A novel stochastic Galerkin method to propagate the
uncertainties of a dynamic system with non-Gaussian
correlated uncertainties. Traditional stochastic Galerkin
methods [25] assume that uncertain parameters are mu-
tually independent or Gaussian correlated, thus cannot
handle the challenging cases presented in this paper.

• We apply our stochastic Galerkin formulation to develop
a chance-constraint stochastic model predictive control
solver that can handle non-Gaussian correlated uncer-
tainties efficiently and accurately.

• Numerical results. We verify our proposed framework
by solving obstacle avoidance, vehicle path following,
and quadrotor reference tracking problems that involve
non-Gaussian correlated uncertainties.

II. CHANCE CONSTRAINED STOCHASTIC MPC

A. Problem Formulation

Consider a stochastic discrete-time linear system:

xt+1 = A(ξ)xt+B(ξ)ut+D(ξ)ωt,∀t = 0, . . . , T−1, (1)

where xt ∈ Rnx , ut ∈ Rnu , and ωt ∈ Rnω denote the
stochastic system states, inputs, and disturbances at current
time, respectively. The system has probabilistic uncertainty



in the system parameters, characterized by A(ξ), B(ξ), and
D(ξ), which depend on the uncertain parameter ξ ∈ Rd.
Assume that the joint probability density function (PDF) of
random variable ξ is known as PDF(ξ). Assume that ωt
depends on ξ and its PDF is also known at every time point t.
Because of the stochasiticity of parameters and disturbances,
the system trajectory will also be stochastic.

Chance constraint is an efficient technique for solving con-
trol or optimization problems with uncertainty [26]. Unlike
a worst-case optimization where all constraints are satisfied
with probability 1, a chance-constraint optimization ensures
the probability of satisfying a control/optimization constraint
is above a certain confidence level β:

Pr [xt /∈ Fx] ≥ β, (2)

where Fx denotes the forbidden (e.g., unsafe) region for the
state vector xt, and β is the confidence level.

In finite-horizon stochastic MPC, the goal is to determine
a control policy µT , (u0, ...,uT−1) that can drive the state
vector xt to have a desirable statistical performance. The op-
timal control can be solved from the following optimization:

Problem 1: Stochastic MPC with chance constraints

min
µT

E

[
T∑
t=1

xTt Qtxt + uTt−1Rtut−1

]
s.t. xt+1 = A(ξ)xt + B(ξ)ut + D(ξ)ωt,

Pr [xt /∈ Fx] ≥ β,
ut ∈ U , x0 = xinit (ξ) ,

ξ ∼ fξ, ωt ∼ fωt
,

(3)

where the initial condition xinit (ξ) is given and can be
uncertain, U ⊂ Rnu is the compact set of input constraints,
Qt and Rt are positive definite weight matrices, fξ and fωt

denote the PDFs of ξ and ωt, respectively.

B. Polynomial Chaos-Based Stochastic MPC

In order to obtain xt(ξ) in the MPC, one can employ a
truncated generalized polynomial-chaos expansion [21]:

xt(ξ) ≈
Np∑
k=1

ck,tΨk(ξ), (4)

where Ψk(ξ) is the orthonormal multivariate basis function
satisfying 〈Ψk(ξ),Ψj(ξ)〉 = E [Ψk(ξ)Ψj(ξ)] = δk,j . δk,j =
1 if k = j and otherwise δk,j = 0. If we upper bound
the total polynomial order by p, then the total number of
basis functions is Np = (p+d)!

(p!d!) . With the above truncated
generalized polynomial-chaos expansion, the time-dependent
deterministic coefficients ck,t can be computed efficiently
via numerical schemes such as stochastic collocation [27],
stochastic Galerkin [25], or stochastic testing [28]. Finally,
the formulation in (3) can be converted to a deterministic
one and solved efficiently [5], [17], [19].

Limitations. Despite their high efficiency, existing poly-
nomial chaos-based stochastic MPC [17]–[20] is limited by a
strong assumption of generalized polynomial chaos [21]: the

uncertain parameters ξ should be mutually independent or
just Gaussian correlated (which can be easily de-correlated).
In practice, ξ can be non-Gaussian correlated, thus the basis
functions proposed in [21] cannot be employed. Furthermore,
the numerical solvers such as stochastic collocation [27] and
stochastic Galerkin [25] reply on fast numerical integration
rules such as Gaussian quadrature [29] or spare grid [30],
which fail for non-Gaussian correlated parameters as well.

