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Abstract. Tensor decomposition has been widely used in machine learning and high-volume data analysis.
However, large-scale tensor factorization often consumes huge memory and computing cost. Mean-
while, modernized computing hardware such as tensor processing units (TPU) and Tensor Core GPU
has opened a new window of hardware-efficient computing via mixed- or low-precision arithmetic
representations. In this paper, we exploit the low-precision representation of tensor factorization,
and propose a mixed-precision block stochastic gradient descent (SGD) method to reduce the costs
of CP tensor decomposition. Our method achieves robust and fast convergence via a two-stage opti-
mization, i.e., SignSGD followed by mixed-precision SGD. Detailed theoretical analysis is provided
to prove the convergence of the proposed mixed-precision algorithm. Numerical experiments on both
synthetic and realistic tensor data sets show the superior efficiency of our mixed-precision algorithm
compared to full-precision CP decomposition. This work can remarkably reduce the memory, com-
puting and energy cost on resource-constraint edge computing devices. We demonstrate this benefit
via an FPGA prototype.

Key words. Tensor decomposition, mixed-precision optimization, stochastic gradients, hardware-aware algo-
rithms.
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1. Introduction. As a higher-order generalization of matrices, tensors [35] have been used
to represent and process multi-dimensional arrays in many science and engineering fields, in-
cluding quantum physics [20, 30, 40, 45], scientific computing [6, 47], uncertainty quantifi-
cation [18, 55, 56], machine learning [2, 23, 25, 26, 41, 42, 33, 49] and many others. Many
successful applications rely on efficient tensor decompositions [8, 15, 22, 46], which repre-
sent an original high-order high-volume data array with some low-rank factors to achieve
huge memory and computing cost reduction. For instance, tensor decomposition has achieved
orders-of-magnitude parameter reduction of deep neural networks [25, 26, 33, 42], enabling
their energy-efficient training and deployment on edge devices. As one of the most popu-
lar tensor decomposition methods, the CANDECOMP/PARAFAC (CP) decomposition [8]
factorizes a large tensor into the summation of some rank-1 tensors. A CP factorization is
often obtained via algebraic methods [19, 39] or numerical optimization techniques such as
gradient-based optimization [21] and alternating minimization [13]. The former provides ex-
cellent theoretical guarantees, but are neither noise-resistant nor scalable to high tensor ranks.
The later has better efficiency, but computing the full gradients is expensive for high-volume
tensor data sets. Motivated by the success in large-scale machine learning, recent approaches
use stochastic gradient descent (SGD) methods [3, 5, 36, 51] to relief the high computation cost
in tensor factorization. So far, most (if not all) tensor decomposition algorithms are developed
for classical computing platforms (e.g., CPU and conventional GPU) that use double-precision
64-bit or single-precision 32-bit floating-point data representations.

∗The authors are with Department of Electrical and Computer Engineering, University of California at Santa
Barbara, CA. (Emails: ziy@ucsb.edu, junnanshan@ucsb.edu, zzhang01@ucsb.edu).

1

mailto:ziy@ucsb.edu
mailto:junnanshan@ucsb.edu
mailto:zzhang01@ucsb.edu


On the other hand, the recent revolution of artificial intelligence has triggered massive in-
terests in computing hardware that supports mixed-precision and low-precision computation.
For instance, Google’s Tensor Processing Units (TPUs) [31] can easily handle machine learn-
ing tasks with 16-bit floating point representations. NVIDIA’s tensor Core GPU supports
double-, single- and half-precision floating-point operations, as well as various low-precision
integer operations. Reconfigurable computing platforms such as field-programmable gate ar-
rays (FPGA) can support arbitrarily low-precision computation to save energy and hardware
utilization. These mixed-precision computing platforms are very suitable for the training and
inference of deep learning models [17, 16, 29, 50, 54], due to their error-resilient activation
functions or output operators. Interestingly, recently mixed-precision computing has also
shown great success in many scientific computing tasks [1, 9, 10, 11, 12, 24, 44] such as LU
factorization, Cholesky factorization, least square optimization, GMRES. However, mixed-
precision computing has been rarely investigated for tensor computation. We envision that
similar memory and runtime benefit can be obtained by developing mixed-precision tensor
computation algorithms. As the development of 5G and future 6G networks, more and more
(possibly private and sensitive) data needs to be processed on resource-constraint edge devices,
where mixed-precision tensor computation will play an increasingly important role.

In this paper, we make the first step of exploring low-precision tensor computation by
proposing a novel mixed-precision CP tensor decomposition algorithm. By utilizing low-
precision stochastic gradient computation in a two-stage optimization framework, our method
can remarkably reduce the computation and energy costs of CP decomposition. Our main
contributions are summarized below.

• We propose a computationally efficient CP decomposition via a mixed-precision SGD
method. We improve the convergence via a mixed-precision SignSGD initialization.
We carefully design the low-precision stochastic gradient computation to maximize the
computational efficiency and minimize the accuracy drop via analyzing the sensitivity
of each step with respect to the quantization errors.

• We prove the convergence of the proposed mixed-precision CP decomposition. Under
some conditions, we firstly show that the CP decomposition problem is locally strongly
convex after proper normalization. Then, we prove that SignSGD with mixed-precision
gradients converges to a stationary point up to a noise level. Finally, we prove that
the mixed-precision SGD has a locally linear convergence rate for our problem.

• Numerical experiments demonstrate that our mixed-precision approach can remark-
ably reduce the computation cost while attaining similar accuracy to the full-precision
algorithm. An FPGA prototype further demonstrates the saving of run-time, hardware
resources, and energy on edge computing devices.

We remark that the proposed mixed-precision stochastic gradient can be applied to all SGD-
based algorithms for CP tensor decomposition.

2. Preliminary.

Notation. Throughout the paper, lower-case letters (e.g., a) denote scalars; lower-case
bold letters (e.g., a) denote vectors; upper case bold letters (e.g., A) denote matrices. We
use 1 or 0 to denote a vector/matrix whose entries are all 1 or 0, respectively. In is an n-
by-n identity matrix. We use upper-case calligraphic bold letters (e.g., A) to denote tensors,
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which are high-dimensional generalizations of matrices. We use [n] to denote the set of integers
{1, 2, . . . , n}. For a vector v, ∥v∥ and ∥v∥1 denote its Euclidean norm and 1-norm, respectively.
For a matrix A, AT denotes its transpose; tr(A) denotes the trace of A; ∥A∥ represents the
Frobenius norm, and the spectrum norm ∥A∥2 is the largest singular value of A. We use
MATLAB-style indexing to denote submatrices. For instance, A(i1 : i2, j1 : j2) denotes the
submatrix consisting of the rows from i1 to i2 and the columns from j1 to j2. The function
sign(a) obtains the sign of a, i.e.,

sign(a) :=


1 if a > 0
0 if a = 0
−1 if a < 0

.

The sign function can be used for matrices and tensors by applying the function element-wisely.
For a twice-differentiable function f : Rn → R, we use ∇f ∈ Rn and ∇2f ∈ Rn×n to

denote the gradient and the Hessian matrix of f , respectively. The function f is λ-strongly
convex for λ > 0 if the smallest eigenvalue of ∇2f is not less than λ. Equivalently, f is
λ−strongly convex if

f(y) ≥ f(x) +∇f(x)T (y − x) +
λ

2
∥y − x∥2, ∀x,y ∈ Rn.

For the vector valued function h(x) = (h1(x), . . . , hm(x)) where hi : Rn → R, the Jacobian
matrix Jh(x) is

Jh(x) :=
(
∇h1(x), . . . ,∇hm(x)

)T
.

2.1. Tensors. Tensors can be regarded as multi-dimensional data arrays [37]. The space
of real tensors with order m and dimension N1, N2, . . . , Nm is denoted by RN1×N2×···×Nm .
The (i1, i2, · · · , im)-th element of a tensor A ∈ RN1×N2×···×Nm is denoted as ai1,...,im for

1 ≤ ij ≤ Nj . The mode-k unfolding of A is the matrix A[k] ∈ R
Nk×(

m∏
i=1

Ni)/Nk

which is
obtained by reshaping A with the kth dimension being the leading dimension. The Frobenius
norm of A is

∥A∥F :=

√√√√N1,...,Nm∑
i1,...,im

a2i1,...,im .

