ECE 225
High-Speed Digital IC Design

Lecture 13
Sequential Logic Circuits-I

Prof. Kaustav Banerjee
Electrical and Computer Engineering
E-mail: kaustav@ece.ucsb.edu
A generic Finite State Machine (FSM) consisting of combinational logic and registers.

Output of the FSM = \(F(\text{current inputs, current state}) \)

Next State is determined based on current state and current inputs—fed to the input (D) of the registers.

At the rising edge of the CLK, D copied to Q (with some delay)

Note: There are 2 storage mechanisms: 1) positive feedback and 2) charge storage
Classification of Memory Elements

- Background Memory: large centralized memory core (high density array structures)---SRAMs and DRAMs

- Foreground Memory: embedded in a logic (individual registers or register banks)—focus of this section
Classification of Memory Elements

Static Memory:
- preserves state as long as power is ON
- built by using positive feedback or regeneration where the circuit consists of intentional connections between the output and input of a combinational circuit
- most useful when register will not be updated for extended periods of time (e.g., configuration data loaded at power-up time).
- Condition also holds for most processors that use conditional clocking, (gated CLK) where the CLK is turned off for unused modules----no guarantee on how frequently the registers will be clocked and static memories are needed to preserve the state information.
- bistable element is the most popular form
Classification of Memory Elements

Dynamic Memory:
- store data for short (ms) period of time
- based on the principle of temporary charge storage on parasitic capacitors in MOS devices
- similar to dynamic logic..... capacitors need to be refreshed periodically to compensate for charge leakage
- significantly simpler----hence, provide higher performance and lower power dissipation
- most useful in datapath circuits that require higher performance levels and are periodically clocked
Naming Conventions

- Definitions:
 - A latch is a level sensitive device
 - A register is an edge-triggered storage element

- There are many different naming conventions
 - For instance, many books call edge-triggered elements flip-flops
 - This may lead to confusion however…
 - Any bistable component formed by the cross coupling of gates is a flip-flop (FF)
Latches

Multiplexer based

CLK=1: D to Q
CLK=0: Holds state of Q

As long as CLK remains high, D will be written on Q
Latch-Based Design

- N (negative) latch is transparent when $\phi = 0$
- P (positive) latch is transparent when $\phi = 1$
Timing of P/N Latches

Positive Latch

When clk is high…

Negative Latch

When clk is low…

When clk is high…

When clk is low…

Out stable

Out follows In

Out stable

Out follows In
Latch versus Register

- **Latch**
 - Stores data when clock is low (or high)

- **Register**
 - Stores data when clock rises (or falls)

\[\text{Latch: } \quad \text{Register: } \]

\[\text{D} \quad \text{Q} \quad \text{Clk} \]

\[\text{D} \quad \text{Q} \quad \text{Clk} \]

\[\text{Clk} \quad \quad \quad \text{Clk} \]

\[\text{D} \quad \quad \quad \text{D} \]

\[\text{Q} \quad \quad \quad \text{Q} \]
Characterizing Timing

Data is ready when Clk arrives.

Requires an extra timing parameter...

Data may arrive after Clk edge....
Registers or Flip-Flops

Combines two latches:
One +ve sensitive (slave) and one –ve sensitive latch (master)

Edge Triggered FF or Master-Slave FF

CLK=0: D to QM
QM = D

Slave holds previous value of Q

CLK=1: master can’t sample input and holds value of D
Slave opens and QM=(D) =Q
Timing Definitions

\[t_{su} = \text{setup time} = \text{time for which the data inputs (D) must be valid before the CLK edge} \]
\[t_{hold} = \text{hold time} = \text{time for which data input must remain valid after the CLK edge} \]
\[t_{c2q} = \text{worst case propagation time through the Register (w.r.t the CLK edge)} \]
Maximum Clock Frequency

To ensure that the input data of the sequential elements is held long enough after the CLK edge and is not modified too soon by the new wave of data coming in:

1) \(T_{min} = t_{clk-Q} + t_{p,comb} + t_{setup} \)

2) \(t_{cdreg} + t_{cdlogic} > t_{hold} \)

\(t_{cd} \): contamination delay

= minimum delay
Static Memories use Positive Feedback: Bi-Stability

A, B, and C are the only three possible operating points.

If gain > 1 in the transient region: A and B are the only stable operating points, C is a metastable point.
Meta-Stability in Bi-Stable Circuits

1. Apply small deviation \(d \) to \(V_{i1} \) biased at \(C \)
2. Deviation gets amplified and regenerated around the circuit loop
3. Deviation is amplified by the gain of the first inverter and then further amplified by the second inverter
4. The bias point moves away from \(C \) until one of the operation points \(A \) or \(B \) is reached

\[\text{A: } V_{i1}=0, V_{i2}=1 \]

At \(A \) and \(B \) the loop gain is much smaller than 1...hence, stable points

- Gain is larger than 1 in the transition region
- Every small deviation causes the operation point to move away from its original bias point, \(C \) ---metastable
A cross coupled pair of inverters results in a bistable circuit...