III. STOCHASTIC GALERKIN WITH NON-GAUSSIAN
CORRELATED UNCERTAINTIES

In order to handle non-Gaussian correlated uncertainties in
a stochastic MPC problem efficiently, this section proposes
a new stochastic Galerkin formulation. Our formulation
extends the work of [23], [24]. Note that the methods in [23],
[24] are stochastic collocation, and they are less efficient than
our method when solving time-evolving problems.

A. Deterministic Formulation via Stochastic Galerkin

Since the system parameters and disturbances are stochas-
tic variables, we express them with truncated expansion of
stochastic basis functions:

ut(ξ) ≈
Np∑
k=1

hk,tΨk(ξ), ωt ≈
Np∑
k=1

wk,tΨk(ξ). (5)

If the control input ut is deterministic, then h1,t = ut and
all other coefficients hk,t(k 6= 1) are set to zero. Based on
the above expansions, (1) can be rewritten as:

Np∑
k=1

ck,t+1Ψk(ξ) ≈
Np∑
k=1

ck,tA(ξ)Ψk(ξ)

+

Np∑
k=1

hk,tB(ξ)Ψk(ξ) +

Np∑
k=1

wk,tD(ξ)Ψk(ξ).

(6)

Stochastic Galerkin can reformulate the stochastic system
into a deterministic one by enforcing the residual of (6)
orthogonal to each stochastic basis function. By Galerkin
projection, for each j = 1, ..., Np, we have

cj,t+1 ≈
Np∑
k=1

ck,t

〈
A(ξ)Ψk(ξ),Ψj(ξ)

〉

+

Np∑
k=1

hk,t

〈
B(ξ)Ψk(ξ),Ψj(ξ)

〉

+

Np∑
k=1

wk,t

〈
D(ξ)Ψk(ξ),Ψj(ξ)

〉
, (7)

where the inner product of f1(ξ) and f2(ξ) equals:

〈f1(ξ), f2(ξ)〉 =

∫
Rd

f1(ξ)f2(ξ)PDF(ξ)dξ. (8)

Let us define

x̂t =
[
c1,t · · · cNp,t

]T
,

ût =
[
h1,t · · · hNp,t

]T
,

ω̂t =
[
w1,t · · · wNp,t

]T
.

(9)



The Galerkin projection in Equation (7) generates the fol-
lowing deterministic dynamic system:

x̂t+1 = Âx̂t + B̂ût + D̂ω̂t, (10)

where the vectors x̂t ∈ RnxNp and ω̂t ∈ RnωNp contain
their truncated expansion coefficients at time t. The matrices
Â ∈ RnxNp×nxNp , B̂ ∈ RnxNp×nuNp , D̂ ∈ RnxNp×nωNp

are matrices with Np×Np blocks. Their (k, j)-th blocks can
be computed off-line by the following formula:

Âk,j =

〈
A(ξ)Ψk(ξ),Ψj(ξ)

〉
∈ Rnx×nx ,

B̂k,j =

〈
B(ξ)Ψk(ξ),Ψj(ξ)

〉
∈ Rnx×nu ,

D̂k,j =

〈
D(ξ)Ψk(ξ),Ψj(ξ)

〉
∈ Rnx×nω .

(11)

As shown in Eq. (11), we need to evaluate a set of
inner products in order to set up the deterministic dynamic
system model (10). The inner product calculation requires an
accurate numerical integration method. For a general smooth
function g(ξ), its integration can be evaluated with a set of
quadrature points and weights {ξl, wl}Ml=1 as follows:∫

Rd

g(ξ)PDF(ξ)dξ ≈
M∑
l=1

g(ξl)wl. (12)

There exist two challenges in the stochastic Galerkin
formulation. Firstly, how shall we choose the stochastic basis
functions {Ψk(ξ)} such that they can capture the impacts
caused by non-Gaussian correlated uncertainties? Secondly,
how shall we choose the quadrature points and weights in
the correlated parameter space? We will employ the methods
of [23], [24] in our stochastic Galerkin formulation, as
elaborated below.