For vectors {ui ∈ RNi}mi=1, their outer product forms an order-m rank-1 tensor

B = u1 ◦ u2 ◦ · · · ◦ um ⇐⇒ bi1,...,im =

m∏
k=1

uk(ik).

A tensor A ∈ RN1×N2×···×Nm is said to have a rank-r CP decomposition if there exist matrices
{Ui ∈ RNi×r}mi=1 such that

A = [[U1,U2, · · · ,Um]] :=
r∑

j=1

U1(:, j) ◦ · · · ◦Um(:, j).
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Type Bits Sign Exponent Significand Min Max

FP16 16 1 5 10 6.1× 10−5 6.6× 104

FP32 32 1 8 23 1.2× 10−38 3.4× 1038

FP64 64 1 11 52 2.2× 10−308 1.8× 10308

Table 1
Floating Point Representations

(m, k, n) INT8 time FP16 time FP32 time

(240,2402,256) 232 (4.47×) 675 (1.54×) 1037 (1×)

(60,603,64) 794 (4.55×) 2456 (1.47×) 3615 (1×)

(24,244,32) 1139 (4.89×) 3784 (1.47×) 5571 (1×)
Table 2

Time comparisons of matrix multiplications of m × k and k × n under various precisions on GPU. The
times are measured in microseconds (µs).

The smallest integer r that ensures the above equality is called the CP rank of A, denoted
by rank(A). The Khatri-Rao product of matrices U1, . . . ,Um is a column-wise Kronecker
product, i.e.,

U1 ⊙ · · · ⊙Um := [⊗m
i=1Ui(:, 1), . . . ,⊗m

i=1Ui(:, r)] ,

where ⊗ denotes the Kronecker product. It holds that A[k] = Uk(⊙m
i=1,i ̸=kUi)

T .

2.2. Precision Reprensentations. In practice, numbers are represented and processed as
binary strings on digital computing hardware. The binary strings can represent numbers in
either fixed-point format or floating-point format. We use INTn and FPn to denote an n-bit
fixed-point format and an n-bit floating-point format, respectively. The representation format
is directly related to the precision of the represented number. Hence, the representation format
is also called precision format.

An INTn data representation uses n bits, where the first bit stores the sign and the other
n − 1 bits store the absolute value. The set of numbers that the INTn format can represent
is {−2n−1,−2n−1 + 1, . . . , 0, 1, . . . , 2n−1 − 1}. The FPn format uses 1 bit to store the sign,
N1 bits to store significand, and N2 bits to store exponent, where N1 + N2 + 1 = n. Then,
the number is represented by sign× significand× 2exponent. FP16 (half precision), FP32 (single
precision), and FP64 (double precision) are most commonly used and are supported by most
devices. Their bits for each part and representation ranges are described in Table 1. Floating-
point arithmetic operations are much more expensive than fixed-point arithmetic operations
with the same number of bits. Clearly, low-bit representations consume less memory and
computation resources but cause larger rounding-off errors. Table 2 compares the run-time of
matrix multiplications under different precision formats on tensor core GPU. The chosen test
sizes are common in computing gradients for the proposed Algorithm 3.1 as in (3.5). We can
see that the INT8 multiplications are 4× to 5× faster than FP32 multiplications.

Deterministic rounding and stochastic rounding methods can be used to round a high-
precision number to a lower precision. For a given precision format p, let R(p) be the set
of numbers that can be represented by the format p. The ceiling and floor functions with
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precision p are defined as

⌈y⌉p :=min{v ∈ R(p) ∪ {+∞}|v ≥ y},
⌊y⌋p :=max{v ∈ R(p) ∪ {−∞}|v ≤ y}.

When the precision p is not specified, we use R(p) = N by default. The quantization function
QDp,δ, with precision p, scaling factor δ, and deterministic rounding, is defined as

QDp,δ(x) =

{
δ⌈x/δ⌉p if x/δ ≥ 1

2 (⌈x/δ⌉p + ⌊x/δ⌋p)
δ⌊x/δ⌋p if x/δ < 1

2 (⌈x/δ⌉p + ⌊x/δ⌋p) .
.

The quantization function QSp,δ with stochastic rounding is

QSp,δ(x) =

{
δ⌈x/δ⌉p with probability

x/δ−⌊x/δ⌋p
⌈x/δ⌉p−⌊x/δ⌋p

δ⌊x/δ⌋p with probability
⌈x/δ⌉p−x/δ

⌈x/δ⌉p−⌊x/δ⌋p

.

The stochastic rounding ensures that the quantization is unbiased, i.e., E(QSp,δ(x)|x) = x.

3. Proposed Algorithm. This section presents a mixed-precision SGD-type algorithm to
reduce the memory and computation cost of CP tensor decomposition. This method has a
linear convergence rate when it gets close to the optimal solution. A mixed-precision SignSGD
method is utilized at the beginning to improve the convergence of the whole framework.

3.1. Mixed-Precision CP Decomposition. Given a tensor A ∈ RN1×···×Nm , the rank-r
CP tensor decomposition can be formulated as the optimization problem

(3.1) min
Θ

f(Θ) = ∥A− [[U1, · · · ,Um]]∥2F, with Θ =
{
Ui ∈ RNi×r

}m
i=1

.

This problem can be rewritten as

(3.2) min
Θ

f :=
1

N

N1∑
i1=1

· · ·
Nm∑
im=1

(ai1...im − [[U1(i1, :), · · · ,Um(im, :)]])2,

where N := N1 · · ·Nm. Since the cost function is the summation of N functions, we can
naturally apply an SGD-type method to solve the optimization.

Instead of using standard SGD [7], we present a mixed-precision SGD-type algorithm
to solve Problem (3.1). Let Us

1, . . . ,U
s
m be the tensor factor matrices in the s-th iteration

and Q(g̃si ) be the quantized stochastic gradient with respect to Us
i . Corollary 4.2 shows that

Problem (3.1) is locally strongly convex around the true decomposition if the leading rows of
Ui(1, :) are fixed for i = 2, . . . ,m. We propose to update variables as

Us+1
1 = Us

1 − αsQ(g̃
s
1),

Us+1
i (2 : Ni, :) = Us

i (2 : Ni, :)− αsQ(g̃
s
i )(2 : Ni, :).
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Algorithm 3.1 Mixed-Precision Stochastic Gradient Algorithm for Tensor Decomposition

1: Input: tensor A ∈ RN1×···×Nm , rank r, initialization {U0
i ∈ RNi×r}mi=1, initial learning

rates αsign
0 , αSGD

0 > 0, thresholds ϵ1 > ϵ2 > 0, quantizations Q1, Q2, sample sizes {ni}mi=1,
learning rate update intervals Ksign,KSGD, learning rate update constants ηsign, ηSGD.

2: Let s = 0.
3: α0 = αsign

0 .
4: while ∥A− [[Us

1, · · · ,Us
m]]∥/∥A∥ > ϵ1 do

5: Compute the mixed-precision gradient {Q(g̃s
i )}mi=1 as in Algorithm 3.2.

6: Us+1
i = Us

i − αssign(Q(g̃
s
i )).

7: αs+1 =

{
ηsignαs, if ((s+ 1) mod Ksign) = 0
αs, otherwise

.

8: s = s+ 1.
9: end while

10: Let αs = αSGD
0 , ssign = s.

11: while ∥A− [[Us
1, · · · ,Us

m]]∥/∥A∥ > ϵ2. do
12: Compute the mixed-precision gradient {Q(g̃s

i )}mi=1 as in Algorithm 3.2.
13: Us+1

1 = Us
1 − αsQ(g̃

s
1).

14: Us+1
i (2 : Ni, :) = Us

i (2 : Ni, :)− αsQ(g̃
s
i )(2 : Ni, :), i = 2, . . . ,m

15: αs+1 =

{
ηSGDαs, if ((s− ssign + 1) mod KSGD) = 0
αs, otherwise

.

