Mealy and Moore Machines

ECE 152A – Winter 2012
Reading Assignment

Brown and Vranesic

- 8 Synchronous Sequential Circuits
 - 8.3 Mealy State Model
Reading Assignment

- Roth
 - 13 Analysis of Clocked Sequential Circuits
 - 13.1 A Sequential Parity Checker
 - 13.2 Analysis by Signal Tracing and Timing Charts
 - 13.3 State Tables and Graphs
 - 13.4 General Models for Sequential Circuits
Finite State Machines

- Thus far, sequential circuit (counter and register) outputs limited to state variables
- In general, sequential circuits (or Finite State Machines, FSM's) have outputs in addition to the state variables
 - For example, vending machine controllers generate output signals to dispense product, provide change, illuminate displays, etc.
Finite State Machines

- Two types (or models) of sequential circuits (or finite state machines)
 - Mealy machine
 - Output is function of present state and present input
 - Moore machine
 - Output is function of present state only
- Analysis first, then proceed to the design of general finite state machines
Analysis by Signal Tracing and Timing Diagrams

Timing Analysis

- Determine flip-flop input equations
- Determine output equations
 - Mealy or Moore model
- Generate timing diagram illustrating circuit’s response to a particular input sequence
 - Outputs as well as to state
Moore Network Example

- Implemented with falling edge triggered (by way of external inverter) JK flip-flops
- Schematic (following slide)
 - \(J_A = x \quad K_A = xB' \)
 - \(J_B = x \quad K_B = x \text{ XOR } A' = xA + x'A' \)
 - \(z = B \) (function of present state only)
Moore Network Example

- Schematic
Moore Network Example

- Timing Diagram and Analysis
 - Initial conditions:
 - $A = B = z = 0$
 - Input sequence:
 - $x = 10101$
 - All state and output transitions occur after the falling clock edge
 - Assumes x changes on rising edge
 - Best case assumption for satisfying setup and hold time
Moore Network Example

- **Timing Diagram**
 (Functional Simulation)

- **Equations:**
 \[
 J_A = x \quad K_A = xB' \\
 J_B = x \quad K_B = x \text{ XOR } A' = xA + x'A' \\
 z = B
 \]

<table>
<thead>
<tr>
<th>Timing</th>
<th>Value</th>
<th>Timing</th>
<th>Value</th>
<th>Timing</th>
<th>Value</th>
<th>Timing</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0ns</td>
<td>\text{AB}=11</td>
<td>100.0ns</td>
<td>\text{AB}=11</td>
<td>150.0ns</td>
<td>\text{AB}=10</td>
<td>200.0ns</td>
<td>\text{AB}=01</td>
</tr>
<tr>
<td>\text{A}=B=z=0</td>
<td>\text{z}=1</td>
<td>\text{z}=1</td>
<td>\text{z}=0</td>
<td>\text{z}=0</td>
<td>\text{z}=1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mealy Network Example

- Implemented with falling edge triggered (by way of external inverter) JK flip-flops
- Schematic (following slide)
 - $J_A = xB \quad K_A = x$
 - $J_B = x \quad K_B = xA$
 - $z = xB' + xA + x'A'B$
 - function of present state and present input
Mealy Network Example

- Schematic

![Schematic Diagram]
Mealy Network Example

Timing Diagram and Analysis

- Initial conditions:
 - $A = B = 0$
 - $z = 1$

- Input sequence:
 - $x = 10101$

- Analysis again assumes x changes on rising edge of clock

- All state transitions occur after the falling clock edge (as with Moore machine)
Mealy Network Example

- Timing Diagram and Analysis (cont)
 - Output transitions occur in response to both input and state transitions
 - “glitches” may be generated by transitions in inputs
 - Moore machines don’t glitch because outputs are associated with present state only
 - Assumes gate delays to output(s) much shorter than clock period
 - All outputs stable before occurrence of active clock edge
Mealy Network Example

- Timing Diagram (Timing Simulation)

\[
\begin{align*}
\text{J}_A &= x \text{B} \\
\text{J}_B &= x \\
\text{K}_A &= x \\
\text{K}_B &= x \text{A} \\
\text{z} &= \text{x}B' + x \text{A} + x'A'B
\end{align*}
\]

\[
\begin{array}{c|c|c|c|c|c}
\text{Name:} & \text{CLK} & \text{X} & \text{MealyA} & \text{MealyB} & \text{Z} \\
\hline
\text{[(i)]} & & & \text{AB=00} & \text{AB=01} & \text{false 0} \\
\text{[(i)]} & & & \text{AB=01} & \text{AB=11} & \text{false 1} \\
\text{[(O)]} & & & \text{xB'} & \text{x'A'B} & \\
\text{[(O)]} & & & \text{xA} & \text{xA} & \text{xB'} \\
\text{[(O)]} & & & \text{z=1} & \text{z=0} & \text{z=1} \\
\end{array}
\]
Mealy Machines and Glitches

