Problem 1: The MOSFETs have a +0.30 Volt threshold voltage and mobility-limited characteristics, with $\mu C_{ox}/2L_s = 1 \text{ mA}/(\mu \text{m} \cdot \text{V}^2)$ and $\lambda = 0 \text{ V}^{-1}$. For Q1 the gate width W_{g1} is 1 μm. $V_{dd} = 3.3$ Volts. Pick R_{ref} so that I_{D1} is 100 μA. (a) What value is needed for R_{ref}? Assuming for a moment that R_L is small, pick W_{g2} so that I_{D2} is 300 μA. (b) What value is needed for W_{g2}? (c) over what range of V_{ds2}, and over what range of R_L is the output current I_{D2} constant?

Problem 2: Using the circuit of problem 1, now set $1/\lambda = 10 \text{ V}$. In this case, do not ignore λ in any calculation. (a) find the value of R_{ref} needed to set I_{D1} to 100 μA. (b) What width W_{g2} is needed if I_{D2} is to be 300 μA when $V_{dd} = 3.3$ V? (c) What is I_{D2} when $V_{dd} = 2.3$ V? Hint, brute-force solution involves solving a cubic polynomial. In your math classes, you have learned various numerical methods to solve hard problems.

Problem 3: Q1 and Q2 are mobility-limited FETs with $V_{th} = 0.3$V, $\mu C_{ox}/2L_s = 1 \text{ mA}/\text{V}^2$ and $1/\lambda = 10 \text{ V}$. V_{DD} is 2.5 V. The DC input bias voltage (as is shown) is zero volts. The DC output is at +0.5 Volts, and each FET carries 50 μA DC drain current. (a) Find I_{ss} and R_L. (b) Draw a circuit diagram indicating all DC node voltages and all DC branch currents. (c) Find the transconductance and output conductance of each transistor. (d) Draw a small signal equivalent circuit of each transistor. (e) Draw a small-signal equivalent circuit of the whole amplifier. (f) If $V_{in} = 1 \text{mV} \cdot \cos(2\pi \cdot 1 \text{kHz} \cdot t)$ and
\[V_{in}^- = 0.5 \text{mV} \cdot \cos(2\pi \cdot 1 \text{kHz} \cdot t) \], find \(V_{out}^+(t) \) and \(V_{out}^-(t) \)

Problem 4: The 4FETs are mobility-limited FETs with
\((\mu C_{ox} W / 2L_g) = 1 \text{ mA/V}^2 \)
and \(1/\lambda = 10 \text{ V} \). For the NFETs, \(V_{th} = 0.3 \text{V} \), while for the PFETs, the gate must be 0.3V negative of the source in order for the FET to turn on. The DC input bias voltage (as is shown) is zero volts. The drains of Q1 and Q2 are at +0.5 Volts DC, the drains of Q3 and Q4 are at +0.0 Volts and all FETs carries 50 \(\mu \text{A} \) DC drain current. (a) Find the values of the 2 DC current sources and the 4 resistors. (b) Draw a circuit diagram indicating all DC node voltages and all DC branch currents. (c) Find the transconductance and output conductance of each transistor. (d) Draw a small signal equivalent circuit of each transistor. (e) Draw a small-signal equivalent circuit of the whole amplifier. (f) If \(V_{in}^+ = 1 \text{mV} \cdot \cos(2\pi \cdot 1 \text{kHz} \cdot t) \) and \(V_{in}^- = 0.5 \text{mV} \cdot \cos(2\pi \cdot 1 \text{kHz} \cdot t) \), find \(V_{out}^+(t) \) and \(V_{out}^-(t) \)

Problem 5: The FET a mobility-limited with
\((\mu C_{ox} W / 2L_g) = 1 \text{ mA/V}^2 \)
and \(1/\lambda = 10 \text{ V} \) and \(V_{th} = 0.3 \text{V} \). The DC drain current is 50 \(\mu \text{A} \), the DC current in \(R_{G1} \) is 50 \(\mu \text{A} \), \(V_{DD} \) is 3.3 V, and the DC drain voltage is 2.0 V. \(R_L \) is four times \(R_D \), while \(R_{gen} = 100 \text{ kOhm} \). \(C_{in} = C_{out} = 1 \) microFarad.
(a) Find the values of all resistors. (b) Draw a circuit diagram indicating all DC node voltages and all DC branch currents. (c) Find the transconductance and output conductance of the transistor. (d) Draw a small signal equivalent circuit of the transistor. (e) Draw a small-signal equivalent circuit of the whole amplifier. (f) Compute the small-signal transfer function \(V_{out}(s)/V_{gen}(s) \). (g) Find the pole and zero frequencies of the transfer function. (h) Make a Bode plot, (horizontal axis being frequency in Hz on semi log paper, vertical axis being dB) of \(V_{out}/V_{gen} \). (i) If \(V_{gen}(t) \) is a 1 mV step-function, find \(V_{out}(t) \) and make an accurate plot of this.