16: s = s+ 1.
17: end while
18: Output: factor matrices {Us

i}mi=1.

Problem (3.1) has many stationary points, and the mixed-precision SGD can easily con-
verge to a local optimizer without a good initialization point. We propose to use mixed-
precision SignSGD to find a good initialization for SGD, which updates variables as follows:

Us+1
i = Us

i − αssign(Q(g̃
s
i )).

The mixed-precision SignSGD only uses the sign of the gradient to update parameters. Con-
sequently, it is more robust against non-convexity and quantization errors. In practice, we
find that SignSGD is unlikely to be trapped by a stationary point. This motivates us to firstly
run mixed-precision SignSGD for a number of iterations. When the error becomes small, we
switch to mixed-precision SGD for better accuracy and faster convergence.

The learning rate is updated as αs+1 = ηαs everyK iterations for some constant 1 > γ > 0.
It is the multi-stage update rule. The complete mixed-precision CP decomposition (3.1) is
presented in Algorithm 3.1.

3.2. Mixed-Precision Block Stochastic Gradient. Gradient computation is often the
most expensive part in SGD-type algorithms. This subsection describes how to efficiently
compute the mixed-precision stochastic gradient used in Algorithm 3.1.

Problem (3.2) is well-structured, therefore we use block sampling to maximize the usage
of parallel computing. In each iteration, we uniformly sample a subset of indices Ii ⊂ [Ni]
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Algorithm 3.2 Compute Mixed-Precision Stochastic Gradient

1: Input: tensor A ∈ RN1×···×Nm , rank r, factor matrices {U0
i ∈ RNi×r}mi=1, quantization

functions Q1, Q2, sample sizes {ni}mi=1.
2: Randomly sample Ii ⊂ [ni] with |Ii| = ni for i ∈ [m].
3: Compute M = −A(I1, . . . , Im) + [[Q1(U1(I1, :)), · · · , Q1(Um(Im, :))]].
4: Compute Vi = ⊙m

j=1,j ̸=iQ1(Uj(Ij , :)) for i ∈ [m].
5: Compute Q(g̃i)(Ii, :) = Q2(M[i])Q2(Vi).
6: Output: Mixed-precision stochastic gradient {Q(g̃i)}mi=1.

with |Ii| = ni for i = 1, . . . ,m. Then, we consider the cost function

fI :=
1

n
∥A(I1, . . . , Im)− [[U1(I1, :), · · · ,Um(Im, :)]]∥2F, with n = n1 · · ·nm.

The gradient of fI with respect to Ui(Ii, :) is

(3.3) ∇Ui(Ii,:)fI = − 2

n
(A(I1, . . . , Im)− [[U1(I1, :), · · · ,Um(Im, :)]])[i] ⊙

m
j=1,j ̸=i Uj(Ij , :).

Therefore, the stochastic gradient g̃i := ∇UifI ∈ RNi×r is given as

(3.4) g̃i(ji, :) =

{
∇Ui(ji,:)fI if ji ∈ Ii
0 if ji /∈ Ii

.

We regard I := (I1, . . . , Im) as a random variable. Each Ii is sampled uniformly, hence it
holds that EI [g̃i] = gi for i = 1, . . . ,m, where gi := ∇Uif .

We compute the quantized value of the block stochastic gradient g̃i (3.4) as follows:

M := −A(I1, . . . , Im) + [[Q1(U1(I1, :)), · · · , Q1(Um(Im, :))]],(3.5a)

Vi := ⊙m
j=1,j ̸=iQ1(Uj(Ij , :)),(3.5b)

Q(g̃i)(Ii, :):= Q2(M[i])Q2(Vi),(3.5c)

where Q1, Q2 are two quantization functions as described in Section 2.2. The steps for com-
puting the stochastic gradient in mixed-precision are summarized in Algorithm 3.2.

The subtraction in (3.5a) and the Khatri–Rao product in (3.5b) are both sensitive to
quantization errors, and extremely low-precision quantization function Q1 will cause bad con-
vergence behavior. Therefore, we use precision FP16 and scale δ = 1 for Q1, i.e., Q1 = QFP16,1.
The last matrix multiplication (3.5c) is more robust against errors. Consequently, the quan-
tization functions Q2 can use an extremely low precision. Practically, INT4 and INT8 always
work well, and INT2 can work when the tensor rank r is small. For the specific quantization
QINTb,δ(X) for a matrix X, the scaling factor δ depends on X and the precision INTb. We typ-

ically set δ slightly less than max{X}
2b−1−1

. This ensures most entries of X lie in the representation
range of INTb while preserving low quantization errors.
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INT8 INT4 INT2
m = 3 21.9% 17.2% 14.8%

m = 4 20.0% 15.0% 12.5%

m = 5 18.75% 13.5% 10.9%
Table 3

Normalized computation cost compared with full-precision for various orders and precisions.

Complexity Analysis. The sub-tensor M in (3.5a) is only computed once for all i ∈ [m],
and the computation requires around 2nr arithmetic operations. Computing each Vi in (3.5b)
needs N

Ni
r arithmetic operations, so the total number of operations of step (3.5b) is

∑m
i=1

n
ni
r.

Step (3.5c) involves a tensor unfolding along its ith dimension. The matrix multiplication
(3.5c) for each i requires about 2nr operations. In total, we will do m such multiplications
and the total number of operations is 2mnr. Therefore, the most expensive step in (3.5) is the
matrix multiplications (3.5c). Fortunately, (3.5c) is robust against quantization noises, and its
cost can be reduced significantly by using ultra low-precision quantization functions. Suppose
that each arithmetic operation of precision p costs cp computation resources. Computing

the mixed-precision gradient as in (3.5) requires C(p1, p2) = cp1

(
2nr +

∑m
i=1

n
ni
r
)
+2cp2mnr

resources, where p1, p2 are the precision formats used by Q1, Q2 respectively. In practice, we
typically choose p1 as FP16 and p2 as some low-bit fixed-point format. The computation
resource consumed by a specific representation format is proportional to the number of bits.
On modern hardware, fixed-point operations typically use less resources and are much faster
than floating-point operations. More specifically, fixed-point operations use less than half
resources of floating-point operations with the same number of bits [27]. Therefore, we have
the estimation cFP16 ≈ 1

2cFP32 , cINTb ≈ b
64cFP32 . Then, the estimated costs of (3.5) under full-

precision and low-precision are

C(FP32, FP32) ≈ (2 + 2m+
m∑
i=1

1

ni
)nrcFP32 ≈ (2 + 2m)nrcFP32 ,

C(FP16, INTb) ≈ (1 +
b

32
m+

m∑
i=1

1

ni
)nrcFP32 ≈ (1 +

b

32
m)nrcFP32 .

The computation saving of using mixed-precision is

C(FP16, INTb)/C(FP32, FP32) ≈
1 + b

32m

2 + 2m
.

The cost reduction of our proposed mixed-precision gradient is more obvious for high-order
tensors and smaller number of bits. Table 3 shows the normalized computational cost for
orders m = 3, 4, 5 and precision INT8, INT4, INT2, respectively.

4. Convergence Analysis. This section presents the convergence result of Algorithm 3.1.
Under some generic conditions, we prove that the tensor decomposition problem (3.1) is locally
strongly convex after proper normalization. We prove that the mixed-precision SignSGD
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converges to some stationary points up to some noise caused by stochasticity and quantization
errors. We also prove that the mixed-precision SGD has a locally linear convergence rate
around the global minimizer.