- In synchronous network, glitches don’t matter
 - All data transfers occur around common, falling (or rising) clock edge
 - Register transfer operations
 - Outputs sampled only on active clock edge
 - Output is stable before and after active clock edge
 - Setup and hold times satisfied
FSM Outputs & Timing - Summary

- For Moore machine, output is valid after state transition
 - Output associated with stable present state
- For Mealy machine, output is valid on occurrence of active clock edge
 - Output associated with transition from present state to next state
 - Output in Mealy machine occurs one clock period before output in equivalent Moore machine
Derivation of State Tables and Diagrams

- Timing diagram illustrates the sequential circuit’s response to a particular input sequence
 - May not include all states and all transitions
- In general, analysis needs to produce state diagram and state table
- Reverse of design process
 - Begin with implementation, derive state diagram
Derivation of State Tables and Diagrams

- Returning to Moore machine example
 - Flip-Flop inputs and circuit output functions
 - \(J_A = x \) \(K_A = xB' \)
 - \(J_B = x \) \(K_B = x \text{ XOR } A' = xA + x'A' \)
 - \(z = B \) (function of present state only)

- Begin with characteristic equation for JK Flip-Flop
 - \(Q^+ = JQ' + K'Q \)
Derivation of State Tables and Diagrams

Using characteristic function, generate next state equations and maps for each flip flop

- \(Q^+ = JQ' + K'Q \quad \rightarrow \quad A^+ = J_A Q' + K_A' Q \)
- \(A^+ = xA' + (xB')' \quad A = xA' + x'A + AB \)

- \(Q^+ = JQ' + K'Q \quad \rightarrow \quad B^+ = J_B Q' + K_B' Q \)
- \(B^+ = xB' + (x \text{xor } A')'B = xB' + xA'B + x'AB \)
Derivation of State Tables and Diagrams

- **Next State Maps**

<table>
<thead>
<tr>
<th>x</th>
<th>A'B' + x'B + x'AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[A^+ = xA' + x'A + AB \]

<table>
<thead>
<tr>
<th>x</th>
<th>A^+ + B^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[B^+ = xB' + xA'B + x'AB \]
Derivation of State Tables and Diagrams

- **State Table**

<table>
<thead>
<tr>
<th>PS</th>
<th>AB</th>
<th>X=0</th>
<th>X=1</th>
<th>z (=B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>11</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>00</td>
<td>11</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Derivation of State Tables and Diagrams

- **State Diagram**
Derivation of State Tables and Diagrams

- Mealy machine example
 - Flip-Flop inputs and circuit output functions
 - $J_A = xB$ \hspace{1em} $K_A = x$
 - $J_B = x$ \hspace{1em} $K_B = xA$
 - $z = xB' + xA + x'A'B$

- Once again, begin with characteristic Equation for JK Flip-Flop
 - $Q^+ = JQ' + K'Q$
Derivation of State Tables and Diagrams

- Generate next state equations and maps for each flip flop

 - \(Q^+ = JQ' + K'Q \rightarrow A^+ = J_A Q' + K_A'Q \)
 - \(A^+ = xBA' + x'A \)

 - \(Q^+ = JQ' + K'Q \rightarrow B^+ = J_B Q' + K_B'Q \)
 - \(B^+ = xB' + (xA)'B = xB' + x'B + A'B \)
Derivation of State Tables and Diagrams

- Next state and output maps

\[A^+ = xBA' + x'A \]
\[B^+ = xB' + x'B + A'B \]
\[z = xB' + xA + x'A'B \]
Derivation of State Tables and Diagrams

State Table

<table>
<thead>
<tr>
<th>PS</th>
<th>AB</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>00,0</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>01,1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>11,0</td>
</tr>
</tbody>
</table>

- \(x = 0 \)
- \(x = 1 \)
Derivation of State Tables and Diagrams

- State Diagram

<table>
<thead>
<tr>
<th>PS</th>
<th>AB</th>
<th>NS</th>
<th>x=0</th>
<th>x=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00,0</td>
<td>01,1</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>01,1</td>
<td>11,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10,0</td>
<td>01,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11,0</td>
<td>00,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>