- A FF is a bistable circuit, which has 2 stable states
- In the absence of triggering the circuit remains in a single state
- The state can be changed by applying an external trigger
- Two ways to achieve a change of state:
 - Cut the feedback loop: so that a new value can be written into out or Q
 - This is MUX based: $Q = \text{CLK} \cdot Q + \text{CLK} \cdot \text{In}$ (most common)
 - Overpower the feedback loop
 - Apply a trigger signal at the input of the FF and force the new value into the cell by overpowering the stored value
 - Needs careful sizing of transistors in the feedback loop and the trigger circuit
 - Used mostly in static background memories
Mux-Based Latches

Negative latch (transparent when CLK = 0)

Positive latch (transparent when CLK = 1)

\[Q = \overline{Clk} \cdot Q + Clk \cdot In \]

\[Q = Clk \cdot Q + \overline{Clk} \cdot In \]
Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states.

- MUX based (not so efficient….# of transistors driven by CLK is high= 4)
- Forcing the state (can implement as NMOS-only)

+ve Latch

D

CLK

Q

CLK

CLK

CLK

CLK
Mux-Based Latch

CLK=1: bottom gate is on and D is copied to Q
Top gate is off: no feedback

CLK=0: top gate is on and Q is held stable
bottom gate is off

CLK is driving several transistors with activity=1
(not good from power perspective!)
Mux-Based Latch with Reduced Load

NMOS only Pass Transistor

- Reduces CLK load
- When CLK=1, latch samples input D
- CLK=0 enables feedback loop, puts latch in hold mode

Need Non-overlapping clocks

Use of PT degrades NM and switching performance by passing $V_{dd} - V_{Tn}$ to the input of first inverter + increases static power (PMOS of inverter is never fully turned off)
Master-Slave (Edge-Triggered) Register

Two opposite latches trigger on edge
Also called master-slave latch pair

CLK=0: master is transparent and D is copied to QM
During this time slave is in hold mode
As CLK=1: slave starts sampling, master in hold mode
Value of Q=Value of D right before the rising edge of the CLK: +ve edge triggered effect
Master-Slave +ve Edge Triggered Register

Transistor Level Implementation

X-gate Multiplexer-based latch pair

CLK=0: T1 is on, T2 is off, D input sampled onto QM

T3 off and T4 on: I5 and I6 hold the state of the Slave

CLK=1: T3 is on, T4 is off, QM sampled onto Q

T2 on and T1 off: I2 and I3 hold the state of QM
Master-Slave +ve Edge Triggered Register

Transistor Level Implementation

\[t_{su} = \text{set-up time} = \text{time before the rising edge of the CLK during which the D input should remain stable so that QM samples the value reliably} \]

Since D must propagate through I1, T1, I3, and I2 before the rising edge

\[t_{su} = 3t_{pd_{inv}} + t_{pd_{tx}} \]

\[t_{hold} = 0 \] (since T1 is cut off after CLK edge)

To ensure equal node voltages on both sides of the Xgate

\[T_{c-q} = t_{pd_{inv}} + t_{pd_{tx}} \]
Timing Analysis: Setup Time

SPICE Simulations: progressively skew the input w.r.t CLK edge until the circuit fails

(a) $T_{\text{setup}} = 0.21$ nsec

(b) $T_{\text{setup}} = 0.20$ nsec

CLK is enabled before the voltage across $T2$ settles to the same value

Set-up time for this register = 210 ps and hold time = 0

Lecture 13, ECE 225
Kaustav Banerjee
Clk-Q Delay

\[t_{c-q} = 50\% \text{ point of CLK to 50\% point of Q} \]

Volts

\[\text{Q} = 160 \text{ ps} \]

\[\text{Q} = 180 \text{ ps} \]
Reduced Clock Load
Master-Slave Register

Note: X-gate register presents high capacitive load to the CLK signal

Minimum sized devices are desired for X-gates....why? (CLk power)

However, input to I1 must be brought below its switching threshold....to make a transition. Hence, for minimum sized X-gate, I2 should be made even weaker.....by increasing L_ch.