4.1. Locally Strong Convexity. This subsection shows the locally strong convexity of the
problem (3.1) after proper normalization. Note that Problem (3.1) itself is non-convex and it
does not have local convexity as well. Suppose that the tensor A has the CP decomposition
A = [[U1,U2, · · · ,Um]]. Then, it holds that

(4.1) A =
r∑

j=1

c1,jU1(:, j) ◦ · · · ◦ cm,jUm(:, j),

for any ci,j ’s as long as Πm
i=1c1,j = 1. Therefore, the CP decomposition problem (3.1) has an

infinite number of minimizers, but many solutions differ only with scaling factors. Therefore,
we fix the elements {Ui(1, :)}mi=2 and assume that Ui(1, :) = 1T for 2 ≤ i ≤ m without loss of
generality. The CP decomposition problem (3.1) now becomes

(4.2) min
Θ̃

f̃(Θ̃) :=
∥∥∥A− [[U1,

[
1T ; Ũ2

]
, · · · ,

[
1T ; Ũm

]
]]
∥∥∥2 ,

where Θ̃ := (U1, Ũ2, . . . , Ũm) and U1 ∈ RN1×r, Ũi ∈ R(Ni−1)×r for i = 2, . . . ,m.
It can be shown that the normalized problem (4.2) is strongly convex around its global

minimizers. For the tensor A ∈ RN1×N2×...×Nm with N1 ≥ N2 ≥ · · · ≥ Nm, we define the
largest rank rm such that the problem (4.2) is locally strongly convex. Let

(4.3) r3 := Ñm−2⌊
Ñm−1Ñm

Ñm−2 + Ñm−1 + Ñm − 2
⌋,

where Ñm−2, Ñm−1 and Ñm are the largest integers such that (i) Ñm−2 is even, (ii) Ñm−2 ≥
Ñm−1 ≥ Ñm, and (iii) Ni ≥ Ñi for i = m−2,m−1,m. Then, the upper bound rm is computed
recursively by

(4.4) rk := Nm−k+1min{rk−1, ⌊
Nm−k+2 · · ·Nm

Nm−k+1 + · · ·+Nm − k + 1
⌋}, k = 4, . . . ,m.

The upper bound rm is around N1···Nm
N1+···+Nm−m+1 when N1, . . . , Nm are large.

The locally strong convexity holds generically when r ≤ rm. We say a property is generic
if it is true on the whole space except a subset with zero measure [14]. The rigorous result is
presented in Theorem 4.1.

Theorem 4.1. Suppose that N1 ≥ N2 ≥ · · · ≥ Nm and r ≤ rm for rm in (4.4). Let

A := [[U∗
1,
[
1T ; Ũ∗

2

]
, · · · ,

[
1T ; Ũ∗

m

]
]],

where U∗
1 ∈ RN1×r, Ũ∗

i ∈ R(Ni−1)×r, 2 ≤ i ≤ m. Then, for generic Θ̃
∗
:= (U∗

1, . . . , Ũ
∗
m), the

Hessian matrix ∇2f̃(Θ̃
∗
) is positive definite.
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Proof. See the proof in the Appendix A.

Problem (4.2) scales the leading rows to all one vectors, which simplifies the theoretical
analysis. In practice, the leading rows can be scaled to arbitrary non-zero vectors. Consider
the problem

(4.5) min
Θ̃

f̃A(Θ̃) := ∥A− [[U1,
[
uT
2 ; Ũ2

]
, · · · ,

[
uT
m; Ũm

]
]]∥2F,

where ui ∈ Rr and (ui)j ̸= 0, ∀j ∈ [r] and i ∈ [m]. Problem (4.2) can be converted Problem
(4.5) via some invertible transformations. The invertibility preserves the positive definiteness
of the Hessian. Therefore, Problem (4.5) preserves the locally strong convexity.

Corollary 4.2. Suppose N1 ≥ N2 ≥ · · · ≥ Nm and r ≤ rm in (4.4). Let u2, . . . ,um be
vectors in Rr whose elements are all nonzero and

A := [[U∗
1,
[
uT
2 ; Ũ

∗
2

]
, · · · ,

[
uT
m; Ũ∗

m

]
]],

where U∗
1 ∈ RN1×r, Ũ∗

i ∈ R(Ni−1)×r, 2 ≤ i ≤ m. Then, for generic Θ̃
∗
:= (U∗

1, . . . , Ũ
∗
m), the

Hessian ∇2f̃A(Θ̃
∗
) is positive definite and there exists an open set O containing Θ̃

∗
and a

constant λ > 0 such that the function f̃A(Θ̃) in (4.5) is λ-strongly convex in O.

Proof. To simplify the descriptions, here we regard Θ̃ as a vector including all optimization
variables. There exists a nonsingular matrix D such that f̃A(Θ̃) = f̃(DΘ̃). The Hessian
∇2f̃(DΘ̃

∗
) is positive definite by Theorem 4.1. It holds that

∇2f̃A(Θ̃
∗
) = D(∇2f̃(DΘ̃

∗
))DT .

Thus, the Hessian ∇2f̃A(Θ̃
∗
) is positive definite. Since the eigenvalues of a matrix are con-

tinuous with respect to all matrix elements [28], there exists a constant λ > 0 and an open
set O containing Θ̃

∗
such that the smallest eigenvalue of ∇2f̃A(Θ̃) is not less than λ in O. In

other words, f̃A(Θ̃) is λ-strongly convex in O.

Based on Corollary 4.2, we can prove that Algorithm 3.1 has a local convergence rate in
O after switching to mixed-precision SGD.

4.2. Convergence of Algorithm 3.1. We show that (1) the mixed-precision SignSGD in
Algorithm 3.1 converges to a stationary point up to some noise, (2) the mixed-precision SGD
in Algorithm 3.1 has a linear convergence rate around the true CP decomposition.

Let Θs := (Us
1, . . . ,U

s
m) denote the factor matrices at the s-th iteration. Suppose that

{Θs}S1
s=0 and {Θs}S2

s=S1+1 are generated by mixed-precision SignSGD and mixed-precision
SGD respectively in Algorithm 3.1. Recall that f is the objective function defined in (3.1).
We make the following assumptions.

Assumption 4.3. Assume that ∥∇2f(Θs)∥2 ≤ L, s = 0, . . . , S2.

Assumption 4.4. Let g̃s be the stochastic gradient at the s-th iteration. Assume that for
s ∈ [S2] and i ∈ [m], it holds

E(∥g̃s
i (j, k)− gs

i (j, k)∥2) ≤ σ2
g , E(∥Q(g̃s

i )(j, k)− g̃s
i (j, k)∥2) ≤ σ2

Q, ∀j ∈ [Ni], k ∈ [r].

10



Assumption 4.3 assumes the Hessian matrices are bounded, which is widely used in the
convergence analysis of SGD methods. Assumption 4.4 ensures the variance of the stochastic
gradient and the quantization error are both bounded. Under Assumption 4.4, the quantized
stochastic gradient can be bounded as

E(∥Q(g̃s
i )(j, k)− gs

i (j, k)∥) ≤ E(∥Q(g̃s
i )(j, k)− g̃s

i (j, k)∥) + E(∥g̃s
i (j, k)− gs

i (j, k)∥)

≤
√

E(∥Q(g̃s
i )(j, k)− g̃s

i (j, k)∥2) +
√

E(∥g̃s
i (j, k)− gs

i (j, k)∥2)
≤ σQ + σg.

4.2.1. Convergence of Mixed-Precision SignSGD. We show the convergence of the
mixed-precision SignSGD in Algorithm 3.1. Our proof is partially motivated by [4].

Theorem 4.5. Let {Θs}S1
s=0 be the sequence generated by the SignSGD update in Algorithm

3.1. Under Assumption 4.3 and Assumption 4.4, we have

(4.6)

S1−1∑
s=0

m∑
i=1

ni

Ni
αs∥gs

i ∥1 ≤ f(Θ0) +
1

2
rL

S1−1∑
s=0

m∑
i=1

niα
2
s + 2r(σg + σQ)

S1−1∑
s=1

m∑
i=1

niαs.