B. Selection of Basis Functions

The generalized polynomial chaos [21] cannot be used
when the parameters ξ are non-Gaussian correlated. In this
case, orthonormal basis functions {Ψk (ξ)} can be obtained
based on a multi-variate Gram-Schmidt process [23], [24]:

1) Reorder the monomials pα(ξ) = ξα1
1 ... ξαd

d in the
graded lexicographic order and denote them as {pk(ξ)}.

2) Set Ψ1(ξ) = 1, calculate the orthonormal polynomials
{Ψk(ξ)}Np

k=1 recursively:

Ψ̂k(ξ) = pk(ξ)−
k−1∑
i=1

E [pk(ξ)Ψi(ξ)] Ψi(ξ),

Ψk(ξ) =
Ψ̂k(ξ)√
E
[
Ψ̂2
k(ξ)

] , k = 2, ..., Np.
(13)

Once the dynamic system (10) is set up and solved, the
statistics of the stochastic variable xt(ξ) can be efficiently

computed. For example, the mean and variance of xt(ξ) are

E [xt(ξ)] = c1,t, Var [xt(ξ)] =

Np∑
k=2

c2
k,t. (14)

C. Optimization Based Quadrature Rule

To evaluate the matrices in (11), we need some quadrature
points and samples such that the integration in (12) can be
calculated with a high accuracy for a general smooth function
g(ξ). We employ the optimization-based quadrature [23],
[24] for non-Guassian correlated parameters ξ.

Assume that we want to get an (almost) exact integration
for a polynomial function g(ξ) bounded by degree 2p.
In this case, we can express g(ξ) with N2p = (2p+d)!

(2p!d!)
basis functions bounded by order-2p. The quadrature nodes
and weights {ξl, wl}

M
l=1 are determined by enforcing exact

integration over these basis functions:

E [Ψk(ξ)] =
M∑
l=1

Ψk(ξl)wl, ∀k = 1, ..., N2p. (15)

Based on the orthonormal condition for Ψk(ξ), it is easy
to show that E [Ψk(ξ)] = E [Ψk(ξ)Ψ1(ξ)] = δ1k, where
δ1k = 1 if k = 1 and otherwise δ1k = 0. As a result, (15) is
reformulated into a nonlinear least square optimization:

min
ξ̄,w

∥∥Φ (ξ̄)w − e1

∥∥2

2
, (16)

where ξ̄ = [ξ1, ..., ξM ]
T ∈ RM×d, w = [w1, ..., wM ]

T ∈
RM , e1 = [1, 0, ..., 0] ∈ RN2p ,

[
Φ(ξ̄)

]
kl

= Ψk(ξl) and
Φ(ξ̄) ∈ RN2p×M . A block coordinate-descent method was
used in [23], [24] to solve this optimization problem.

In order to make the algorithm more efficient, a weighted
clustering approach is used in order to automatically reduce
the number of quadrature points and achieve desired level
of accuracy. Specifically, once (16) is solved, M is reduced
by one by a weighted clustering method [24], then (16) is
solved again using the reduced samples and weights. This
process is repeated until a further reduction leads to failures
when solving (16) [23], [24].

IV. APPLICATION IN STOCHASTIC MPC

In this section, we describe how to perform stochastic
MPC using the deterministic system (10) obtained by the
above stochastic Galerkin formulation.

A. Minimum Expectation Control

We consider the minimum expectation control problem:

min
µT

E

[
T∑
t=1

xTt Qtxt + uTt−1Rtut−1

]
, (17)

where Qt and Rt are user defined state and input weight
matrices satisfying Qt = QT

t > 0 and Rt = RT
t > 0. With

a truncated expansion using the stochastic basis functions
described in Section III-B, the term E

[
xTt xt

]
is obtained as

E
[
xTt xt

]
= x̂Tt (Inx ⊗V) x̂t, (18)



Algorithm 1: Chance-Constrained Stochastic MPC
solver with Non-Gaussian Correlated Uncertainties

Input: PDF of the non-Gaussian correlated random
parameters ξ and ωt, system parameters
A(ξ), B(ξ), and D(ξ), polynomial order p,
final time T , initial condition xinit(ξ), weight
matrices Qt and Rt, input constraints set U ,
forbidden regions Fx, confidence level β.

