CMOS Devices: Alpha-power Model, Sub-micron Effects, Leakage Mechanisms, Parasitic Effects

Prof. Kaustav Banerjee
Electrical and Computer Engineering

E-mail: kaustav@ece.ucsb.edu
Alpha-Power MOSFET Model

\[I_{ds} \propto (V_{gs} - V_t)^\alpha \]

1<\(\alpha\)<2, is the velocity saturation index, determined by curve fitting.....also accounts for mobility degradation due to high vertical field (\(V_{gs}/t_{ox}\))

At low lateral E-fields, \(V_{ds}/L\), current increases linearly with E-field

At high fields, \(E = E_{sat}\)

Carrier velocity saturates due to carrier scattering = \(v_{sat} (= \mu E_{sat})\)

\[I_{ds} = \mu C_{ox} W/L (V_{gs} - V_t)^2 \]

---no velocity saturation

\[I_{ds} = C_{ox} W (V_{gs} - V_t) v_{sat} \]

---complete velocity saturation

Practical situation: carrier velocity doesn’t increase linearly with field but is not completely velocity saturated....

FIG 2.17 I-V characteristics for nMOS transistor with velocity saturation
The Sub-Micron MOS Transistor

- Short-Channel Effects:
 - Threshold Voltage Dependence on L
 - DIBL
- Leakage Mechanisms
- Parasitic Resistances
Threshold voltage dependence on L

- Until now, threshold voltage assumed constant
 - V_T changed only by substrate bias V_{SB}
- In threshold voltage equations, channel depletion region assumed to be created by gate voltage only
- Depletion regions around source and drain neglected: valid if channel length is much larger than depletion region depths
- In short-channel devices, depletion regions from drain and source extend into channel
Threshold voltage roll-off...

Graphically: V_{T0} versus channel length L

V_T Roll-off:
V_T decreases rapidly with channel length
Reason for V_t Roll-Off....

- Even with $V_{GS}=0$, part of channel is already depleted.
- Bulk depletion charge is smaller in short-channel device → V_t is smaller.
Threshold voltage roll-off....

- Change in V_{t0}:
 - x_{dS}, x_{dD}: depth of depletion regions at S, D
 - x_j: junction depth

$$\Delta V_{t0} = \frac{1}{C_{ox}} \sqrt{2q\varepsilon_{Si} N_A |2\phi_F|} \cdot \frac{x_j}{2L} \left[\sqrt{1 + \frac{2x_{dS}}{x_j}} - 1 \right] \left[\sqrt{1 + \frac{2x_{dD}}{x_j}} - 1 \right]$$

- ΔV_{t0} is proportional to (x_j/L)
 - For short channel lengths, ΔV_{t0} is large
 - For large channel lengths, term approaches 0
Drain-induced barrier lowering (DIBL)

- Drain voltage V_{DS} causes change in threshold voltage
- As V_{DS} is increased, threshold voltage decreases

Cause: depletion region around drain

- Depletion region depth around drain depends on drain voltage
- As V_{DS} is increased, drain depletion region gets deeper and extends further into channel
- For very large V_{DS}, source and drain depletion regions can meet → punch-through!

Issue: results in uncertainty in circuit design
Effect of SCE and DIBL on V_{th}.....

- $V_{th} = V_{th_long-channel} - SCE - DIBL$

![Graphs showing the effect of channel length and V_{DS} on threshold voltage.](image)
Threshold voltage variation

Short-channel effects cause threshold voltage variation:

- **V_t rolloff**
 - As channel length L decreases, threshold voltage decreases
- **Drain-induced barrier lowering**
 - As drain voltage V_{DS} increases, threshold voltage decreases
- **Hot-carrier effect**
 - Threshold voltages drift over time
- **Negative-Bias Temperature Instability (NBTI)**
 - Issue in PMOS transistors
 - V_t drifts over time
 - Typical stress temperature 100-150°C
 - Typical oxide electric fields of 5-6 MV/cm
Threshold voltage variation

- Hot-carrier effect
 - increased electric fields causes increased electron velocity
 - high-energy electrons can tunnel into gate oxide
 - This changes the threshold voltage (increases V_t for NMOS)
 - Can lead to long-term reliability problems
Threshold voltage variation

- Hot electrons
 - High-velocity electrons can also impact the drain, dislodging holes
 - Holes are swept towards negatively-charged substrate → cause substrate current
 - Called impact ionization
 - This is another factor which limits the process scaling → voltage must scale down as length scales
Threshold voltage variations

- Summary of threshold variations in short-channel devices
 - V_t rolloff: threshold voltage reduces as channel length L reduces
 - DIBL: threshold voltage reduces as V_{DS} increases
 - Hot-carrier effect: threshold voltage drifts over time as electrons tunnel into oxide
 - NBTI—causes V_t increase in PMOS transistors, strong dependence on Temperature.
Subthreshold Leakage