Proof. Under Assumption 4.3, it holds that
(4.7)

f(Θs+1) ≤f(Θs) +
m∑
i=1

tr
(
(gs

i )
T (Us+1

i −Us
i )
)
+

m∑
i=1

L

2
∥Us+1

i −Us
i∥2F

=f(Θs)− αs

m∑
i=1

tr
(
(gs

i (Is
i , :))

T sign(Q(g̃s
i )(Is

i , :))
)
+

m∑
i=1

L

2
∥αssign(Q(g̃

s
i )(Is

i , :))∥2

=f(Θs) +
1

2
α2
srL

m∑
i=1

ni − αs

m∑
i=1

∥gs
i (Is

i , :)∥1

+ 2αs

m∑
i=1

∑
j∈Is

i

r∑
k=1

|gs
i (j, k)|I (sign (gs

i (j, k)) ̸= sign (Q (g̃s
i (j, k)))) ,

where I is the indicator function such that I(true) = 1, I(false) = 0. Considering the part
I(sign(gs

i (j, k)) ̸= sign(Q(g̃s
i (j, k))) in the above, we have

E[I(sign(gs
i (j, k)) ̸= sign(Q(g̃s

i )(j, k)] = P[I
(
sign(gs

i (j, k)) ̸= sign(Q(g̃s
i )(j, k))

)
]

≤ P[∥Q(g̃s
i )(j, k)− gs

i (j, k)∥ ≥ |gs
i (j, k)|]

≤ E[∥Q(g̃s
i )(j, k)− gs

i (j, k)∥]
|gs

i (j, k)|

≤
σg + σQ
|gs

i (j, k)|

It implies that

E[
∑
j∈Is

i

r∑
k=1

|gs
i (j, k)|I(sign(gs

i (j, k)) ̸= sign(Q(g̃t
i)(j, k))] ≤

∑
j∈Is

i

r∑
k=1

(σg + σQ) = nir(σg + σQ).

11



Then, we take expectation on both sides of (4.7) and get

f(Θs+1) ≤ f(Θs) +
1

2
α2
srL

m∑
i=1

ni − αs

m∑
i=1

ni

Ni
∥gs

i ∥1 + 2αsr(σg + σQ)
m∑
i=1

ni.

After summing up both sides for s = 0, . . . , S1 − 1 and rearrangement, we have

S1−1∑
s=0

m∑
i=1

ni

Ni
αs∥gs

i ∥1 ≤ f(Θ0)− f(ΘS1) +
1

2
rL

S1−1∑
s=0

m∑
i=1

niα
2
s + 2r(σg + σQ)

S1−1∑
s=0

m∑
i=1

niαs.

It implies the result (4.6) since f(ΘS1) ≥ 0.

In practice, we usually choose a relatively large constant learning rate αs = α to accelerate
the convergence at the beginning. We prove in Corollary 4.6 that a constant learning rate
provides O( 1

T1
) convergence rate up to some noise.

Corollary 4.6. Under conditions of Theorem 4.5, if αs = α, then

min
s=0,...,S1−1

∥gs
i ∥1 ≤ O(

1

S1
) +

1

γ
(
αL

2
+ 2σg + 2σQ)r

m∑
i=1

ni,

where γ = min
i∈[m]

ni
Ni

.

Proof. Equation (4.6) implies that

min
s=0,...,S1−1

∥gs
i ∥1 ≤

1

γ

f(Θ0)∑S1−1
s=0 αs

+
1

γ

(
1

2
rL

m∑
i=1

ni

∑T1−1
t=0 α2

s∑T1−1
t=0 αs

+ 2r(σg + σQ)
m∑
i=1

ni

)

=
f(Θ0)

S1γα
+

1

γ
(
αL

2
+ 2σg + 2σQ)r

m∑
i=1

ni

= O(
1

S1
) +

1

γ
(
αL

2
+ 2σg + 2σQ)r

m∑
i=1

ni.

4.2.2. Convergence of Mixed-Precision SGD. In this subsection, we show the locally
linear convergence rate of the mixed-precision SGD in Algorithm 3.1. We make the following
extra assumption.

Assumption 4.7. Assume that for some θ ∈ [0, 1), it holds

∥E(Q(g̃s
i )− g̃s

i )∥ ≤ θ∥gs
i ∥, i ∈ [m], s = S1 + 1, . . . , S2.

Assumption 4.7 assumes the quantized stochastic gradient is a good descent direction in expec-
tation. If the quantization function Q uses independent stochastic rounding, then Assumption
4.7 is true for θ = 0 since E(Q(g̃s

i )) = E(g̃s
i ) = gs

i . Assumption 4.7 still holds for deterministic
rounding as long as the quantization error is not large.

Let ui := US1
i (1, :) ∈ Rr for i = 2, . . . ,m. Suppose A := [[U∗

1,
[
uT
2 ; Ũ

∗
2

]
, · · · ◦

[
uT
m; Ũ∗

m

]
]],

where U∗
1 ∈ RN1×r, Ũ∗

i ∈ R(Ni−1)×r, 2 ≤ i ≤ m. The objective function now becomes f̃A(Θ̃)
as in (4.5), which is locally λ-strongly convex by Corollary 4.2. Consequently, the convergence
result of SGD for strongly convex functions can be applied.
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Theorem 4.8. Suppose the tensor A satisfies the conditions of Corollary 4.2. Let {Θs}S2
s=S1

be the sequence generated by the mixed-precision SGD in Algorithm 3.1 and αs = α be the
learning rate. If Θ̃

s
is in the set O as in Corollary 4.2 and E(∥Q(g̃s)∥) ≤ G for s = S1, . . . , S2,

then under Assumption 4.3, Assumption 4.4, and Assumption 4.7, it holds that

E(∥f(ΘS2)∥2) ≤ αLG

2λ(1− θ)
+ (1− αλ(1− θ))S2−S1(f(ΘS1)− αLG

2λ(1− θ)
)

where λ is the strong convexity parameter in Corollary 4.2.

Proof. Under Assumption 4.7, the gradient g̃s
i satisfies

E((gs
i )

TQ(g̃s
i )) = (gs

i )
TE(g̃s

i ) + (gs
i )

TE(Q(g̃s
i − g̃s

i )

≥ ∥gs
i ∥2 − ∥gs

i ∥∥E(Q(g̃s
i − g̃s

i )∥
≥ (1− θ)∥gs

i ∥2.

By Corollary 4.2, the function f̃A(Θ̃) is λ-strongly convex in O containing Θ̃
∗
. Algorithm 3.1

is minimizing the function f̃A(Θ̃) after switching to mixed-precision SGD. It also holds that

f(ΘS2) = fA(Θ̃
S2
). Therefore, the result is a direct conclusion of Theorem 4.6 in [7].

5. Numerical Experiments.

5.1. Implementation Details. Recall that the block stochastic gradient is computed as
in Algorithm 3.2. The quantization function Q1 use FP16, scale factor δ = 1, and deterministic
rounding, i.e., Q1 = QDFP16,1. The quantization function Q2 use INTb precision and deterministic

rounding. When quantizing the matrix X, we use the scale factor δ = max |X|
c , where c ≥

2b−1 − 1. Specifically, we use c = 10, 30, 200 for INT2, INT4, and INT8 respectively. In this
section, the precision of Algorithm 3.1 always means the precision of Q2.

Our implementation uses the Python package CuPy [43]. For fair comparisons between
different precisions, we implement the matrix multiplication by CUTLASS kernels [32]. How-
ever, due to the lack of support for extremely low-bit fixed-point integer representations in
Python, we only compare the running time between INT8 and FP32 on GPU. The learning
rate for the mixed-precision SignSGD in Algorithm 3.1 is set as 0.5 initially and is updated
as α = 0.3α every 1000 iterations. The mixed-precision SGD stage uses the constant learning
rate α = 0.01. For tensors of orders 3, 4, 5, we use the sample sizes |Ii| = 0.2Ni, 0.3Ni, 0.4Ni

respectively. The size of the sampled sub-tensor is roughly 1% of the original tensor.
Suppose that Algorithm 3.1 outputs the factor matrices {Ui}mi=1 for the input tensor A.

We use a relative error to measure the qualify of our results, which is defined as

error =
∥A− [[U1, · · · ,Um]]∥F

∥A∥F
.

5.2. Synthetic Examples. We first test the runtime and convergence of Algorithm 3.1
under various precisions on some synthetic tensor benchmarks.
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Figure 1. Performance of Algorithm 3.1 with and without SignSGD initialization.