1. Construct the basis functions Ψk (ξ) by (13).
2. Construct the quadrature points ξl and weights wl by

(16) and weighted clustering.
3. Set up the deterministic system (10) via (11).
4. Convert the objective function and chance constraints

into deterministic ones by (19) and (21), respectively.
5. Solve the optimization problem (22).

Output: Optimized input signals u∗
t , and the

time-dependent stochastic state x∗
t .

where Inx ∈ Rnx×nx is an identity matrix, ⊗ is a Kro-
necker product, and V ∈ RNp×Np = {vij} with vij =∑M
l=1 Ψi(ξl)Ψj(ξl)wl. Based on (18) the cost function in

(17) can now be written in terms of deterministic variables:

min
µT

T∑
t=1

x̂tQ̂tx̂t + ût−1R̂tût−1, (19)

where Q̂t = Qt ⊗V and R̂t = Rt ⊗V.

B. Deterministic Optimization for Stochastic MPC

Assume that the forbidden region in (3) is described by
some inequalities, and the chance constraints can be written
in the following form:

Pr [g(xt(ξ)) ≤ 0] ≥ β. (20)

This probabilistic constraint can be reformulated as some de-
terministic constraints [31] by using the mean and variance
of g(xt(ξ)):

E [g(xt(ξ))] + κ1−β
√

Var [g(xt(ξ))] ≥ 0, (21)

where E [·] and Var [·] are obtained via (14). The constant
κ1−β is chosen as κ1−β =

√
β/ (1− β).

With (10), (19) and (21), we are ready to re-write Problem
1 as a deterministic optimization problem:

Problem 2: Deterministic Optimization for Stochastic
MPC:

min
µT

T∑
t=1

x̂tQ̂tx̂t + ût−1R̂tût−1

s.t. x̂t+1 = Âx̂t + B̂ût + D̂ω̂t,

E [g(xt(ξ))] + κ1−β
√

Var [g(xt(ξ))] ≥ 0,

u ∈ U , x̂0 = x̂init,

(22)

where x̂init is the expanded initial condition containing the
expansion coefficients.

The whole framework is summarized in Alg. 1.
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Fig. 1: Joint PDF of random variables ξ1 and ξ2 for the
obstable avoidance example.

V. NUMERICAL RESULTS

In order to verify our proposed chance constrained
stochastic MPC method, we implement the algorithm in
MATLAB on a Windows Desktop Workstation with 8-GB
RAM and a 3.4-GHz CPU.

A. Obstacles Avoidance

Consider a stochastic linear time-invariant system

xt+1 =

[
0.9 + ρ1ξ1 0.1

0.1 0.85

]
xt +

[
0.25− ρ1ξ1
0.75 + ρ2ξ2

]
ut, (23)

with initial condition x0 = [20, 10]
T . The non-Gaussian

correlated random variables ξ1 and ξ2 obey a Gaussian-
mixture distribution, as shown in Fig. 1. Here ρ1 and ρ2 are
the weights on the random variables. The prediction horizon
is T = 4 sec, and input constraint ut ∈ [−0.5, 0.5]. The
constraints describe an infeasible region shown in Fig. 2(a).

Consider Qt = diag (100, 100) and Rt = 1 for all
t, we use Alg. 1 to solve the problem with a 99% level
of confidence for avoiding the infeasible region. The re-
sultant controlled trajectory generated without parameter
uncertainty, i.e., ρ1 = ρ2 = 0, is shown in Fig. 2(a), which
stays in the feasible region as desired. Consider the system
with parameter uncertainty, i.e., ρ1 = 0.001 and ρ2 = 0.05.
Fig. 2(b) shows the controlled system trajectories generated
with our proposed framework, where the red line shows the
mean trajectory obtained via (14).