- **Dominant leakage mechanism**
- **Increases exponentially with temperature and Vt**

\[
S = \left(\frac{d(\log I_d)}{dV_g} \right)^{-1} = \left(\frac{\partial V_g}{\partial \psi_s} \cdot \frac{\partial \psi_s}{\partial (\log I_d)} \right) = \left(1 + \frac{C_{dn}}{C_{ox}} \right) \frac{kT}{q} \ln(10)
\]

FIG 2.15 Simulated I-V characteristics
Sub-threshold conduction (1)

- When $V_{GS} < V_T$, transistor is “off”
 - However, small drain current I_D still flows
 - Called subthreshold leakage current
- Model for subthreshold current:
 \[I_D(\text{subthreshold}) = I_S W e^{\frac{q}{kT}(AV_{GS} + BV_{DS})} \]
 - Increases as V_{GS} increases (potential barrier lowered)
 - Increases as V_{DS} increases (DIBL)
Sub-Threshold Conduction (2)

The Slope Factor

\[I_D \sim I_0 e^{\frac{qV_{GS}}{nkT}}, \quad n = 1 + \frac{C_D}{C_{ox}} \]

\(S \) is \(\Delta V_{GS} \) for \(\frac{I_{D2}}{I_{D1}} = 10 \)

\[S = n \left(\frac{kT}{q} \right) \ln(10) \]

Typical values for \(S \):
60 .. 100 mV/decade
Sub-Threshold I_D vs V_{GS}

$$I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{\frac{-qV_{DS}}{kT}}\right)$$

V_{DS} from 0 to 0.5V
Sub-Threshold I_D vs V_{DS}

\[I_D = I_0 e^{\frac{qV_{GS}}{nkT}} \left(1 - e^{-\frac{qV_{DS}}{kT}} \right) \left(1 + \lambda \cdot V_{DS} \right) \]

Subthreshold MOS Characteristics - EEM141 0.35u process

Date/Time run: 01/30/02 16:26:16

Temperature: 27.0

V_{GS} from 0 to 0.3V
Gate Leakage

- Increases with gate oxide (SiO2) scaling
- High-k gate oxides can be used to lower gate leakage
- Independent of temperature

FIG 2.20 Gate leakage current from [Song01]
Junction Leakage

- Less significant than gate and subthreshold leakage
- Increases with temperature
Leakage

- Effect of leakage current
 - “Wasted” power: power consumed even when circuit is inactive
 - Leakage power raises temperature of chip
 - Can cause functionality problem in some circuits: memory, dynamic logic, etc.

- Reducing transistor leakage
 - Long-channel devices
 - Small drain voltage
 - Large threshold voltage V_T
Leakage

- Leakage vs. performance tradeoff:
 - For high-speed, need small V_T and L
 - For low leakage, need high V_T and large L

- Process scaling
 - V_T reduces with each new process (historically)
 - Leakage increases $\sim 10X!$

- One solution: dual-V_T process
 - Low-V_T transistors: use in critical paths for high speed
 - High-V_T transistors: use to reduce power
Temperature Effects

- Mobility decreases with increase in T
- V_t decreases linearly with T

What happens in ultra low-voltage designs?
See paper by Sakurai…

FIG 2.21 I–V characteristics of nMOS transistor in saturation at various temperatures
Temperature Effects

FIG 2.22 I_{dsat} vs. temperature

Lecture 10, ECE 225

Kaustav Banerjee
Temperature Effects

Chip Cooling can:

1. Improve Circuit performance
 - speed up transistors
 - decrease the delay of interconnects since metal resistance decreases with temperature
 - Lowers junction capacitance (increases depletion width)

2. Decrease leakage (mainly subthreshold)

3. Improve reliability of the chip
Latchup

- CMOS process contains parasitic bipolar transistors
- Under certain conditions, these parasitic transistors can turn on, shorting power and ground rails and usually destroying the chip → latchup
- Avoiding latchup requires certain layout design rules, and careful control of process
- Latchup was a major problem in early CMOS processes
- Now, latchup is mainly issue for I/O circuits, with high current demands and possibly noisy voltages
Latchup

Current flowing in well or substrate can forward-bias bipolar transistor

Positive feedback between transistors: when one turns on, V_{dd} and Gnd are connected

Solution: reduce R_{nwell} and R_{psubs}: use many substrate taps in layout

High-current circuits use guard rings
Parasitic Resistances

Problem can be alleviated by silicided source/drain contacts….but still needs S/D contact engineering….see D. Scott in JSSC, 1982.

Silicide thickness is an important factor….see K. Banerjee et al., IEDM 97.