Dimension Sample size Rank INT8 time (s) FP32 time (s) Speed up

(1200,1200,1200) (240,240,240) 256 17.96 28.15 1.56×
(200,200,200,200) (60,60,60,60) 64 29.90 56.44 1.88×
(60,60,60,60,60) (24,24,24,24,24) 32 41.71 114.89 2.75×

Table 4
Time comparison between FP32 and INT8 of Algorithm 3.1 for various dimensions

5.2.1. Role of SignSGD Initialization. This section runs the experiment in full precision
to show the influence of SignSGD initialization to the convergence of the whole algorithm. The
results with different initialization methods are shown in Figure 1. The “max” in Figure 1 is
the maximum absolute value of each {Ui}mi=1. Algorithm 3.1 without SignSGD is trapped by a
stationary point and fails to converge with max = 1.0 as shown in Figure 1a. After we decrease
max to 0.1 and 0.01, Algorithm 3.1 without SignSGD stays at zero, which is a stationary
point. In contrast, Algorithm 3.1 with SignSGD converges well for max=1.0, 0.1, 0.01. The
result demonstrates that the SignSGD initialization can greatly improve the convergence of
Algorithm 3.1.

5.2.2. Time Comparison in Different Precisions. We test the runtime of Algorithm 3.1
to reach the same relative error 10−3 under different precisions. We specifically compare the
runtime of Algorithm 3.1 with INT8 and FP32 respectively, and the result is summarized in
Table 4. Figure 2a, 2b, 2c show that the runtime increases linearly as the tensor rank increases
for both low-precision and full-precision. The reduction ratio remains the same as the rank
changes. We can observe significant time savings when using the INT8 format for all sizes,
ranks, and orders. The time saving is also more remarkable as the tensor order increases. This
is because m large-size matrix multiplications are computed in low precision in Algorithm 3.1
for tensors with order m. Therefore, higher order m brings in more time savings. The detailed
complexity analysis is in Section 3.2.
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Figure 2. Time comparison between FP32 and INT8 of Algorithm 3.1 for various ranks

5.2.3. Convergence Comparison in Different Precisions. We further evaluate the con-
vergence of Algorithm 3.1 under various precisions. We compare precisions INT2, INT4, INT8,
and FP32, where the computation of INT2 and INT4 is simulated by FP32. The simulation
simply rounds the scaled number into the nearest integer and then clamps it into the rep-
resentation range. The convergence of INT4 and INT8 precision are almost the same as the
convergence of FP32, so they are combined in Figure 3. The final relative error of low-precision
Algorithm 3.1 is slightly worse than the full-precision version due to the quantization error.
The quantization error also causes the slow convergence for rank 200 and the divergence for
higher ranks of INT2 precision. The noisy ball term in Corollary 4.6 for SignSGD depends on
the rank r and the quantization error σQ. Therefore, a large rank r and large quantization
error σQ may lead to bad convergence due to the large noisy ball. The mixed-precision SGD
part starts at around the 2000th iteration. Figure 3 shows that the mixed-precision SGD has
a linear convergence rate which matches the theoretical result in Theorem 4.8. The slower
convergence of the mixed-precision SGD part of INT2 precision in Figure 3a is caused by the
large θ in Assumption 4.7 due to the quantization error.

5.3. Real Datasets.

5.3.1. Coil-100 Dataset. The Coil-100 dataset [38] contains the images of 100 objects
in 72 different poses. Each image has size 128 × 128 × 3, where 128 × 128 is the number
of pixels and 3 represents the 3 RGB channels. Thus, the size of the formed tensor A is
128× 128× 3× 7200. The CP decomposition is applied for dimension reduction. The fourth-
factor matrix U4 ∈ R7200×r can be used as features for clustering and classification tasks.

We run Algorithm 3.1 on the tensorA with precisions INT2, INT4, INT8, and FP32. The test
employs rank r = 16 and sample size (32, 32, 3, 1440). As shown in Figure 4, the convergence
trends are similar for all precisions. Higher numerical precisions produce smaller relative errors
in the final solution, but the difference is insignificant. All of our relative errors are better
than the best reported result in [3], which is 0.314. Regarding the running time, INT8 takes 11
seconds for 1000 iterations while FP32 takes 31 seconds. Algorithm 3.1 of the INT8 precision is
2.8 times faster. The experiment demonstrates that our proposed mixed-precision algorithm
can effectively reduce the computation cost of CP tensor decomposition on real-world datasets
with negligible accuracy loss.
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Figure 3. Convergence comparison of various precision on the tensor of dimension (1200,1200,1200).

5.3.2. MRI Dataset. Magnetic Resonance Imaging (MRI) is widely used in brain science
and clinic diagnosis. Low-rank tensor decomposition can be applied to denoise practical MR
images [52]. This experiment uses the data from the NYU fastMRI Initiative database [34, 53].
The original data is in a Fourier space and forms a complex tensor K of size 16× 640× 320.
The tensor K in real-world is typically corrupted by noises. In our test, we intentionally
corrupt K by the noise tensor N . The real part and imaginary part of N both obey the
normal distribution with mean 0 and variance τ2. Let the corrupted tensor be K̂ = K+N ,
then the inverse Fourier transform is applied to K̂ to get Â ∈ C16×640×320. Next, we use
Algorithm 3.1 to find a low-rank approximation A of the noisy tensor Â for noise removal.
Finally, the gray-scale image M ∈ R640×320 is reconstructed as

Mi,j =

√√√√ 16∑
k=1

|A(k, i, j)|2.

The image M is further cropped into size 320× 320 by selecting M(161 : 480, :). Let Mtruth

be the ground-truth of the image, then the relative error is computed as

error =
∥M−Mtruth∥

∥Mtruth∥
.
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Figure 4. Converge curves of Algorithm 3.1 in various precisions on Coil-100 data

τ w/o CP INT4 INT8 FP32
1.0e-5 0.379 0.115 0.109 0.109

1.5e-5 0.639 0.173 0.164 0.165

2.0e-5 0.913 0.246 0.236 0.236
Table 5

Relative errors before and after removing noises of MRI by Algorithm 3.1

This experiment applied Algorithm 3.1 to the complex tensors. We would like to remark that
Algorithm 3.1 is designed for real tensors, but we can extend the algorithm to complex tensors
by considering the real part and the imaginary part separately.

Our experiment uses rank r = 200, sample size (16, 64, 64) and noise tensorsN of standard
deviations τ = 1.0 × 10−5, 1.5 × 10−5, 2.0 × 10−5, respectively. We test the performance of
Algorithm 3.1 in various precisions. The test results are presented in Table 5 and Figure 5.
Table 5 lists the relative errors before and after CP decompositions. Algorithm 3.1 successfully
removes the noises and reduces the errors. Moreover, the performance of Algorithm 3.1 in
INT4 and INT8 is similar to FP32. Figure 5 compares the recovered images and the ground-
truth image. The images obtained via INT4, INT8, FP32 mixed-precision CP decomposition are
visually identical and vastly superior to those without noise removal. The results demonstrate
that the mixed-precision Algorithm 3.1 is capable of producing accurate decomposition for
noisy MRI datasets.

5.4. FPGA Demonstration for Edge Computing. The proposed mixed-precision CP de-
composition can reduce the computing cost on both cloud and edge devices. Here we imple-
ment Algorithm 3.1 on a Field Programmable Gate Array (FPGA) to demonstrate its benefit
on resource-constrained edge devices. FPGAs are widely used for edge computing due to
their energy efficiency, flexible reconfigurability, and fast time-to-market [48]. However, FP-
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Figure 5. Error images before and after removing noises of MRI by Algorithm 3.1

Precision Time (s) BRAM FF Power (W) Energy (J)

INT2 3.08 12 86025 8.4 25.87

INT8 3.08 15 197868 9.5 29.26

FP32 8.61 250 624416 13.3 114.4
Table 6

FPGA implementations of Algorithm 3.1 in different precisions

GAs have very limited memory and computing resources, therefore, it is desired to use low
numerical precision to save the hardware cost in massive engineering applications.