B. Vehicle Path-following Problem

Path-following control aims to enforce the system states
converge to a given path, without temporal specifica-
tions [32]–[35]. We consider the vehicle path-following
model in [36], where the state variables include position
error, orientation error, and their first order derivative with
respect to time. The dynamic model for vehicle path follow-
ing is generally nonlinear [36], [37]. With the assumption
that the vehicle is moving at a constant speed of 20 m/s
and the influence of road bank angle is neglected [36], the



ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),

A =


0 1 0 0

0 − 2Cf+2Cr

mVx

2Cf+2Cr

m − 2aCf+2bCr

mVx

0 0 0 1

0 − 2aCf+2bCr

IzzVx

2aCf−2bCr

Izz
− 2a2Cf+2b2Cr

IzzVx

 , B =


0 0

2Cf

m
2aCf−2bCr

mVx
− Vx

0 0
2aCf

Izz

2a2Cf+2b2Cr

IzzVx

 ,
C =

[
1 0 0 0

]
, x(t) =

[
e1(t) ė1(t) e2(t) ė2(t)

]T
, u(t) =

[
δ(t) ψ̇des(t)

]
.

(24)
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Fig. 2: Controlled trajectories for the obstacles avoidance experiment. (a): without parameter uncertainty; (b): with non-
Gaussian correlated uncertainty. Red line shows the controlled trajectory or its mean value, black dotted line separates the
feasible and infeasible regions, and grey lines show the trajectory uncertainties.

TABLE I: Parameters of the vehicle path-following model.
Symbol Description Value
Vx vehicle speed 20 m/s
m vehicle mass 1270 kg
a distance from center to front axis 1.015 m
b distance from center to rear axis 1.895 m

Izz vehicle yaw inertia 1536.7 kg·m2

g gravitational acceleration 9.81 m/s2

vehicle can be described by the linear state-space model
shown in Eq. (24). Here e1(t), e2(t), and δ(t) represent
the lateral deviation of the center of mass of the vehicle
from the desired path, deviation of yaw angle from the
desired yaw angle ψdes(t), and front steering wheel angle,
respectively. The desired yaw rate is defined by ψ̇des = Vx

R(t) ,
where R(t) is the radius of a desired path. Cf and Cr
are the front and the rear tire cornering stiffness values,
respectively. The values of Cf and Cr are uncertain since
they are influenced by the tire slip angle. Therefore, instead
of assigning them with deterministic values, we treat them
as random variables and assume that they satisfy a Gaussian-
mixture joint distribution. In this experiment, we assume
that they have the same nominal value 967 N/deg. Other
parameters of the vehicle model are taken from CarSim (C-
Class Hatchback 2017) [36].

Our goal is to enforce the output y(t) = e1(t) (i.e., lateral
position error) to zero by controlling the steering wheel angle
δ(t). The constraints imposed on the state vector are based

on a 99% level of confidence and are specified below:

e1(t) ∈ [−1, 1], ė1(t) ∈ [−10, 10],

e2(t) ∈ [−28.65, 28.65], ė2(t) ∈ [−572.96, 572.96].

Assuming that the vehicle starts with 1m of a lateral position
error, we intend to calculate the optimal steering angle by
minimizing the following objective function:
T∑
t=1

xTt Qxt + uTt−1Rut−1 + (yt − yref,k)TS(yt − yref,k).

The weighting matrices Q, R, and S are selected as follows:

Q =


7000 0 0 0

0 1 0 0
0 0 20000 0
0 0 0 1

 , R = I, S = 100.

We employ Alg. 1 to solve this path-following problem,
and the resulting lateral error and control input are plotted in
Fig. 3(a) and Fig. 3(b), respectively. The lateral position error
goes to zeros, which indicates that the vehicle is travelling
along the desired path.

C. Reference Tracking of Quadrotor
Finally we consider the control of a quadrotor mini-

helicopter described in [38], which consists of four propul-
sion rotors in a cross configuration. The dynamics of this
quadrotor can be described by a nonlinear model with 12
state variables:

q̇ = f (q,u) , (25)
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Fig. 3: Numerical results for vehicle path following experiment. (a): resulting lateral position error, where the red line shows
the mean value, and the grey lines show the trajectory uncertainties; (b): Optimal control input δ(t).
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Fig. 4: The Quadrotor tracks step reference. (a): in x direction; (b): in y direction. Red line shows the mean controlled
trajectory, the grey line show the effects caused by the uncertainties, and blue dotted line is the reference trajectory.

where q =
[
x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇

]T
is the state

vector consisting of Cartesian positions x, y, and z (in
meters), the attitude angles φ (pitch), θ (roll), ψ (yaw) in
radians, and their respective rates

(
ẋ, ẏ, ż, φ̇, θ̇, ψ̇

)
. Vector

u =
[
Ω1,Ω2,Ω3,Ω4

]
is the control input which includes

the four propellers’ rotational speeds (in radians per second)
and Ωi is the rotation imposed on the i-th motor.