Ratioed circuit: provides reduced load at the cost of NM

Cons: 1) T1 and its source driver must overpower I2 to switch the state of the cross-coupled inverter
2) Reverse conduction---second stage (T2 and I4) can affect the state of the first latch (I1-I2) when slave stage is ON.....not a major problem if I4 is weak.
Avoiding Clock Overlap

RACE Condition: If CLK and \(\overline{CLK} \) are both ON for a short time, both sampling pass transistors are ON providing a direct path from D to Q. Hence, data at the output can change at the rising CLK edge.

Also node A can be driven by both D and B: undefined state

One Solution: use non-overlapping CLKs

Lecture 13, ECE 225 Kaustav Banerjee
Overpowering the Feedback Loop — Cross-Coupled Pairs

NOR-based set-reset (SR)-FF

Use external triggers, S and R to change the output states (Q and \(\overline{Q} \)):

\(S=1 \) forces \(Q=1 \), \(R=1 \) forces \(Q=0 \)

Note: A NOR gate with one of its inputs=0, looks like an inverter and the above structure looks like a cross-coupled inverter
SR-FF using Cross-Coupled NAND

Cross-coupled NANDs

This is not used in datapaths any more, but is a basic building memory cell

Note: These FFs are purely asynchronous....doesn’t match with synchronous design method

Need a Clocked Latch!
Ratioed CMOS Clocked SR Latch

Consists of two cross-coupled inverters + 4 extra transistors to drive the FF from one state to another and to provide synchronization.

No static path between Vdd and Gnd.

Transistor sizing is essential to ensure FF transition.

If Q is high and R=1, then \(V_Q \) must be < \(V_M \) of INV M1-M2, to make the latch switch.

Similar condition is needed to switch INV M3-M4 for S=1.

This means we must increase the sizes of M5, M6, M7 and M8. M4-M7-M8 (and M5-M6-M2) form ratioed inverters.
For a 0.25 um technology, select the following sizes:

\[(W/L)_{M1} = (W/L)_{M3} = (0.5 \text{ um} / 0.25 \text{ um})\]
\[(W/L)_{M2} = (W/L)_{M4} = (1.5 \text{ um} / 0.25 \text{ um}).\]

Assuming \(Q = 0 \), how do we determine the minimum sizes of \(M5, M6, M7 \) and \(M8 \) to make the device switchable?

To switch from \(Q = 0 \) to \(Q = 1 \), the low-level of the pseudo-NMOS inverter \((M5-M6)-M2\) should be below the \(V_M \) of the inverter \(M3-M4 \) (= \(V_{DD}/2 \)).

As long as \(V_Q > V_M \), \(V_Q = 0 \) and gate of \(M2 \) is grounded.

The boundary condition on the transistor sizes can be derived by equating the currents in the inverter for \(V_Q = V_{dd}/2 \). The currents are derived by the saturation current since \(V_S = V_{DD} = 2.5 \text{ V} \) and \(V_M = 1.25 \text{ V} \).
Sizing Issues for Clocked SR FF

Output voltage dependence on transistor width

Assume that M5 and M6 have identical sizes and that \((W/L)_{5-6}\) is the effective ratio of the series connected devices. Under this condition, the PD network can be modeled by a single transistor M5-6, whose length is twice the length of the individual devices:

\[
k'_{n} \left(\frac{W}{L} \right)_{M5-6} \left[(V_{DD} - V_{Tn})V_{DSATn} - \frac{V_{DSATn}^2}{2} \right] = -k'_{p} \left(\frac{W}{L} \right)_{M2} \left[(V_{DD} - V_{Tp})V_{DSATp} - \frac{V_{DSATp}^2}{2} \right]
\]

This results in \((W/L)_{M5-6} = 2.26\).

Note: This would imply that the individual device sizes of M5 and M6 be 4.5...somewhat higher than that predicted by simulation (=3)due to second order effects like Channel-length modulation and DIBL.
Pipelining: Optimizing Sequential Circuits

- Widely used to accelerate the operation of datapaths in digital microprocessors...

Reference Circuit: computes $\log(|a+b|)$

Pipelined Circuit

\[T_{\text{min}} = t_{c-q} + t_{pd,\text{logic}} + t_{su} \]

\[T_{\text{min,pipe}} = t_{c-q} + \max(t_{pd,\text{adder}} + t_{pd,abs} + t_{pd,\text{log}}) + t_{su} \]

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_1 + b_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$a_2 + b_2$</td>
<td>$a_1 + b_1$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$a_3 + b_3$</td>
<td>$</td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>4</td>
<td>$a_4 + b_4$</td>
<td>$</td>
<td>a_3 + b_3</td>
</tr>
<tr>
<td>5</td>
<td>$a_5 + b_5$</td>
<td>$</td>
<td>a_4 + b_4</td>
</tr>
</tbody>
</table>

Computation of one set of input data spreads over several clock cycles.

Pipelining improves resource utilization and increases functional throughput.