We consider a rank-20 tensor with size (100, 100, 100) and sample size (20, 20, 20). Table
6 shows the performance of Algorithm 3.1 on FPGA in different precisions. The integer op-
erations accelerate Algorithm 3.1 about 2.8 times compared to FP32. The running time of
Algorithm 3.1 in INT2 and INT8 are dominated by higher precision parts in the algorithm.
Consequently, INT2 and INT8 have the similar running time. The usage of BRAM (block
random-access memory) of INT2 and INT8 is about 20 times less than FP32. Due to the
reduced hardware resource requirements, the power consumption of INT2 and INT8 is also
reduced. The energy cost of FP32 is 4 times more than the energy consumed by INT2 and
INT8. The number of FF (Flip-Flop) used by INT2 is 2.3 times less than INT8 and 7.2
times less than FP32, respectively. In summary, the reduction of time and resources on FP-
GAs successfully demonstrates the effectiveness of our proposed mixed-precision algorithm on
resource-constrained devices.
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6. Conclusion. This paper has proposed a mixed-precision stochastic gradient method
for the CP tensor decomposition problem. First, the stochastic gradient is computed in
mixed-precision to reduce the runtime and computation cost. Then, we develop a two-stage
optimization algorithm to solve the CP decomposition problem using mixed-precision gra-
dients. The convergence of the proposed algorithm has been proved. We have shown that
the CP decomposition problem is locally strongly convex after proper normalization. Con-
sequently, the mixed-precision SGD stage in our algorithm can have a linear convergence
rate. A set of numerical experiments on GPUs and on edge devices have successfully demon-
strated that our mixed-precision algorithm can significantly reduce the computation costs and
latency compared to the full-precision algorithm while maintaining high accuracy. The pro-
posed mixed-precision stochastic gradient method can be applied to many gradient-based CP
decomposition algorithms. It will be an interesting future topic to study the applications of
mixed-precision gradients to other optimization algorithms.

Appendix A. Proof of Theorem 4.1. In the appendix, we will give the concrete proof of
Theorem 4.1. We first show the Hessian is positive definite if and only the Jacobian matrix
has full column rank. Then, we prove that the Jacobian matrix has a full column rank in
general.

We consider the following vector-valued function

(A.1) h̃(Θ̃) = vec
(
[[U1,

[
1T ; Ũ2

]
, · · · ,

[
1T ; Ũm

]
]]
)
,

where vec(·) is the vectorization function. It holds that f̃(Θ̃) = ∥h̃(Θ̃)− vec(A)∥2.

Lemma A.1. Suppose that f̃(Θ̃) = 0, then ∇2f̃(Θ̃) is positive definite if and only if the
Jacobian Jh̃(Θ̃) has full column rank.

Proof. f̃(Θ̃) = 0 implies that h̃(Θ̃)− vec(A) = 0. Then, we have

∇f̃(Θ̃) = 2(Jh̃(Θ̃))T h̃(Θ̃), ∇2F̃ (Θ̃) = 2(Jh̃(Θ̃))TJh̃(Θ̃).

As a result, ∇2f̃(Θ̃) is positive definite if and only Jh̃(Θ̃) has full column rank.

In the following, we first prove Jh̃(Θ̃) generally has full column rank for the order m = 3
and the even N1, then we extend the result to general orders and dimensions.

Proposition A.2. When m = 3, N1 is even, N1 ≥ N2 ≥ N3 ≥ 3, and r ≤ N1⌊ n2n3
N1+N2+N3−2⌋,

the Jacobian matrix Jh̃(Θ̃) has full column rank for generic Θ̃ = (U1, Ũ2, Ũ3).

Proof. It suffices to only consider r = N1⌊ n2n3
N1+N2+N3−2⌋. The Jacobian matrix Jh̃(Θ̃) has

full column rank if and only (Jh̃(Θ̃))TJh̃(Θ̃) has non-zero determinant, which is a polynomial

function p in terms of variables Θ̃. The conclusion is then equivalent to that p(Θ̃) is nonzero
for generic Θ̃. Thus, it suffices to show p(Θ̃) is not the constant 0 polynomial [14]. In the
following, we will construct the specific Θ̃ such that p(Θ̃) ̸= 0.

Here we denote Ui = [1T ; Ũi] for convenience. Let k = N1
2 and R = 2⌊ n2n3

N1+N2+N3−2⌋. We
evenly split {1, . . . , r} into k groups such that each group has R = 2⌊ n2n3

N1+N2+N3−2⌋ elements.
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We denote the groups by group1, . . . , groupk. For i = 1, . . . , k, let

Ji =

[[
[e2i−1, e2i]⊗U2(:, j)⊗U3(:, j)

]r
j=1

,
[
U1(:, j)⊗ ĨN2 ⊗U3(:, j)

]
j∈groupi

,[
U1(:, j)⊗U2(:, j)⊗ ĨN3

]
j∈groupi

]
,

where Ĩn := In(2 : n, :). The Jacobian Jh̃(Θ̃) can be written as
[
J1, . . . ,Jk

]
.

We construct the matrix U1, where for j ∈ groupi

U1(l, j) = 0, if l ̸= 2i− 1, 2i.

For such U1, the Jocabian Jh̃(Θ̃) has full column rank if and only if each Ji has full column

rank. In the following, we will construct Θ̃ such that J1 has full column rank.
Since N1 ≥ N2 ≥ N3 ≥ 3, it holds that

R = 2⌊ n2n3

N1 +N2 +N3 − 2
⌋ ≤ 2n2n3

2n2 +N3 − 2
≤ 2n2n3

2n2 − 1
<

2n2n3

2n2
= N3.

Thus, we have R < N3 ≤ N2. Let a1, . . . ,ar be pairwisely independent vectors, b1, . . . ,bN2

and c1, . . . , cN3 be orthonormal basis of RN2 and RN3 , respectively. The orthonormal basis
can be chosen such that all leading entries are nonzero. Denote the matrix

P :=

[[
I2 ⊗ bj ⊗ cj ,aj ⊗ ĨN2 ⊗ cj ,aj ⊗ bj ⊗ ĨN3

]R
j=1

,Q1,Q2,Q3

]
,

where

Q1 =
[
I2 ⊗ bi ⊗ cj

]
R+1≤i≤N2,R+1≤j≤N3

,

Q2 =
[
I2 ⊗ bi ⊗ (c2j−1 + c2j)

]
R+1≤i≤N2,1≤j≤R/2

,

Q3 =
[
I2 ⊗ (b2i−1 + b2i)⊗ cj

]
1≤i≤R/2,R+1≤j≤N3

.

Next, we show the matrix P has full column rank. It is equivalent to proving that Px = 0 ⇔
x = 0. We first prove the coefficients for Q1 is zero. For some R+1 ≤ i ≤ N2, R+1 ≤ j ≤ N3,
it holds that (

I2 ⊗ bT
i ⊗ cTj

)
Px = I2λ = 0 ⇒ λ = 0,

where λ is the coefficient vector corresponding to I2⊗bi⊗cj in x. Thus the coefficient for Q1

is zero. Then we show the coefficient for Q2 is zero. For some R + 1 ≤ i ≤ N2, 1 ≤ j ≤ R/2,
it holds (

I2 ⊗ bT
i ⊗ cT2j−1

)
Px =

(
a2j−1 ⊗ bT

i ĨN2 , I2
) [λ1

µ

]
= 0,

(
I2 ⊗ bT

i ⊗ cT2j
)
Px =

(
a2j ⊗ bT

i ĨN2 , I2
) [λ2

µ

]
= 0,
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where λ1,λ2,µ are coefficients corresponding to a2j−1 ⊗ ĨN2 ⊗ c2j ,a2j ⊗ ĨN2 ⊗ c2j and I2 ⊗
bi ⊗ (c2j−1 + c2j) respectively. By above equations, we know

µ = −(a2j−1 ⊗ bT
i ĨN2)λ1 = −(a2j ⊗ bT

i ĨN2)λ2.

