Wireless and Fiber Communication Circuits

Prof. Steve Long
ECE/UCSB

November 19, 2002
High Linearity and High Efficiency of Class B PA in GaN HEMT Technology

Objective

Design RF MMIC power amplifier in GaN HEMT technology to achieve the following simultaneously:

- High output power
- High linearity (low IM3 distortion)
- High efficiency
- Broad bandwidth

Approach

- 12 fingers (1.2mm) dual gate AlGaN/GaN HEMT device (Lg = 0.25um)
- Single-ended common Source Class B configuration
- Lossy input matching and low pass output matching networks.

Accomplishments

- \(I_{\text{dss}} = 1 \text{A/mm} \)
- \(V_{\text{br}} = 55 \text{V} \)
- Bandwidth: 7GHz ~ 10 GHz
- Output power: 36dBm (4W)
- Maxim PAE: 34%
- IM3 distortion: -35dBc

Proved experimentally that Class B is better than Class A because it provides good IM3 performance comparable to that of Class A, while providing PAE ~10% higher than that of Class A.
Title: Fully-Integrated 5.8GHz GaAs Power Amplifier

Authors: F. Bohn, S. I. Long, PI

Sponsors: Nokia Research Center/UC Micro Program

Objective

1. Demonstrate feasibility of fully-integrated GaAs based power amplifier (PA) as alternative to GaAs based power-amplifier modules (PAMs)

2. Design of a 5.8GHz ISM band constant-envelope, highly efficient, watt-level, fully-integrated power amplifier

Approach

1. Two on-chip differential inverse class-F switching power amplifiers

2. Integrated output power combiner/balun

3. Integrated input power splitter/balun

Accomplishments

1. Circuit-level analysis, design and simulation to evaluate tuning/matching requirements and loss mechanisms.

2. Investigation of passive loss mechanism and trade-offs.

3. Extensive E/M simulations of passive input/output power combiners/impedance transformers

Figures

Predicted Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>5.8 GHz</td>
</tr>
<tr>
<td>Gain</td>
<td>10dB</td>
</tr>
<tr>
<td>PAE</td>
<td>>50%</td>
</tr>
<tr>
<td>Output Power</td>
<td>>3W</td>
</tr>
<tr>
<td>IO Impedance</td>
<td>50Ω</td>
</tr>
</tbody>
</table>
Title: High Efficiency High Linearity Power Amplifier

Authors: Jingshi Yao, A. Long, S. I. Long

Sponsors: Nokia Research Center, Samsung, Oplink, UC Micro Program

Objective

1. Design and implementation of nonlinear Class D switching amplifier with high efficiency
2. Investigation and demonstration of the technique of Linear Amplification using Nonlinear Components (LINC)

Approach

1. Current Mode Class-D (CMCD) amplifiers using LDMOS
2. Lossless combiner
3. LINC linearization with phase predistortion

Accomplishments

1. Implementation of a 13 watt CMCD with 60% efficiency at 1GHz
2. Simulation results have achieved high linearity for LINC system using phase predistortion
3. Measurement setup for LINC based on our CMCD amplifiers.

1 GHz Class D Amplifier
Title: High-Speed Mixed Signal Interconnect Design

Authors: T. Collins and S. Long; **PI:** UCSB

Sponsor: iTerra Communications/UC MICRO

Objective

1. Investigate various ground planes and transmission line topologies, to establish design rules for circuits operating over 40Gbit/s
2. Push integration of high-speed InP circuits to Large Scale Integration

Approach

1. Simulate and model various transmission line structures: inverted microstrip, microstrip with suspended ground and stripline
2. Design and test digital circuits of increasing size: Static Divider; Linear Feedback Shift Register and Bit Error Rate Tester

Accomplishments

1. Seven Static Dividers have been fabricated with different interconnect structures, and different area and power requirements.
2. Current Mode Logic static frequency divider demonstrated above 70GHz.

Figure

- 66 GHz
- time, nsec
Objective

1. Design a low phase noise frequency synthesizer for fiber optic application.
3. Characterize a divide-by-8 (Prescalar) for phase noise.
4. Assess maximum speed of SiGe BJT process using a static frequency divider.

Approach

1. Test different configuration of prescalars for best phase noise performance.
2. Phase noise analysis of a PLL using prescalar and VCO phase noise data.
3. Measure static frequency divider to assess the maximum clock frequency.

Accomplishments

1. Design and layout of static frequency divider for maximum clock speed.
2. Completed layout for test structures to characterize prescalars for phase noise.
3. Completed layout for a low phase noise PLL.

PLL Layout
Objective

1. Identify key contributors to VCO phase noise.
2. Analyze the degree to which circuit topologies and component improvements can be used to reduce the phase noise.

Approach

1. Use the multi-level metal layer inductor to increase the Q-factor.
2. Reduce the noise contribution from the transistor by minimizing the transistor turn-on time.

Accomplishments

1. VCO using 350um square multi-level inductor was built.
2. VCO using 250um square multi-level inductor was built.
3. Single metal layer and multiple metal layer inductor was built for comparison.