In this experiment, we approximate the quadrotor’s dy-
namics by a linear model around an equilibrium point. The
equilibrium point qeq =

[
0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0

]T
and

ueq =
[
192.8, 192.8, 192.8, 192.8

]T
are used to linearize

the system, and this is corresponding to a hover flight
condition at a 10m height [38]. With this equilibrium point,
the resulting linear state-space model is:

qt+1 = Aqt + But, yt = Cqt, (26)

where the model matrices are specified in [38].
Since there are disturbances acting on the quadrotor, we

consider the linear quadrotor system with additive distur-

bances impose on the three Cartesian positions:

qt+1 = Aqt + But + Dωt(ξ), (27)

where ξ obeys a Gaussian-mixture distribution and matrix
D ∈ R12×3.

The constraints were imposed on φ and θ such that φmax =
5◦, φmin = −5◦, θmax = 5◦, and θmin = −5◦. We first let
the quadrotor to track 10-m step references in the x and y
directions by keeping the elevation at a fixed operating level
(z = 10 m). By using Algorithm 1, we obtain the controlled
x and y in Fig. 4(a) and 4(b), respectively.

Next, we illustrate that the stability of the control loop
by letting the quadrotor to track the following reference
trajectory:

xr(t) = 2 cos(0.2t), yr(t) = 2 sin(0.2t), zr(t) = 0.2t,
(28)

where xr, yr, and zr denote the reference trajectories in x,
y, ans z directions, respectively. The quadrotor’s behavior
following the defined trajectory in xyz plane is shown in
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Fig. 5: The quadrotor tracks the reference trajectory in (28). (a): quadrotor trajectories. Red line: mean controlled trajectory.
Grey: uncertainties of the controlled trajectory. Blue dotted line: reference trajectory. (b): optimal control input Ω4.

TABLE II: CPU Time comparison of stochastic MPC solvers.
Examples Proposed Monte Carlo
Obstacle Avoidance 250s 2.9× 103s
Vehicle Path-following 620s 8.5× 103s
Quadrotor Tracking A Step Reference 1300s 104s
Quadrotor Tracking Reference (28) 1200s 7000 s

Fig. 5. The simulation result shows that the controller is able
to make the quadrotor follow the desired path successfully.

D. Comparison with Monte Carlo-based MPC

We compare our proposed algorithm 1 with Monte Carlo-
based MPC approach in terms of CPU time. We use 5000
sample points for Monte Carlo-based MPC. The CPU time
required by two methods are summarized in Table II. Due
to the choice of specialized stochastic Galerkin formulation,
our method can accurately capture the uncertainties caused
by non-Gaussian correlated uncertainties. For instance, Fig. 6
shows the PDF of x1 at t = 2 s for the obstacle avoidance
example, where the result from our method is indistinguish-
able from that of Monte Carlo.

Our method is not compared with existing polynomial
chaos-based MPC because the latter cannot handle non-
Gaussian correlated uncertainties.

VI. CONCLUSION
This paper has presented a method for solving chance con-

strained stochastic MPC problem under non-Gaussian cor-
related uncertainties. With the proposed stochastic Galerkin
formulation, the propagation of uncertainties through the sys-
tem model can be efficiently and accurately represented. Our
framework has reformulated the stochastic system model,
objective function and constraints into deterministic ones, re-
sulting in a deterministic optimization problem. This method
has been verified on three benchmarks. On these benchmarks,
our technique have efficiently handled the non-Gaussian
correlated uncertainties and led to a significant reduction
of CPU time compared with the Monte Carlo-based model
predictive control.
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Fig. 6: Probability density functions of x1 at t = 2 s for the
obstacle avoidance example.
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