Thus, bT
i ĨN2λ1 = bT

i ĨN2λ2 = 0 since a2j−1,a2j are linearly independent. It implies that
µ = 0. Therefore, the coefficient for Q2 is zero. Similarly, we can prove the coefficient for Q3

is zero by using exactly the same technique.
Next, we show the coefficient of aj ⊗ ĨN2 ⊗ cj is zero. For some 1 ≤ i ≤ N2 and i ̸= j, it

holds(
I2 ⊗ bT

i ⊗ cTj
)
Px =

(
aj ⊗ bT

i ĨN2 ,ai ⊗ cTj ĨN3

) [µ
λj

]
= 0 ⇒ bT

i ĨN2µ = cTj ĨN3λj = 0,

where µ,λj are coefficients corresponding to aj ⊗ ĨN2 ⊗ cj ,ai ⊗ bi ⊗ ĨN3 respectively. The
above equation holds for every i such that 1 ≤ i ≤ N2 and i ̸= j. Therefore, we have[̃

ITN2
b1, . . . , Ĩ

T
N2

bj−1, Ĩ
T
N2

bj+1, . . . , Ĩ
T
N2

bN2

]T
µ = 0 ⇒ µ = 0.

The above holds because
[̃
ITN2

b1, . . . , Ĩ
T
N2

bj−1, Ĩ
T
N2

bj+1, . . . , Ĩ
T
N2

bN2

]T ∈ R(N2−1)×(N2−1) is

nonsingular. It proves that the coefficient for aj ⊗ ĨN2 ⊗ cj is zero. Similarly, we can prove
the coefficient for aj ⊗ bj ⊗ ĨN3 is zero.

The only remaining part inP is
[
I2⊗bj⊗cj

]R
j=1

.
[
I2⊗bj⊗cj

]R
j=1

has full column rank since

b1, . . . ,bR are linearly independent. Thus, the coefficients corresponding to
[
I2 ⊗bj ⊗ cj

]R
j=1

are also zero. It finishes the proof that Px = 0 ⇔ x = 0. Thus, P has full column rank.
Let

Q :=

[[ bi

(bi)1
⊗ cj

(cj)1

]
R+1≤i≤N2,R+1≤j≤N3

,
[ bi

(bi)1
⊗ c2j−1 + c2j

(c2j−1)1 + (c2j)1

]
R+1≤i≤N2,1≤j≤R/2

,[ b2i−1 + b2i

(b2i−1)1 + (b2i)1
⊗ cj

(cj)1

]
1≤i≤R/2,R+1≤j≤N3

]
.

The number of columns of Q is

c = (N2 −R)(N3 −R) + (N2 −R)
R

2
+ (N3 −R)

R

2
= n2n3 −

R

2
(N2 +N3).

It holds that,

c− (r −R) = n2n3 −
R

2
(N2 +N3 − 2)− n1R

2
= n2n3 −

R

2
(N1 +N2 +N3 − 2) ≥ 0.

Let U1(1 : 2, j) = aj , Ũ2(:, j) = bj(2 :)/(bj)1, Ũ3(:, j) = cj(2 :)/(cj)1 for j = 1, . . . , R and
Ũ2(:, j), Ũ3(:, j) be vectors such that[

[1; Ũ2(:, j)]⊗ [1; Ũ3(:, j)]
]
R+1≤j≤r

= Q(:, 1 : r −R).

Then, all columns of J1 are from P. We have shown that P has full column rank, so J1 must
have full column rank. The same technique can be applied to J1, . . . ,Jk.

Now we have proven that Jh̃(Θ̃) is has full column rank for some Θ̃. Therefore, the

Jacobian Jh̃(Θ̃) has full column rank for generic Θ̃ = (U1, Ũ2, Ũ3).
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Proposition A.2 proves the case when N1 is even. If N1 is odd, we may simply consider
N1 − 1 to make the largest dimension even. The result is stated in the following corollary.

Corollary A.3. If m = 3, N1 ≥ N2 ≥ N3 ≥ 3, and r ≤ r3 for r3 in (4.3), then the Jacobian
matrix Jh̃(Θ̃) has full column rank for generic Θ̃ = (U1, Ũ2, Ũ3).

Proof. When N1 is even, it is the result of Proposition A.2.
When N1 is odd, we consider the dimension (Ñ1, Ñ2, Ñ3), where Ñ1, Ñ2, Ñ3 are largest

integers such that Ñ1 is even, Ñ1 ≥ Ñ2 ≥ Ñ3, and Ni ≥ Ñi for i = 1, 2, 3. Let V1 :=
U1(1 : Ñ1, :), Ṽ2 := Ũ2(1 : Ñ2 − 1, :), Ṽ3 := Ũ3(1 : Ñ3 − 1, :) By Proposition A.2, the matrix
Jh̃(V1, Ṽ2, Ṽ3) has full column rank for generic V1, Ṽ2, Ṽ3. The matrix Jh̃(V1, Ṽ2, Ṽ3) only

consists of some rows in Jh̃(Θ̃). Thus, Jh̃(Θ̃) has full column rank if Jh̃(V1, Ṽ2, Ṽ3) has full

column rank. It proves Jh̃(Θ̃) has full column rank for generic Θ̃ = (U1, Ũ2, Ũ3).

We have shown the local convexity for order-3 tensors. Finally, we prove the higher order
cases by induction on the order m with base case m = 3.

Theorem A.4. If r ≤ rm for rm in (4.4), then the Jacobian matrix Jh̃(Θ̃) has full column

rank for generic Θ̃ = (U1, Ũ2, . . . , Ũm).

Proof. We will prove the result by induction on the order m. Proposition A.2 proves the
conclusion for m = 3. Suppose that the result holds for the order m− 1, then we show it also
holds for m. Similar to the proof of Theorem A.2, it suffices to prove there exists some Θ̃
such that the Jacobian is has full column rank [14].

Denote L := min{rm−1, ⌊ n2n3···Nm
N1+···+Nm−m+1⌋} and Q1 = ⊙m

i=2[1
T ; Ũi(:, 1 : L)],

Qk =
[
⊗k−1

i=2 [1
T ; Ũi(:, j)]⊗ Ĩnk

⊗m
i=k+1 [1

T ; Ũi(:, j)]
]L
j=1

, k = 2, . . . ,m.

Let U1(:, i) = ej for (j − 1)L+ 1 ≤ i ≤ jL, then (after omitting zero columns) it holds that

Jh̃(Θ̃)(1 : Πm
i=2Ni, :) =

[
⊙m

i=2[1
T ; Ũi(:, L+ 1 : r)], Q1, . . . ,Qm

]
.

Let S := [Q1, . . . ,Qm]. The matrix S has the same column space as Jh̃([1
T ; Ũ2(:, 1 :

L)], . . . , Ũm(:, 1 : L)). By the induction assumption, we know S generically has full col-
umn rank since L ≤ rm−1. The number of columns of S is c = (N2 + · · · + Nm − m + 2)L,
then

Πm
i=2Ni − c ≥ Πm

i=2Ni − (N2 + · · ·+Nm −m+ 2)⌊ Πm
i=2Ni

N1 + · · ·+Nm −m+ 1
⌋

≥ Πm
i=2Ni −Πm

i=2Ni
N2 + · · ·+Nm −m+ 2

N1 + · · ·+Nm −m+ 1

= Πm
i=2Ni(1−

N2 + · · ·+Nm −m+ 2

N1 + · · ·+Nm −m+ 1
)

= Πm
i=2Ni

N1 − 1

N1 + · · ·+Nm −m+ 1

≥ (N1 − 1)⌊ Πm
i=2Ni

N1 + · · ·+Nm −m+ 1
⌋

= r − L.
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Thus, we could choose columns {Ũi(:, L+1 : r)}mi=1 such that Jh̃(Θ̃)(1 : Πm
i=2Ni, :) is linearly

independent. It proves that Jh̃(Θ̃)(1 : Πm
i=2Ni, :) has full column rank generically. The same

proof can be applied to Jh̃(Θ̃)((j − 1)Πm
i=2Ni + 1 : jΠm

i=2Ni, :), j = 1, . . . , N1. Therefore,

Jh̃(Θ̃) has full column rank for generic Θ̃ = (U1, Ũ2, . . . , Ũm).

Now, we are ready to prove Theorem 4.1.

Proof. Under the assumption of Theorem 4.1, it holds that f̃(Θ̃
∗
) = 0. Therefore, Lemma

A.1 and Theorem A.4 imply that the Hessian ∇2f̃(Θ̃
∗
) is positive definite for generic Θ̃

∗
.
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